Research Article -Bernoulli, -Euler, and -Genocchi...

11
Research Article On a Class of -Bernoulli, -Euler, and -Genocchi Polynomials N. I. Mahmudov and M. Momenzadeh Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey Correspondence should be addressed to M. Momenzadeh; [email protected] Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014 Academic Editor: Sofiya Ostrovska Copyright Β© 2014 N. I. Mahmudov and M. Momenzadeh. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is to introduce and investigate a class of -Bernoulli, -Euler, and -Genocchi polynomials. e -analogues of well-known formulas are derived. In addition, the -analogue of the Srivastava-PintΒ΄ er theorem is obtained. Some new identities, involving -polynomials, are proved. 1. Introduction roughout this paper, we always make use of the classical definition of quantum concepts as follows. e -shiο¬…ed factorial is defined by (; ) 0 = 1, (; ) = βˆ’1 ∏ =0 (1 βˆ’ ) , ∈ N, (; ) ∞ = ∞ ∏ =0 (1 βˆ’ ) , < 1, ∈ C. (1) It is known that (; ) = βˆ‘ =0 [ ] (1/2)(βˆ’1) (βˆ’1) . (2) e -numbers and -factorial are defined by [] = 1βˆ’ 1βˆ’ , ( ΜΈ =1, ∈ C); [0] ! = 1, [] ! = [] [ βˆ’ 1] !. (3) e -polynomial coefficient is defined by [ ] = (; ) (; ) βˆ’ (; ) , ( β©½ , , ∈ N). (4) In the standard approach to the -calculus two exponen- tial functions are used, these -exponential functions and improved type -exponential function (see [1]) are defined as follows: () = ∞ βˆ‘ =0 [] ! = ∞ ∏ =0 1 (1 βˆ’ (1 βˆ’ ) ) , 0< < 1, || < 1 1βˆ’ , () = 1/ () = ∞ βˆ‘ =0 (1/2)(βˆ’1) [] ! = ∞ ∏ =0 (1 + (1 βˆ’ ) ) , 0< < 1, ∈ C, E () = ( 2 ) ( 2 )= ∞ βˆ‘ =0 (βˆ’1, ) 2 [] ! = ∞ ∏ =0 (1 + (1 βˆ’ ) (/2)) (1 βˆ’ (1 βˆ’ ) (/2)) , 0 < < 1, ||< 2 1βˆ’ . (5) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 696454, 10 pages http://dx.doi.org/10.1155/2014/696454

Transcript of Research Article -Bernoulli, -Euler, and -Genocchi...

  • Research ArticleOn a Class of π‘ž-Bernoulli, π‘ž-Euler, and π‘ž-Genocchi Polynomials

    N. I. Mahmudov and M. Momenzadeh

    Eastern Mediterranean University, Gazimagusa, Northern Cyprus, Turkey

    Correspondence should be addressed to M. Momenzadeh; [email protected]

    Received 20 January 2014; Revised 3 April 2014; Accepted 3 April 2014; Published 28 April 2014

    Academic Editor: Sofiya Ostrovska

    Copyright Β© 2014 N. I. Mahmudov and M. Momenzadeh. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isproperly cited.

    The main purpose of this paper is to introduce and investigate a class of π‘ž-Bernoulli, π‘ž-Euler, and π‘ž-Genocchi polynomials. Theπ‘ž-analogues of well-known formulas are derived. In addition, the π‘ž-analogue of the Srivastava-Pintér theorem is obtained. Somenew identities, involving π‘ž-polynomials, are proved.

    1. Introduction

    Throughout this paper, we always make use of the classicaldefinition of quantum concepts as follows.

    The π‘ž-shifted factorial is defined by

    (π‘Ž; π‘ž)0= 1, (π‘Ž; π‘ž)

    𝑛=

    π‘›βˆ’1

    ∏

    𝑗=0

    (1 βˆ’ π‘žπ‘—π‘Ž) , 𝑛 ∈ N,

    (π‘Ž; π‘ž)∞=

    ∞

    ∏

    𝑗=0

    (1 βˆ’ π‘žπ‘—π‘Ž) ,

    π‘ž < 1, π‘Ž ∈ C.

    (1)

    It is known that

    (π‘Ž; π‘ž)𝑛=

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    π‘ž(1/2)π‘˜(π‘˜βˆ’1)

    (βˆ’1)π‘˜π‘Žπ‘˜. (2)

    The π‘ž-numbers and π‘ž-factorial are defined by

    [π‘Ž]π‘ž =1 βˆ’ π‘žπ‘Ž

    1 βˆ’ π‘ž, (π‘ž ΜΈ= 1, π‘Ž ∈ C) ;

    [0]π‘ž! = 1, [𝑛]π‘ž! = [𝑛]π‘ž[𝑛 βˆ’ 1]π‘ž!.

    (3)

    The π‘ž-polynomial coefficient is defined by

    [𝑛

    π‘˜]

    π‘ž

    =(π‘ž; π‘ž)𝑛

    (π‘ž; π‘ž)π‘›βˆ’π‘˜(π‘ž; π‘ž)π‘˜

    , (π‘˜ β©½ 𝑛, π‘˜, 𝑛 ∈ N) . (4)

    In the standard approach to the π‘ž-calculus two exponen-tial functions are used, these π‘ž-exponential functions andimproved type π‘ž-exponential function (see [1]) are defined asfollows:

    π‘’π‘ž(𝑧) =

    ∞

    βˆ‘

    𝑛=0

    𝑧𝑛

    [𝑛]π‘ž!=

    ∞

    ∏

    π‘˜=0

    1

    (1 βˆ’ (1 βˆ’ π‘ž) π‘žπ‘˜π‘§),

    0 <π‘ž < 1, |𝑧| <

    11 βˆ’ π‘ž

    ,

    πΈπ‘ž (𝑧) = 𝑒1/π‘ž (𝑧) =

    ∞

    βˆ‘

    𝑛=0

    π‘ž(1/2)𝑛(π‘›βˆ’1)

    𝑧𝑛

    [𝑛]π‘ž!

    =

    ∞

    ∏

    π‘˜=0

    (1 + (1 βˆ’ π‘ž) π‘žπ‘˜π‘§) , 0 <

    π‘ž < 1, 𝑧 ∈ C,

    Eπ‘ž(𝑧) = 𝑒

    π‘ž(𝑧

    2)πΈπ‘ž(𝑧

    2) =

    ∞

    βˆ‘

    𝑛=0

    (βˆ’1, π‘ž)𝑛

    2𝑛

    𝑧𝑛

    [𝑛]π‘ž!

    =

    ∞

    ∏

    π‘˜=0

    (1 + (1 βˆ’ π‘ž) π‘žπ‘˜(𝑧/2))

    (1 βˆ’ (1 βˆ’ π‘ž) π‘žπ‘˜ (𝑧/2)), 0 < π‘ž < 1, |𝑧|<

    2

    1 βˆ’ π‘ž.

    (5)

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 696454, 10 pageshttp://dx.doi.org/10.1155/2014/696454

  • 2 Abstract and Applied Analysis

    The form of improved type of π‘ž-exponential function Eπ‘ž(𝑧)

    motivated us to define a new π‘ž-addition and π‘ž-subtraction as

    (π‘₯ βŠ•π‘žπ‘¦)𝑛

    :=

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘˜(βˆ’1, π‘ž)

    π‘›βˆ’π‘˜

    2𝑛π‘₯π‘˜π‘¦π‘›βˆ’π‘˜,

    𝑛 = 0, 1, 2, . . . ,

    (π‘₯βŠ–π‘žπ‘¦)𝑛

    :=

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘˜(βˆ’1, π‘ž)

    π‘›βˆ’π‘˜

    2𝑛π‘₯π‘˜(βˆ’π‘¦)π‘›βˆ’π‘˜,

    𝑛 = 0, 1, 2, . . . .

