Research Article Bayesian Estimation of Inequality and...

11
Research Article Bayesian Estimation of Inequality and Poverty Indices in Case of Pareto Distribution Using Different Priors under LINEX Loss Function Kamaljit Kaur, Sangeeta Arora, and Kalpana K. Mahajan Department of Statistics, Panjab University, Chandigarh 160014, India Correspondence should be addressed to Kamaljit Kaur; [email protected] Received 29 August 2014; Accepted 7 January 2015 Academic Editor: Karthik Devarajan Copyright ยฉ 2015 Kamaljit Kaur et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bayesian estimators of Gini index and a Poverty measure are obtained in case of Pareto distribution under censored and complete setup. e said estimators are obtained using two noninformative priors, namely, uniform prior and Je๏ฌ€reysโ€™ prior, and one conjugate prior under the assumption of Linear Exponential (LINEX) loss function. Using simulation techniques, the relative e๏ฌƒciency of proposed estimators using di๏ฌ€erent priors and loss functions is obtained. e performances of the proposed estimators have been compared on the basis of their simulated risks obtained under LINEX loss function. 1. Introduction e Pareto distribution is a skewed, heavy-tailed distribution that is used to model the distribution of incomes and other ๏ฌnancial variables. It was introduced by Pareto [1] which has a probability density function of the form () = { { { +1 , โ‰ค < โˆž; , > 0, 0, otherwise, (1) and cumulative distribution function is () = { { { 1โˆ’( ) , โ‰ฅ , 0, otherwise. (2) e parameter in (2) represents the minimum income in the population under study and assumed to be known, while the other parameter is assumed to be unknown. e average income for Pareto distribution is = ( โˆ’ 1) , > 1. (3) In the context of income inequality and poverty, Gini index and Poverty measure head count ratio are two most popular indices [2, 3]. Gini index is generally de๏ฌned as =1โˆ’ twice the area under the Lorenz curve =1โˆ’2โˆซ 1 0 () , 0 โ‰ค โ‰ค 1, (4) where () = (1/) โˆซ 0 โˆ’1 () is the equation of the Lorenz curve and =โˆซ 1 0 โˆ’1 () is the mean of the distribution. Equivalently, Gini index can also be de๏ฌned as = ฮ” 2 , (5) where ฮ”=โˆซ โˆž 0 โˆซ โˆž 0 | โˆ’ |()() is population Gini mean di๏ฌ€erence. e Poverty index head count ratio 0 is simply the count of the number of households whose incomes are below the poverty line divided by the total population. In terms of continuous distribution, 0 =โˆซ 0 0 () = ( 0 ), (6) where, 0 (> ) is called Poverty Line. Hindawi Publishing Corporation Advances in Statistics Volume 2015, Article ID 964824, 10 pages http://dx.doi.org/10.1155/2015/964824

Transcript of Research Article Bayesian Estimation of Inequality and...

Page 1: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Research ArticleBayesian Estimation of Inequality and PovertyIndices in Case of Pareto Distribution Using DifferentPriors under LINEX Loss Function

Kamaljit Kaur, Sangeeta Arora, and Kalpana K. Mahajan

Department of Statistics, Panjab University, Chandigarh 160014, India

Correspondence should be addressed to Kamaljit Kaur; [email protected]

Received 29 August 2014; Accepted 7 January 2015

Academic Editor: Karthik Devarajan

Copyright ยฉ 2015 Kamaljit Kaur et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bayesian estimators of Gini index and a Poverty measure are obtained in case of Pareto distribution under censored and completesetup. The said estimators are obtained using two noninformative priors, namely, uniform prior and Jeffreysโ€™ prior, and oneconjugate prior under the assumption of Linear Exponential (LINEX) loss function. Using simulation techniques, the relativeefficiency of proposed estimators using different priors and loss functions is obtained.The performances of the proposed estimatorshave been compared on the basis of their simulated risks obtained under LINEX loss function.

1. Introduction

The Pareto distribution is a skewed, heavy-tailed distributionthat is used to model the distribution of incomes and otherfinancial variables. It was introduced by Pareto [1] which hasa probability density function of the form

๐‘“ (๐‘ฅ) ={{{

๐›ผ๐‘š๐›ผ

๐‘ฅ๐›ผ+1, ๐‘š โ‰ค ๐‘ฅ < โˆž; ๐‘š, ๐›ผ > 0,

0, otherwise,(1)

and cumulative distribution function is

๐น (๐‘ฅ) ={{{

1 โˆ’ (๐‘š

๐‘ฅ)๐›ผ

, ๐‘ฅ โ‰ฅ ๐‘š,

0, otherwise.(2)

The parameter ๐‘š in (2) represents the minimum income inthe population under study and assumed to be known, whilethe other parameter ๐›ผ is assumed to be unknown.