    (6)

    It follows that

    Eπ‘ž (𝑑π‘₯)Eπ‘ž (𝑑𝑦) =

    ∞

    βˆ‘

    𝑛=0

    (π‘₯ βŠ•π‘žπ‘¦)𝑛 𝑑𝑛

    [𝑛]π‘ž!. (7)

    The Bernoulli numbers {π΅π‘š}π‘šβ‰₯0

    are rational numbers in asequence defined by the binomial recursion formula:

    π‘š

    βˆ‘

    π‘˜=0

    (π‘š

    π‘˜)π΅π‘˜βˆ’ π΅π‘š= {

    1, π‘š = 1,

    0, π‘š > 1,(8)

    or equivalently, the generating function

    ∞

    βˆ‘

    π‘˜=0

    π΅π‘˜

    π‘‘π‘˜

    π‘˜!=

    𝑑

    𝑒𝑑 βˆ’ 1. (9)

    π‘ž-Analogues of the Bernoulli numbers were first studiedby Carlitz [2] in the middle of the last century when heintroduced a new sequence {𝛽

    π‘š}π‘šβ©Ύ0

    :

    π‘š

    βˆ‘

    π‘˜=0

    (π‘š

    π‘˜)π›½π‘˜π‘žπ‘˜+1

    βˆ’ π›½π‘š= {

    1, π‘š = 1,

    0, π‘š > 1.(10)

    Here and in the remainder of the paper, for the parameter π‘žwe make the assumption that |π‘ž| < 1. Clearly we recover (8)if we let π‘ž β†’ 1 in (10). The π‘ž-binomial formula is known as

    (1 βˆ’ π‘Ž)𝑛

    π‘ž= (π‘Ž; π‘ž)

    𝑛=

    π‘›βˆ’1

    ∏

    𝑗=0

    (1 βˆ’ π‘žπ‘—π‘Ž)

    =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    π‘ž(1/2)π‘˜(π‘˜βˆ’1)

    (βˆ’1)π‘˜π‘Žπ‘˜.

    (11)

    The above π‘ž-standard notation can be found in [3].Carlitz has introduced the π‘ž-Bernoulli numbers and poly-

    nomials in [2]. Srivastava and Pintér proved some relationsand theorems between the Bernoulli polynomials and Eulerpolynomials in [4]. They also gave some generalizationsof these polynomials. In [4–16], the authors investigatedsome properties of the π‘ž-Euler polynomials and π‘ž-Genocchipolynomials. They gave some recurrence relations. In [17],Cenkci et al. gave the π‘ž-extension of Genocchi numbers ina different manner. In [18], Kim gave a new concept for theπ‘ž-Genocchi numbers and polynomials. In [19], Simsek et al.investigated the π‘ž-Genocchi zeta function and 𝑙-function by

    using generating functions andMellin transformation.Thereare numerous recent studies on this subject by, among manyother authors, Cigler [20], Cenkci et al. [17, 21], Choi et al.[22], Cheon [23], Luo and Srivastava [8–10], Srivastava et al.[4, 24], Nalci and Pashaev [25] Gaboury and Kurt, [26], Kimet al. [27], and Kurt [28].

    We first give the definitions of the π‘ž-numbers and π‘ž-polynomials. It should be mentioned that the definition of π‘ž-Bernoulli numbers in Definition 1 can be found in [25].

    Definition 1. Let π‘ž ∈ C, 0 < |π‘ž| < 1. The π‘ž-Bernoulli numbersb𝑛,π‘ž

    and polynomials B𝑛,π‘ž(π‘₯, 𝑦) are defined by means of the

    generating functions:

    BΜ‚ (𝑑) :=π‘‘π‘’π‘ž(βˆ’π‘‘/2)

    π‘’π‘ž (𝑑/2) βˆ’ π‘’π‘ž (βˆ’π‘‘/2)

    =𝑑

    Eπ‘ž (𝑑) βˆ’ 1

    =

    ∞

    βˆ‘

    𝑛=0

    b𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < 2πœ‹,

    𝑑

    Eπ‘ž (𝑑) βˆ’ 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦)

    =

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < 2πœ‹.

    (12)

    Definition 2. Let π‘ž ∈ C, 0 < |π‘ž| < 1. The π‘ž-Euler numberse𝑛,π‘ž

    and polynomials E𝑛,π‘ž(π‘₯, 𝑦) are defined by means of the

    generating functions:

    EΜ‚ (𝑑) :=2π‘’π‘ž(βˆ’π‘‘/2)

    π‘’π‘ž (𝑑/2) + π‘’π‘ž (βˆ’π‘‘/2)

    =2

    Eπ‘ž (𝑑) + 1

    =

    ∞

    βˆ‘

    𝑛=0

    e𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < πœ‹,

    2

    Eπ‘ž(𝑑) + 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦)

    =

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < πœ‹.

    (13)

    Definition 3. Let π‘ž ∈ C, 0 < |π‘ž| < 1.The π‘ž-Genocchi numbersg𝑛,π‘ž

    and polynomials G𝑛,π‘ž(π‘₯, 𝑦) are defined by means of the

    generating functions:

    GΜ‚ (𝑑) :=2π‘‘π‘’π‘ž(βˆ’π‘‘/2)

    π‘’π‘ž(𝑑/2) + 𝑒

    π‘ž(βˆ’π‘‘/2)

    =2𝑑

    Eπ‘ž(𝑑) + 1

    =

    ∞

    βˆ‘

    𝑛=0

    g𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < πœ‹,

    2𝑑

    Eπ‘ž(𝑑) + 1

    Eπ‘ž (𝑑π‘₯)Eπ‘ž (𝑑𝑦)

    =

    ∞

    βˆ‘

    𝑛=0

    G𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!, |𝑑| < πœ‹.

    (14)

  • Abstract and Applied Analysis 3

    Note that Cigler [20] defined π‘ž-Genocchi numbers as

    π‘‘π‘’π‘ž (𝑑) + π‘’π‘ž (βˆ’π‘‘)

    π‘’π‘ž(𝑑) + 𝑒

    π‘ž(βˆ’π‘‘)

    =

    ∞

    βˆ‘

    𝑛=0

    𝑔2𝑛,π‘ž

    (βˆ’1)π‘›βˆ’1(βˆ’π‘ž; π‘ž)

    2π‘›βˆ’1𝑑2𝑛

    [2𝑛]π‘ž!. (15)

    Then comparing g𝑛,π‘ž

    with 𝑔𝑛,π‘ž, we see that

    (βˆ’1)π‘›βˆ’122𝑛+1

    g2𝑛+2,π‘ž

    = (βˆ’π‘ž; π‘ž)2𝑛+1

    𝑔2𝑛+2,π‘ž

    . (16)

    Definition 4. Let π‘ž ∈ C, 0 < |π‘ž| < 1. The π‘ž-tangent numbersT𝑛,π‘ž

    are defined by means of the generating functions:

    tanhπ‘žπ‘‘ = βˆ’π‘– tan

    π‘ž (𝑖𝑑) =π‘’π‘ž (𝑑) βˆ’ π‘’π‘ž (βˆ’π‘‘)

    π‘’π‘ž(𝑑) + 𝑒

    π‘ž(βˆ’π‘‘)

    =Eπ‘ž (2𝑑) βˆ’ 1

    Eπ‘ž(2𝑑) + 1

    =

    ∞

    βˆ‘

    𝑛=1

    T2𝑛+1,π‘ž

    (βˆ’1)π‘˜π‘‘2𝑛+1

    [2𝑛 + 1]π‘ž!.

    (17)

    It is obvious that, by letting π‘ž tend to 1 from the left side,we lead to the classic definition of these polynomials:

    b𝑛,π‘ž:= B𝑛,π‘ž (0) , lim

    π‘žβ†’1βˆ’

    B𝑛,π‘ž (π‘₯) = 𝐡𝑛 (π‘₯) ,

    limπ‘žβ†’1

    βˆ’

    B𝑛,π‘ž(π‘₯, 𝑦) = 𝐡

    𝑛(π‘₯ + 𝑦) , lim

    π‘žβ†’1βˆ’

    b𝑛,π‘ž= 𝐡𝑛,

    e𝑛,π‘ž:= E𝑛,π‘ž (0) , lim

    π‘žβ†’1βˆ’

    E𝑛,π‘ž (π‘₯) = 𝐸𝑛 (π‘₯) ,

    limπ‘žβ†’1

    βˆ’

    E𝑛,π‘ž(π‘₯, 𝑦) = 𝐸

    𝑛(π‘₯ + 𝑦) , lim

    π‘žβ†’1βˆ’

    e𝑛,π‘ž= 𝐸𝑛,

    g𝑛,π‘ž:= G𝑛,π‘ž(0) , lim

    π‘žβ†’1βˆ’

    G𝑛,π‘ž(π‘₯) = 𝐺

    𝑛(π‘₯) ,

    limπ‘žβ†’1

    βˆ’

    G𝑛,π‘ž(π‘₯, 𝑦) = 𝐺

    𝑛(π‘₯ + 𝑦) lim

    π‘žβ†’1βˆ’

    g𝑛,π‘ž= 𝐺𝑛.

    (18)

    Here 𝐡𝑛(π‘₯), 𝐸

    𝑛(π‘₯), and 𝐺

    𝑛(π‘₯) denote the classical Bernoulli,

    Euler, and Genocchi polynomials, respectively, which aredefined by

    𝑑

    𝑒𝑑 βˆ’ 1𝑒𝑑π‘₯=

    ∞

    βˆ‘

    𝑛=0

    𝐡𝑛(π‘₯)

    𝑑𝑛

    𝑛!,

    2

    𝑒𝑑 + 1𝑒𝑑π‘₯=

    ∞

    βˆ‘

    𝑛=0

    𝐸𝑛(π‘₯)

    𝑑𝑛

    𝑛!,

    2𝑑

    𝑒𝑑 + 1𝑒𝑑π‘₯=

    ∞

    βˆ‘

    𝑛=0

    𝐺𝑛 (π‘₯)

    𝑑𝑛

    𝑛!.

    (19)

    The aim of the present paper is to obtain some resultsfor the above newly defined π‘ž-polynomials. It should bementioned that π‘ž-Bernoulli and π‘ž-Euler polynomials in ourdefinitions are polynomials of π‘₯ and 𝑦 and when 𝑦 = 0,they are polynomials of π‘₯. First advantage of this approach isthat for π‘ž β†’ 1βˆ’, B

    𝑛,π‘ž(π‘₯, 𝑦) (E

    𝑛,π‘ž(π‘₯, 𝑦), G

    𝑛,π‘ž(π‘₯, 𝑦)) becomes

    the classical BernoulliB𝑛(π‘₯ + 𝑦) (EulerE

    𝑛(π‘₯ + 𝑦), Genocchi

    G𝑛,π‘ž(π‘₯, 𝑦)) polynomial and wemay obtain the π‘ž-analogues of

    well-known results, for example, Srivastava and Pintér [11],Cheon [23], and so forth. Second advantage is that, similarto the classical case, odd numbered terms of the Bernoullinumbers b

    π‘˜,π‘žand the Genocchi numbers g

    π‘˜,π‘žare zero, and

    even numbered terms of the Euler numbers e𝑛,π‘ž

    are zero.

    2. Preliminary Results

    In this section we will provide some basic formulae for theπ‘ž-Bernoulli, π‘ž-Euler, and π‘ž-Genocchi numbers and polyno-mials in order to obtain the main results of this paper in thenext section.

    Lemma 5. The π‘ž-Bernoulli numbers b𝑛,π‘ž

    satisfy the followingπ‘ž-binomial recurrence:

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜bπ‘˜,π‘žβˆ’ b𝑛,π‘ž= {

    1, 𝑛 = 1,

    0, 𝑛 > 1.(20)

    Proof. By a simple multiplication of (8) we see that

    BΜ‚ (𝑑)Eπ‘ž(𝑑) = 𝑑 + BΜ‚ (𝑑) . (21)

    So∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜bπ‘˜,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!= 𝑑 +

    ∞

    βˆ‘

    𝑛=0

    b𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!. (22)

    The statement follows by comparing π‘‘π‘š coefficients.

    We use this formula to calculate the first few bπ‘˜,π‘ž:

    b0,π‘ž= 1,

    b1,π‘ž= βˆ’

    1

    2,

    b2,π‘ž=1

    4

    π‘ž (π‘ž + 1)

    π‘ž2 + π‘ž + 1=π‘ž[2]π‘ž

    4[3]π‘ž

    ,

    b3,π‘ž= 0.

    (23)

    The similar property can be proved for π‘ž-Euler numbers

    π‘š

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜eπ‘˜,π‘ž+ eπ‘š,π‘ž

    = {2, π‘š = 0,

    0, π‘š > 0.(24)

    and π‘ž-Genocchi numbers

    π‘š

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜gπ‘˜,π‘ž+ gπ‘š,π‘ž

    = {2, π‘š = 1,

    0, π‘š > 1.(25)

    Using the above recurrence formulae we calculate the firstfew e𝑛,π‘ž

    and g𝑛,π‘ž

    terms as well:

    e0,π‘ž= 1, g

    0,π‘ž= 0,

    e1,π‘ž= βˆ’

    1

    2, g

    1,π‘ž= 1,

    e2,π‘ž= 0, g

    2,π‘ž= βˆ’

    [2]π‘ž

    2= βˆ’

    π‘ž + 1

    2,

    e3,π‘ž=[3]π‘ž[2]π‘ž βˆ’ [4]π‘ž

    8=π‘ž (1 + π‘ž)

    8, g

    3,π‘ž= 0.

    (26)

  • 4 Abstract and Applied Analysis

    Remark 6. The first advantage of the new π‘ž-numbersbπ‘˜,π‘ž, eπ‘˜,π‘ž, and g

    π‘˜,π‘žis that similar to classical case odd num-

    bered terms of the Bernoulli numbers bπ‘˜,π‘ž

    and the Genocchinumbers g

    π‘˜,π‘žare zero, and even numbered terms of the Euler

    numbers e𝑛,π‘ž

    are zero.

    Next lemma gives the relationship between π‘ž-Genocchinumbers and π‘ž-Tangent numbers.

    Lemma 7. For any 𝑛 ∈ N, we have

    T2𝑛+1,π‘ž

    = g2𝑛+2,π‘ž

    (βˆ’1)π‘˜βˆ’122𝑛+1

    [2𝑛 + 2]π‘ž

    . (27)

    Proof. First we recall the definition of π‘ž-trigonometric func-tions:

    cosπ‘žπ‘‘ =

    π‘’π‘ž(𝑖𝑑) + 𝑒

    π‘ž(βˆ’π‘–π‘‘)

    2, sin

    π‘žπ‘‘ =

    π‘’π‘ž(𝑖𝑑) βˆ’ 𝑒

    π‘ž(βˆ’π‘–π‘‘)

    2𝑖,

    𝑖 tanπ‘žπ‘‘ =

    π‘’π‘ž(𝑖𝑑) βˆ’ 𝑒

    π‘ž(βˆ’π‘–π‘‘)

    π‘’π‘ž (𝑖𝑑) + π‘’π‘ž (βˆ’π‘–π‘‘)

    , cotπ‘žπ‘‘ = 𝑖

    π‘’π‘ž(𝑖𝑑) + 𝑒

    π‘ž(βˆ’π‘–π‘‘)

    π‘’π‘ž (𝑖𝑑) βˆ’ π‘’π‘ž (βˆ’π‘–π‘‘)

    .

    (28)

    Now by choosing 𝑧 = 2𝑖𝑑 in BΜ‚(𝑧), we get

    BΜ‚ (2𝑖𝑑) =2𝑖𝑑

    Eπ‘ž(2𝑖𝑑) βˆ’ 1

    =π‘‘π‘’π‘ž(βˆ’π‘–π‘‘)

    sinπ‘žπ‘‘

    =

    ∞

    βˆ‘

    𝑛=0

    b𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!. (29)

    It follows that

    BΜ‚ (2𝑖𝑑) =π‘‘π‘’π‘ž(βˆ’π‘–π‘‘)

    sinπ‘žπ‘‘

    =𝑑

    sinπ‘žπ‘‘(cosπ‘žπ‘‘ βˆ’ 𝑖 sin

    π‘žπ‘‘) = 𝑑 cot

    π‘žπ‘‘ βˆ’ 𝑖𝑑

    = b0,π‘ž+ 2𝑖𝑑b

    1,π‘ž+

    ∞

    βˆ‘

    𝑛=2

    b𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!

    = 1 βˆ’ 𝑖𝑑 +

    ∞

    βˆ‘

    𝑛=2

    b𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!.

    (30)

    Since the function 𝑑 cotπ‘žπ‘‘ is even in the above sum odd

    coefficients b2π‘˜+1,π‘ž

    , π‘˜ = 1, 2, . . ., are zero, and we get

    𝑑 cotπ‘žπ‘‘ = 1 +

    ∞

    βˆ‘

    𝑛=2

    b𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!= 1 +

    ∞

    βˆ‘

    𝑛=1

    b𝑛,π‘ž

    (2𝑖𝑑)2𝑛

    [2𝑛]π‘ž!. (31)

    By choosing 𝑧 = 2𝑖𝑑 in GΜ‚(𝑧), we get

    GΜ‚ (2𝑖𝑑) =4𝑖𝑑

    Eπ‘ž(2𝑖𝑑) + 1

    =2π‘–π‘‘π‘’π‘ž (βˆ’π‘–π‘‘)

    cosπ‘žπ‘‘

    =

    ∞

    βˆ‘

    𝑛=0

    g𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!,

    GΜ‚ (2𝑖𝑑) =4𝑖𝑑

    Eπ‘ž (2𝑖𝑑) + 1

    =2π‘–π‘‘π‘’π‘ž (βˆ’π‘–π‘‘)

    cosπ‘žπ‘‘

    =2𝑖𝑑

    cosπ‘žπ‘‘(cosπ‘žπ‘‘ βˆ’ 𝑖 sin

    π‘žπ‘‘)

    = 2𝑖𝑑 + 2𝑑 tanπ‘žπ‘‘ = g0,π‘ž+ 2𝑖𝑑g

    1,π‘ž+

    ∞

    βˆ‘

    𝑛=2

    g𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!

    = 2𝑖𝑑 +

    ∞

    βˆ‘

    𝑛=2

    g𝑛,π‘ž

    (2𝑖𝑑)𝑛

    [𝑛]π‘ž!.

    (32)

    It follows that

    2𝑑 tanπ‘žπ‘‘ =

    ∞

    βˆ‘

    𝑛=1

    g2𝑛,π‘ž

    (2𝑖𝑑)2𝑛

    [2𝑛]π‘ž!,

    tanπ‘žπ‘‘ =

    ∞

    βˆ‘

    𝑛=1

    g2𝑛,π‘ž

    (βˆ’1)𝑛(2𝑑)2π‘›βˆ’1

    [2𝑛]π‘ž!,

    tanhπ‘žπ‘‘ = βˆ’π‘– tan

    π‘ž(𝑖𝑑) = βˆ’π‘–

    ∞

    βˆ‘

    𝑛=1

    g2𝑛,π‘ž

    (βˆ’1)𝑛(2𝑖𝑑)2π‘›βˆ’1

    [2𝑛]π‘ž!

    = βˆ’

    ∞

    βˆ‘

    𝑛=1

    g2𝑛,π‘ž

    (2𝑑)2π‘›βˆ’1

    [2𝑛]π‘ž!= βˆ’

    ∞

    βˆ‘

    𝑛=1

    g2𝑛+2,π‘ž

    (2𝑑)2𝑛+1

    [2𝑛 + 2]π‘ž!,

    (33)

    Thus

    tanhπ‘žπ‘‘ = βˆ’π‘–tan

    π‘ž (𝑖𝑑) =π‘’π‘ž(𝑑) βˆ’ 𝑒

    π‘ž(βˆ’π‘‘)

    π‘’π‘ž(𝑑) + 𝑒

    π‘ž(βˆ’π‘‘)

    =Eπ‘ž(2𝑑) βˆ’ 1

    Eπ‘ž(2𝑑) + 1

    =

    ∞

    βˆ‘

    𝑛=1

    T2𝑛+1,π‘ž

    (βˆ’1)π‘˜π‘‘2𝑛+1

    [2𝑛 + 1]π‘ž!,

    T2𝑛+1,π‘ž

    = g2𝑛+2,π‘ž

    (βˆ’1)π‘˜βˆ’122𝑛+1

    [2𝑛 + 2]π‘ž

    .

    (34)

    The following result is a π‘ž-analogue of the additiontheorem, for the classical Bernoulli, Euler, and Genocchipolynomials.

    Lemma 8 (addition theorems). For all π‘₯, 𝑦 ∈ C we have

    B𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    bπ‘˜,π‘ž(π‘₯ βŠ•π‘žπ‘¦)π‘›βˆ’π‘˜

    ,

    B𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘ž (π‘₯) 𝑦

    π‘›βˆ’π‘˜,

  • Abstract and Applied Analysis 5

    E𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    eπ‘˜,π‘ž(π‘₯ βŠ•π‘žπ‘¦)π‘›βˆ’π‘˜

    ,

    E𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Eπ‘˜,π‘ž(π‘₯) π‘¦π‘›βˆ’π‘˜,

    G𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    gπ‘˜,π‘ž(π‘₯ βŠ•π‘žπ‘¦)π‘›βˆ’π‘˜

    ,

    G𝑛,π‘ž(π‘₯, 𝑦) =

    𝑛

    βˆ‘

    π‘˜=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Gπ‘˜,π‘ž(π‘₯) π‘¦π‘›βˆ’π‘˜.

    (35)

    Proof. We prove only the first formula. It is a consequence ofthe following identity:

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!=

    𝑑

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦)

    =

    ∞

    βˆ‘

    𝑛=0

    b𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    (π‘₯ βŠ•π‘žπ‘¦)𝑛 𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    bπ‘˜,π‘ž(π‘₯ βŠ•π‘žπ‘¦)π‘›βˆ’π‘˜ 𝑑𝑛

    [𝑛]π‘ž!.

    (36)

    In particular, setting 𝑦 = 0 in (35), we get the followingformulae for π‘ž-Bernoulli, π‘ž-Euler and π‘ž-Genocchi polynomi-als, respectively:

    B𝑛,π‘ž(π‘₯) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜bπ‘˜,π‘žπ‘₯π‘›βˆ’π‘˜,

    E𝑛,π‘ž(π‘₯) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜eπ‘˜,π‘žπ‘₯π‘›βˆ’π‘˜,

    (37)

    G𝑛,π‘ž (π‘₯) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜gπ‘˜,π‘žπ‘₯π‘›βˆ’π‘˜. (38)

    Setting 𝑦 = 1 in (35), we get

    B𝑛,π‘ž(π‘₯, 1) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘ž(π‘₯) ,

    E𝑛,π‘ž(π‘₯, 1) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Eπ‘˜,π‘ž(π‘₯) ,

    G𝑛,π‘ž(π‘₯, 1) =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Gπ‘˜,π‘ž(π‘₯) .

    (39)

    Clearly (39) is π‘ž-analogues of

    𝐡𝑛 (π‘₯ + 1) =

    𝑛

    βˆ‘

    π‘˜=0

    (𝑛

    π‘˜)π΅π‘˜ (π‘₯) ,

    𝐸𝑛(π‘₯ + 1) =

    𝑛

    βˆ‘

    π‘˜=0

    (𝑛

    π‘˜)πΈπ‘˜(π‘₯) ,

    𝐺𝑛(π‘₯ + 1) =

    𝑛

    βˆ‘

    π‘˜=0

    (𝑛

    π‘˜)πΊπ‘˜(π‘₯) ,

    (40)

    respectively.

    Lemma 9. The odd coefficients of the π‘ž-Bernoulli numbers,except the first one, are zero. That means b

    𝑛,π‘ž= 0 where

    𝑛 = 2π‘Ÿ + 1 (π‘Ÿ ∈ N).

    Proof. It follows from the fact that the function

    𝑓 (𝑑) =

    ∞

    βˆ‘

    𝑛=0

    b𝑛,π‘ž

    𝑑𝑛

    [𝑛]π‘ž!βˆ’ b1,π‘žπ‘‘

    =𝑑

    Eπ‘ž (𝑑) βˆ’ 1

    +𝑑

    2=𝑑

    2(Eπ‘ž (𝑑) + 1

    Eπ‘ž (𝑑) βˆ’ 1

    ) ,

    (41)

    By using π‘ž-derivative we obtain the next lemma.

    Lemma 10. One has

    π·π‘ž,π‘₯B𝑛,π‘ž (π‘₯) = [𝑛]π‘ž

    Bπ‘›βˆ’1,π‘ž (π‘₯) +Bπ‘›βˆ’1,π‘ž (π‘žπ‘₯)

    2,

    π·π‘ž,π‘₯E𝑛,π‘ž(π‘₯) = [𝑛]π‘ž

    Eπ‘›βˆ’1,π‘ž

    (π‘₯) + Eπ‘›βˆ’1,π‘ž

    (π‘žπ‘₯)

    2,

    π·π‘ž,π‘₯G𝑛,π‘ž (π‘₯) = [𝑛]π‘ž

    Gπ‘›βˆ’1,π‘ž

    (π‘₯) +Gπ‘›βˆ’1,π‘ž

    (π‘žπ‘₯)

    2.

    (42)

    Lemma 11 (difference equations). One has

    B𝑛,π‘ž(π‘₯, 1) βˆ’B

    𝑛,π‘ž(π‘₯) =

    (βˆ’1; π‘ž)π‘›βˆ’1

    2π‘›βˆ’1[𝑛]π‘žπ‘₯π‘›βˆ’1, 𝑛 β‰₯ 1, (43)

    E𝑛,π‘ž (π‘₯, 1) + E𝑛,π‘ž (π‘₯) = 2

    (βˆ’1; π‘ž)𝑛

    2𝑛π‘₯𝑛, 𝑛 β‰₯ 0, (44)

    G𝑛,π‘ž(π‘₯, 1) +G

    𝑛,π‘ž(π‘₯) = 2

    (βˆ’1; π‘ž)π‘›βˆ’1

    2π‘›βˆ’1[𝑛]π‘žπ‘₯π‘›βˆ’1, 𝑛 β‰₯ 1. (45)

    Proof. Weprove the identity for the π‘ž-Bernoulli polynomials.From the identity

    𝑑Eπ‘ž(𝑑)

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž (𝑑π‘₯) = 𝑑Eπ‘ž (𝑑π‘₯) +

    𝑑

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž (𝑑π‘₯) , (46)

    it follows that∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘ž (π‘₯)

    𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    (βˆ’1, π‘ž)𝑛

    2𝑛π‘₯𝑛 𝑑𝑛+1

    [𝑛]π‘ž!+

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯)

    𝑑𝑛

    [𝑛]π‘ž!.

    (47)

  • 6 Abstract and Applied Analysis

    From (43) and (37), (44) and (38), we obtain the followingformulae.

    Lemma 12. One has

    π‘₯𝑛=

    2𝑛

    (βˆ’1; π‘ž)𝑛[𝑛]π‘ž

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛 + 1

    π‘˜]

    π‘ž

    (βˆ’1; π‘ž)𝑛+1βˆ’π‘˜

    2𝑛+1βˆ’π‘˜Bπ‘˜,π‘ž(π‘₯) ,

    π‘₯𝑛=

    2π‘›βˆ’1

    (βˆ’1; π‘ž)𝑛

    (

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1; π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Eπ‘˜,π‘ž (π‘₯) + E𝑛,π‘ž (π‘₯)) ,

    π‘₯𝑛=

    2π‘›βˆ’1

    (βˆ’1; π‘ž)𝑛[𝑛 + 1]π‘ž

    Γ— (

    𝑛+1

    βˆ‘

    π‘˜=0

    [𝑛 + 1

    π‘˜]

    π‘ž

    (βˆ’1; π‘ž)𝑛+1βˆ’π‘˜

    2𝑛+1βˆ’π‘˜Gπ‘˜,π‘ž(π‘₯) +G

    𝑛+1,π‘ž(π‘₯)) .

    (48)

    The above formulae are π‘ž-analogues of the followingfamiliar expansions:

    π‘₯𝑛=

    1

    𝑛 + 1

    𝑛

    βˆ‘

    π‘˜=0

    (𝑛 + 1

    π‘˜)π΅π‘˜(π‘₯) ,

    π‘₯𝑛=1

    2[

    𝑛

    βˆ‘

    π‘˜=0

    (𝑛

    π‘˜)πΈπ‘˜ (π‘₯) + 𝐸𝑛 (π‘₯)] ,

    π‘₯𝑛=

    1

    2 (𝑛 + 1)[

    𝑛+1

    βˆ‘

    π‘˜=0

    (𝑛 + 1

    π‘˜)πΈπ‘˜(π‘₯) + 𝐸

    𝑛+1(π‘₯)] ,

    (49)

    respectively.

    Lemma 13. The following identities hold true:

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘ž(π‘₯, 𝑦) βˆ’B

    𝑛,π‘ž(π‘₯, 𝑦)

    = [𝑛]π‘ž(π‘₯ βŠ•π‘ž 𝑦)π‘›βˆ’1

    ,

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Eπ‘˜,π‘ž(π‘₯, 𝑦) + E

    𝑛,π‘ž(π‘₯, 𝑦) = 2(π‘₯ βŠ•

    π‘žπ‘¦)𝑛

    ,

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Gπ‘˜,π‘ž(π‘₯, 𝑦) +G

    𝑛,π‘ž(π‘₯, 𝑦)

    = 2[𝑛]π‘ž(π‘₯ βŠ•π‘ž 𝑦)π‘›βˆ’1

    .

    (50)

    Proof. We prove the identity for the π‘ž-Bernoulli polynomi-als. From the identity

    𝑑Eπ‘ž(𝑑)

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž (𝑑π‘₯)Eπ‘ž (𝑑𝑦)

    = 𝑑Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦) +

    𝑑

    Eπ‘ž (𝑑) βˆ’ 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦) ,

    (51)

    it follows that∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘˜(βˆ’1, π‘ž)

    π‘›βˆ’π‘˜

    2𝑛π‘₯π‘˜π‘¦π‘›βˆ’π‘˜ 𝑑𝑛+1

    [𝑛]π‘ž!

    +

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!.

    (52)

    3. Some New Formulae

    The classical Cayley transformation 𝑧 β†’Cay(𝑧, π‘Ž) := (1 +π‘Žπ‘§)/(1βˆ’π‘Žπ‘§)motivated us to derive the formula forE

    π‘ž(π‘žπ‘‘). In

    addition, by substituting Cay(𝑧, (π‘ž βˆ’ 1)/2) in the generatingformula we have

    BΜ‚π‘ž(π‘žπ‘‘) BΜ‚

    π‘ž (𝑑) = (BΜ‚q (π‘žπ‘‘) βˆ’ π‘žBΜ‚π‘ž (𝑑) (1 + (1 βˆ’ π‘ž)𝑑

    2))

    Γ—1

    1 βˆ’ π‘žΓ—

    2

    Eπ‘ž (𝑑) + 1

    .

    (53)

    The right hand side can be presented by π‘ž-Euler numbers.Now equating coefficients of 𝑑𝑛 we get the following identity.In the case that 𝑛 = 0, we find the first improved π‘ž-Eulernumber which is exactly 1.

    Proposition 14. For all 𝑛 β‰₯ 1,𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    Bπ‘˜,π‘žBπ‘›βˆ’π‘˜,π‘ž

    π‘žπ‘˜

    = βˆ’π‘ž

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    2π‘›βˆ’π‘˜Bπ‘˜,π‘žEπ‘›βˆ’π‘˜,π‘ž[π‘˜ βˆ’ 1]π‘ž

    βˆ’π‘ž

    2

    π‘›βˆ’1

    βˆ‘

    π‘˜=0

    [𝑛 βˆ’ 1

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜βˆ’1

    2π‘›βˆ’π‘˜βˆ’1Bπ‘˜,π‘žEπ‘›βˆ’π‘˜βˆ’1,π‘ž[𝑛]π‘ž.

    (54)

    Let us take a π‘ž-derivative from the generating function,after simplifying the equation, by knowing the quotient rulefor quantum derivative, and also using

    Eπ‘ž(π‘žπ‘‘) =

    1 βˆ’ (1 βˆ’ π‘ž) (𝑑/2)

    1 + (1 βˆ’ π‘ž) (𝑑/2)Eπ‘ž(𝑑) ,

    π·π‘ž(Eq (𝑑)) =

    Eπ‘ž(π‘žπ‘‘) +E

    π‘ž (𝑑)

    2,

    (55)

    one has

    BΜ‚π‘ž(π‘žπ‘‘) BΜ‚

    π‘ž(𝑑) =

    2 + (1 βˆ’ π‘ž) 𝑑

    2Eπ‘ž (𝑑) (π‘ž βˆ’ 1)

    (π‘žBΜ‚π‘ž(𝑑) βˆ’ BΜ‚

    π‘ž(π‘žπ‘‘)) . (56)

    It is clear that Eβˆ’1π‘ž(𝑑) = E

    π‘ž(βˆ’π‘‘). Now, by equating

    coefficients of 𝑑𝑛 we obtain the following identity.

  • Abstract and Applied Analysis 7

    Proposition 15. For all 𝑛 β‰₯ 1,

    2𝑛

    βˆ‘

    π‘˜=0

    [2𝑛

    π‘˜]

    π‘ž

    Bπ‘˜,π‘žB2π‘›βˆ’π‘˜,π‘ž

    π‘žπ‘˜

    = βˆ’π‘ž

    2𝑛

    βˆ‘

    π‘˜=0

    [2𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)2π‘›βˆ’π‘˜

    22π‘›βˆ’π‘˜Bπ‘˜,π‘ž[π‘˜ βˆ’ 1]π‘ž(βˆ’1)

    π‘˜

    +π‘ž (1 βˆ’ π‘ž)

    2

    2π‘›βˆ’1

    βˆ‘

    π‘˜=0

    [2𝑛 βˆ’ 1

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)2π‘›βˆ’1βˆ’π‘˜

    22π‘›βˆ’1βˆ’π‘˜Bπ‘˜,π‘ž

    Γ— [π‘˜ βˆ’ 1]π‘ž(βˆ’1)π‘˜,

    2𝑛+1

    βˆ‘

    π‘˜=0

    [2𝑛 + 1

    π‘˜]

    π‘ž

    Bπ‘˜,π‘žB2π‘›βˆ’π‘˜+1,π‘ž

    π‘žπ‘˜

    = π‘ž

    2𝑛+1

    βˆ‘

    π‘˜=0

    [2𝑛 + 1

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)2𝑛+1βˆ’π‘˜

    22𝑛+1βˆ’π‘˜Bπ‘˜,π‘ž[π‘˜ βˆ’ 1]π‘ž(βˆ’1)

    π‘˜

    βˆ’π‘ž (1 βˆ’ π‘ž)

    2

    2𝑛

    βˆ‘

    π‘˜=0

    [2𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)2π‘›βˆ’π‘˜

    22π‘›βˆ’π‘˜Bπ‘˜,π‘ž[π‘˜ βˆ’ 1]π‘ž(βˆ’1)

    π‘˜.

    (57)

    We may also derive a differential equation for BΜ‚π‘ž(𝑑). If

    we differentiate both sides of the generating function withrespect to 𝑑, after a little calculation we find that

    πœ•

    πœ•π‘‘BΜ‚π‘ž(𝑑)

    = BΜ‚π‘ž (𝑑) (

    1

    π‘‘βˆ’(1 βˆ’ π‘ž)E

    π‘ž(𝑑)

    Eπ‘ž(𝑑) βˆ’ 1

    (

    ∞

    βˆ‘

    π‘˜=0

    4π‘žπ‘˜

    4 βˆ’ (1 βˆ’ π‘ž)2π‘ž2π‘˜

    )) .

    (58)

    If we differentiate BΜ‚π‘ž(𝑑) with respect to π‘ž, we obtain,

    instead,

    πœ•

    πœ•π‘žBΜ‚π‘ž(𝑑) = βˆ’BΜ‚

    2

    π‘ž(𝑑)Eπ‘ž(𝑑)

    ∞

    βˆ‘

    π‘˜=0

    4𝑑 (π‘˜π‘žπ‘˜βˆ’1

    βˆ’ (π‘˜ + 1) π‘žπ‘˜)

    4 βˆ’ (1 βˆ’ π‘ž)2π‘ž2π‘˜

    . (59)

    Again, using the generating function and combining thiswith the derivative we get the partial differential equation.

    Proposition 16. Consider the following:

    πœ•

    πœ•π‘‘BΜ‚π‘ž(𝑑) βˆ’

    πœ•

    πœ•π‘žBΜ‚π‘ž(𝑑)

    =BΜ‚π‘ž(𝑑)

    𝑑+

    BΜ‚2π‘ž(𝑑)Eπ‘ž(𝑑)

    𝑑

    Γ—

    ∞

    βˆ‘

    π‘˜=0

    4𝑑 (π‘˜π‘žπ‘˜βˆ’1

    βˆ’ (π‘˜ + 1) π‘žπ‘˜) βˆ’ π‘žπ‘˜(1 βˆ’ π‘ž)

    4 βˆ’ (1 βˆ’ π‘ž)2π‘ž2π‘˜

    .

    (60)

    4. Explicit Relationship between theπ‘ž-Bernoulli and π‘ž-Euler Polynomials

    In this section, we give some explicit relationship betweenthe π‘ž-Bernoulli and π‘ž-Euler polynomials.We also obtain newformulae and some special cases for them.These formulae areextensions of the formulae of Srivastava and Pintér, Cheon,and others.

    We present natural π‘ž-extensions of themain results in thepapers [9, 11]; see Theorems 17 and 19.

    Theorem 17. For 𝑛 ∈ N0, the following relationships hold true:

    B𝑛,π‘ž(π‘₯, 𝑦)

    =1

    2

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    π‘šπ‘˜βˆ’π‘› [

    [

    Bπ‘˜,π‘ž (π‘₯) +

    π‘˜

    βˆ‘

    𝑗=0

    [𝑛

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    B𝑗,π‘ž (π‘₯)

    2π‘˜βˆ’π‘—π‘šπ‘˜βˆ’π‘—]

    ]

    Γ— Eπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)

    =1

    2

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    π‘šπ‘˜βˆ’π‘›

    [Bπ‘˜,π‘ž(π‘₯) +B

    π‘˜,π‘ž(π‘₯,

    1

    π‘š)]Eπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘¦) .

    (61)

    Proof. Using the following identity

    𝑑

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦)

    =𝑑

    Eπ‘ž(𝑑) βˆ’ 1

    Eπ‘ž (𝑑π‘₯)

    β‹…Eπ‘ž (𝑑/π‘š) + 1

    2β‹…

    2

    Eπ‘ž(𝑑/π‘š) + 1

    Eπ‘ž(𝑑

    π‘šπ‘šπ‘¦)

    (62)

    we have

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =1

    2

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    (βˆ’1, π‘ž)𝑛

    π‘šπ‘›2𝑛

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯)

    𝑑𝑛

    [𝑛]π‘ž!

    +1

    2

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž (π‘₯)

    𝑑𝑛

    [𝑛]π‘ž!

    =: 𝐼1+ 𝐼2.

    (63)

    It is clear that

    𝐼2=1

    2

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯)

    𝑑𝑛

    [𝑛]π‘ž!

    =1

    2

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    𝑗]

    π‘ž

    π‘šπ‘˜βˆ’π‘›

    Bπ‘˜,π‘ž (π‘₯)Eπ‘›βˆ’π‘˜,π‘ž (π‘šπ‘¦)

    𝑑𝑛

    [𝑛]π‘ž!.

    (64)

  • 8 Abstract and Applied Analysis

    On the other hand

    𝐼1=1

    2

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    Γ—

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    𝑗=0

    [𝑛

    𝑗]

    π‘ž

    B𝑗,π‘ž (π‘₯)

    (βˆ’1, π‘ž)π‘›βˆ’π‘—

    π‘šπ‘›βˆ’π‘—2π‘›βˆ’π‘—

    𝑑𝑛

    [𝑛]π‘ž!

    =1

    2

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    Eπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)

    Γ—

    π‘˜

    βˆ‘

    𝑗=0

    [𝑛

    𝑗]

    π‘ž

    B𝑗,π‘ž(π‘₯) (βˆ’1, π‘ž)

    π‘˜βˆ’π‘—

    π‘šπ‘›βˆ’π‘˜π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—

    𝑑𝑛

    [𝑛]π‘ž!.

    (65)

    Therefore∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =1

    2

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    π‘šπ‘˜βˆ’π‘›

    Γ— [

    [

    Bπ‘˜,π‘ž (π‘₯) +

    π‘˜

    βˆ‘

    𝑗=0

    [𝑛

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    B𝑗,π‘ž(π‘₯)

    2π‘˜βˆ’π‘—π‘šπ‘˜βˆ’π‘—]

    ]

    Γ— Eπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)𝑑𝑛

    [𝑛]π‘ž!.

    (66)

    It remains to equate the coefficients of 𝑑𝑛.

    Next we discuss some special cases of Theorem 17.

    Corollary 18. For 𝑛 ∈ N0the following relationship holds true:

    B𝑛,π‘ž(π‘₯, 𝑦)

    =

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (Bπ‘˜,π‘ž (π‘₯) +

    (βˆ’1; π‘ž)π‘˜βˆ’1

    2π‘˜[π‘˜]π‘žπ‘₯π‘˜βˆ’1)Eπ‘›βˆ’π‘˜,π‘ž

    (𝑦) .

    (67)

    The formula (67) is a π‘ž-extension of the Cheon’s mainresult [23].

    Theorem 19. For 𝑛 ∈ N0, the following relationships

    E𝑛,π‘ž(π‘₯, 𝑦)

    =1

    [𝑛 + 1]π‘ž

    Γ—

    𝑛+1

    βˆ‘

    π‘˜=0

    1

    π‘šπ‘›+1βˆ’π‘˜[𝑛 + 1

    π‘˜]

    π‘ž

    Γ— (

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—E𝑗,π‘ž(𝑦) βˆ’ E

    π‘˜,π‘ž(𝑦))

    Γ—B𝑛+1βˆ’π‘˜,π‘ž (π‘šπ‘₯)

    (68)

    hold true between the π‘ž-Bernoulli polynomials and π‘ž-Eulerpolynomials.

    Proof. The proof is based on the following identity:2

    Eπ‘ž(𝑑) + 1

    Eπ‘ž (𝑑π‘₯)Eπ‘ž (𝑑𝑦)

    =2

    Eπ‘ž (𝑑) + 1

    Eπ‘ž(𝑑𝑦)

    β‹…Eπ‘ž(𝑑/π‘š) βˆ’ 1

    𝑑⋅

    𝑑

    Eπ‘ž(𝑑/π‘š) βˆ’ 1

    Eπ‘ž(𝑑

    π‘šπ‘šπ‘₯) .

    (69)

    Indeed∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    (βˆ’1, π‘ž)𝑛

    π‘šπ‘›2𝑛

    π‘‘π‘›βˆ’1

    [𝑛]π‘ž!

    Γ—

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘₯)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    βˆ’

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(𝑦)

    π‘‘π‘›βˆ’1

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘₯)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    =: 𝐼1βˆ’ 𝐼2.

    (70)

    It follows that

    𝐼2=1

    𝑑

    ∞

    βˆ‘

    𝑛=0

    E𝑛,π‘ž(𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘₯)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    =1

    𝑑

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    1

    π‘šπ‘›βˆ’π‘˜Eπ‘˜,π‘ž(𝑦)B

    π‘›βˆ’π‘˜,π‘ž (π‘šπ‘₯)𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    1

    [𝑛 + 1]π‘ž

    Γ—

    𝑛+1

    βˆ‘

    π‘˜=0

    [𝑛 + 1

    π‘˜]

    π‘ž

    1

    π‘šπ‘›+1βˆ’π‘˜Eπ‘˜,π‘ž(𝑦)B

    𝑛+1βˆ’π‘˜,π‘ž (π‘šπ‘₯)𝑑𝑛

    [𝑛]π‘ž!,

    𝐼1=1

    𝑑

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘₯)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    Γ—

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    π‘šπ‘›βˆ’π‘˜2π‘›βˆ’π‘˜Eπ‘˜,π‘ž(𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =1

    𝑑

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    1

    π‘šπ‘›βˆ’π‘˜Bπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘₯)

    Γ—

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—E𝑗,π‘ž(𝑦)

    π‘‘π‘›βˆ’1

    [𝑛]π‘ž!.

    (71)

    Next we give an interesting relationship between the π‘ž-Genocchi polynomials and the π‘ž-Bernoulli polynomials.

  • Abstract and Applied Analysis 9

    Theorem 20. For 𝑛 ∈ N0, the following relationship

    G𝑛,π‘ž(π‘₯, 𝑦)

    =1

    [𝑛 + 1]π‘ž

    Γ—

    𝑛+1

    βˆ‘

    π‘˜=0

    1

    π‘šπ‘›βˆ’π‘˜[𝑛 + 1

    π‘˜]

    π‘ž

    Γ— (

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—G𝑗,π‘ž(π‘₯) βˆ’G

    π‘˜,π‘ž(π‘₯))

    Γ—B𝑛+1βˆ’π‘˜,π‘ž

    (π‘šπ‘¦) ,

    B𝑛,π‘ž(π‘₯, 𝑦)

    =1

    2[𝑛 + 1]π‘ž

    Γ—

    𝑛+1

    βˆ‘

    π‘˜=0

    1

    π‘šπ‘›βˆ’π‘˜[𝑛 + 1

    π‘˜]

    π‘ž

    Γ— (

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—B𝑗,π‘ž(π‘₯) +B

    π‘˜,π‘ž(π‘₯))

    Γ—G𝑛+1βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)

    (72)

    holds true between the π‘ž-Genocchi and the π‘ž-Bernoulli polyno-mials.

    Proof. Using the following identity

    2𝑑

    Eπ‘ž(𝑑) + 1

    Eπ‘ž(𝑑π‘₯)E

    π‘ž(𝑑𝑦)

    =2𝑑

    Eπ‘ž (𝑑) + 1

    Eπ‘ž(𝑑π‘₯) β‹… (E

    π‘ž(𝑑

    π‘š) βˆ’ 1)

    π‘š

    𝑑

    ⋅𝑑/π‘š

    Eπ‘ž(𝑑/π‘š) βˆ’ 1

    β‹…Eπ‘ž(𝑑

    π‘šπ‘šπ‘¦)

    (73)

    we have

    ∞

    βˆ‘

    𝑛=0

    G𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    =π‘š

    𝑑

    ∞

    βˆ‘

    𝑛=0

    G𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    Γ—

    ∞

    βˆ‘

    𝑛=0

    (βˆ’1, π‘ž)𝑛

    π‘šπ‘›2𝑛

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    βˆ’π‘š

    𝑑

    ∞

    βˆ‘

    𝑛=0

    G𝑛,π‘ž(π‘₯, 𝑦)

    𝑑𝑛

    [𝑛]π‘ž!

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    =π‘š

    𝑑

    ∞

    βˆ‘

    𝑛=0

    (

    𝑛

    βˆ‘

    π‘˜=0

    [𝑛

    π‘˜]

    π‘ž

    (βˆ’1, π‘ž)π‘›βˆ’π‘˜

    π‘šπ‘›βˆ’π‘˜2π‘›βˆ’π‘˜Gπ‘˜,π‘ž (π‘₯) βˆ’G𝑛,π‘ž (π‘₯))

    𝑑𝑛

    [𝑛]π‘ž!

    Γ—

    ∞

    βˆ‘

    𝑛=0

    B𝑛,π‘ž(π‘šπ‘¦)

    𝑑𝑛

    π‘šπ‘›[𝑛]π‘ž!

    =π‘š

    𝑑

    ∞

    βˆ‘

    𝑛=0

    𝑛

    βˆ‘

    π‘˜=0

    1

    π‘šπ‘›βˆ’π‘˜[𝑛

    π‘˜]

    π‘ž

    Γ— (

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—G𝑗,π‘ž(π‘₯) βˆ’G

    π‘˜,π‘ž(π‘₯))

    Γ—Bπ‘›βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)𝑑𝑛

    [𝑛]π‘ž!

    =

    ∞

    βˆ‘

    𝑛=0

    1

    [𝑛 + 1]π‘ž

    𝑛+1

    βˆ‘

    π‘˜=0

    1

    π‘šπ‘›βˆ’π‘˜[𝑛 + 1

    π‘˜]

    π‘ž

    Γ— (

    π‘˜

    βˆ‘

    𝑗=0

    [π‘˜

    𝑗]

    π‘ž

    (βˆ’1, π‘ž)π‘˜βˆ’π‘—

    π‘šπ‘˜βˆ’π‘—2π‘˜βˆ’π‘—G𝑗,π‘ž(π‘₯) βˆ’G

    π‘˜,π‘ž(π‘₯))

    Γ—B𝑛+1βˆ’π‘˜,π‘ž

    (π‘šπ‘¦)𝑑𝑛

    [𝑛]π‘ž!.

    (74)

    The second identity can be proved in a like manner.

    Conflict of Interests

    The authors declare that there is no conflict of interests withany commercial identities regarding the publication of thispaper.

    References

    [1] J. L. Cieśliński, β€œImproved π‘ž-exponential and π‘ž-trigonometricfunctions,”AppliedMathematics Letters, vol. 24, no. 12, pp. 2110–2114, 2011.

    [2] L. Carlitz, β€œπ‘ž-Bernoulli numbers and polynomials,”DukeMath-ematical Journal, vol. 15, pp. 987–1000, 1948.

    [3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71of Encyclopedia of Mathematics and Its Applications, CambridgeUniversity Press, Cambridge, Mass, USA, 1999.

    [4] H.M. Srivastava and Á. Pintér, β€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,” Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375–380, 2004.

    [5] T. Kim, β€œπ‘ž-generalized Euler numbers and polynomials,” Rus-sian Journal of Mathematical Physics, vol. 13, no. 3, pp. 293–298,2006.

    [6] D. S. Kim, T. Kim, S. H. Lee, and J. J. Seo, β€œA note on q-Frobenius-Euler numbers and polynomials,” Advanced Studiesin Theoretical Physics, vol. 7, no. 18, pp. 881–889, 2013.

    [7] B. A. Kupershmidt, β€œReflection symmetries of π‘ž-Bernoullipolynomials,” Journal of NonlinearMathematical Physics, vol. 12,supplement 1, pp. 412–422, 2005.

    [8] Q.-M. Luo, β€œSome results for the π‘ž-Bernoulli and π‘ž-Euler poly-nomials,” Journal of Mathematical Analysis and Applications,vol. 363, no. 1, pp. 7–18, 2010.

  • 10 Abstract and Applied Analysis

    [9] Q.-M. Luo and H. M. Srivastava, β€œSome relationships betweenthe Apostol-Bernoulli and Apostol-Euler polynomials,” Com-puters &Mathematics with Applications, vol. 51, no. 3-4, pp. 631–642, 2006.

    [10] Q.-M. Luo andH.M. Srivastava, β€œπ‘ž-extensions of some relation-ships between the Bernoulli and Euler polynomials,” TaiwaneseJournal of Mathematics, vol. 15, no. 1, pp. 241–257, 2011.

    [11] H.M. Srivastava and Á. Pintér, β€œRemarks on some relationshipsbetween the Bernoulli and Euler polynomials,” Applied Mathe-matics Letters, vol. 17, no. 4, pp. 375–380, 2004.

    [12] N. I. Mahmudov, β€œπ‘ž-analogues of the Bernoulli and Genocchipolynomials and the Srivastava-Pintér addition theorems,”Discrete Dynamics in Nature and Society, vol. 2012, Article ID169348, 8 pages, 2012.

    [13] N. I. Mahmudov, β€œOn a class of π‘ž-Bernoulli and π‘ž-Eulerpolynomials,”Advances inDifference Equations, vol. 2013, article108, 2013.

    [14] N. I.Mahmudov andM. E. Keleshteri, β€œOn a class of generalizedπ‘ž-Bernoulli and π‘ž-Euler polynomials,” Advances in DifferenceEquations, vol. 2013, article 115, 2013.

    [15] T. Kim, β€œOn the π‘ž-extension of Euler and Genocchi numbers,”Journal of Mathematical Analysis and Applications, vol. 326, no.2, pp. 1458–1465, 2007.

    [16] T. Kim, β€œNote on π‘ž-Genocchi numbers and polynomials,”Advanced Studies in Contemporary Mathematics (Kyungshang),vol. 17, no. 1, pp. 9–15, 2008.

    [17] M. Cenkci, M. Can, and V. Kurt, β€œπ‘ž-extensions of Genocchinumbers,” Journal of the Korean Mathematical Society, vol. 43,no. 1, pp. 183–198, 2006.

    [18] T. Kim, β€œA note on the π‘ž-Genocchi numbers and polynomials,”Journal of Inequalities and Applications, vol. 2007, Article ID071452, 8 pages, 2007.

    [19] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, β€œπ‘ž-Genocchinumbers and polynomials associated with π‘ž-Genocchi-type 𝑙-functions,” Advances in Difference Equations, vol. 2008, ArticleID 815750, 12 pages, 2008.

    [20] J. Cigler, β€œq-Chebyshev polynomials,” http://arxiv.org/abs/1205.5383.

    [21] M. Cenkci, V. Kurt, S. H. Rim, and Y. Simsek, β€œOn (𝑖, π‘ž)Bernoulli and Euler numbers,”AppliedMathematics Letters, vol.21, no. 7, pp. 706–711, 2008.

    [22] J. Choi, P. J. Anderson, and H. M. Srivastava, β€œSome π‘ž-extensions of the Apostol-Bernoulli and the Apostol-Eulerpolynomials of order 𝑛, and themultipleHurwitz zeta function,”Applied Mathematics and Computation, vol. 199, no. 2, pp. 723–737, 2008.

    [23] G.-S. Cheon, β€œA note on the Bernoulli and Euler polynomials,”Applied Mathematics Letters, vol. 16, no. 3, pp. 365–368, 2003.

    [24] H. M. Srivastava and C. Vignat, β€œProbabilistic proofs of somerelationships between the Bernoulli and Euler polynomials,”European Journal of Pure and Applied Mathematics, vol. 5, no.2, pp. 97–107, 2012.

    [25] S. Nalci and O. K. Pashaev, β€œq-Bernoulli numbers and zeros ofq-sine function,” http://arxiv.org/abs/1202.2265v1.

    [26] S. Gaboury and B. Kurt, β€œSome relations involving Hermite-based Apostol-Genocchi polynomials,” Applied MathematicalSciences, vol. 6, no. 81–84, pp. 4091–4102, 2012.

    [27] D.Kim, B.Kurt, andV.Kurt, β€œSome identities on the generalizedπ‘ž-Bernoulli, π‘ž-Euler, and π‘ž-Genocchi polynomials,” Abstractand Applied Analysis, vol. 2013, Article ID 293532, 6 pages, 2013.

    [28] V. Kurt, β€œNew identities and relations derived from the gener-alized Bernoulli polynomials, Euler polynomials and Genocchipolynomials,”Advances inDifference Equations, vol. 2014, article5, 2014.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of