The average income for Pareto distribution is

๐‘€ =๐‘š๐›ผ

(๐›ผ โˆ’ 1), ๐›ผ > 1. (3)

In the context of income inequality and poverty, Gini indexand Poverty measure head count ratio are two most popularindices [2, 3]. Gini index is generally defined as

๐บ = 1 โˆ’ twice the area under the Lorenz curve

= 1 โˆ’ 2โˆซ1

0

๐ฟ (๐‘) ๐‘‘๐‘, 0 โ‰ค ๐‘ โ‰ค 1,(4)

where ๐ฟ(๐‘) = (1/๐œ‡) โˆซ๐‘

0

๐นโˆ’1(๐‘ก)๐‘‘๐‘ก is the equation of the Lorenzcurve and ๐œ‡ = โˆซ

1

0

๐นโˆ’1(๐‘ก)๐‘‘๐‘ก is the mean of the distribution.Equivalently, Gini index can also be defined as

๐บ =ฮ”

2๐œ‡, (5)

where ฮ” = โˆซโˆž

0

โˆซโˆž

0

|๐‘ฅ โˆ’ ๐‘ฆ|๐‘“(๐‘ฅ)๐‘“(๐‘ฆ)๐‘‘๐‘ฅ ๐‘‘๐‘ฆ is population Ginimean difference.

The Poverty index head count ratio ๐‘ƒ0is simply the count

of the number of households whose incomes are below thepoverty line divided by the total population. In terms ofcontinuous distribution,

๐‘ƒ0= โˆซ๐‘ค0

0

๐‘“ (๐‘ฆ) ๐‘‘๐‘ฆ = ๐น (๐‘ค0) , (6)

where, ๐‘ค0(> ๐‘š) is called Poverty Line.

Hindawi Publishing CorporationAdvances in StatisticsVolume 2015, Article ID 964824, 10 pageshttp://dx.doi.org/10.1155/2015/964824

Page 2: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

2 Advances in Statistics

In case of Pareto distribution,Gini index (๐บ) [4, 5] is givenby

๐บ =1

(2๐›ผ โˆ’ 1), ๐›ผ >

1

2, (7)

and Poverty measure (๐‘ƒ0) is

๐‘ƒ0= ๐น (๐‘ค

0)

= 1 โˆ’ (๐‘š

๐‘ค0

)๐›ผ

= 1 โˆ’ ๐œ†๐›ผ0,

(8)

where, ๐‘ค0(> ๐‘š) and ๐œ†

0= (๐‘š/๐‘ค

0).

Thus, ๐‘ค0is per capita annual income representing a

minimum acceptable standard of living and ๐‘ƒ0represents the

proportion of population having income equal to or less than๐‘ค0.The estimation of Gini index (๐บ) and Poverty measure

(๐‘ƒ0) and the associated inference using classical approach

(parametric and nonparametric) is available in literature [5โ€“8]. However, in the Bayesian setup, this has not evoked theinterest of many researchers [9, 10]. In the present paper,our focus will be on the estimation of inequality and povertyindices in the Bayesian setup.

When the Bayesian method is used, the choice of appro-priate prior distribution plays an important role, whichmay be categorized as informative, noninformative, andconjugate priors [11, 12]. In the present paper, three priors(two noninformative priors and one conjugate prior) are usedto estimate shape parameter, Gini index, Average income, andPovertymeasure.The two noninformative priors areUniformprior and Jeffreysโ€™ prior, while conjugate prior is chosen asTruncated Erlang distribution.

In Bayesian estimation, the criterion for good estimatorsfor the parameters of interest is the choice of appropriate lossfunction. In Bayesian estimation, two types of loss functionscommonly used are Squared error loss function (SELF) andLinear exponential (LINEX) loss function. The simplest typeof loss function is squared error, which is also referred to asquadratic loss is given as

๐ฟ (๐œƒ) = (๐œƒ โˆ’ ๐œƒ)2

, (9)

where ๐œƒ is the estimator of ๐œƒ.The usual squared error loss function is symmetrical and

associates equal importance to the losses due to overestima-tion and underestimation of equal magnitude. However, sucha restriction may be impractical; for example, in estimationof shape parameter of Classical Pareto distribution, theoverestimation and underestimation may not be of equalimportance as over estimate of shape parameter gives anunder-estimate of inequality index which seems to be moreserious as compared to under estimate of shape parameterbecause we are often interested in reducing income inequalityindex. This leads one to think that an asymmetrical lossfunction be considered for estimation of shape parame-ter which associates greater importance to overestimation.Anumber of asymmetrical loss functions have been proposed

in statistical literature [13โ€“16]. Varian [16] proposed a usefulasymmetrical loss function known as Linear exponential(LINEX) loss function which is given as

๐ฟ (๐œƒ โˆ’ ๐œƒ) = ๐‘’๐‘(ฬ‚๐œƒโˆ’๐œƒ) โˆ’ ๐‘ (๐œƒ โˆ’ ๐œƒ) โˆ’ 1, ๐‘ ฬธ= 0. (10)

The posterior expectation of the LINEX loss function (10) is

๐ธ (๐ฟ (๐œƒ โˆ’ ๐œƒ)) = ๐‘’๐‘ฬ‚๐œƒ๐ธ (๐‘’โˆ’๐‘๐œƒ) โˆ’ ๐‘ (๐œƒ โˆ’ ๐ธ (๐œƒ)) โˆ’ 1, (11)

where ๐ธ(โ‹…) denotes posterior expectation with respect to theposterior density of ๐œƒ.

By a result of Zellner [17] the Bayes estimator of ๐œƒ denotedby ๐œƒ under the LINEX loss function is the value whichminimizes posterior expectation and is given by

๐œƒ = โˆ’1

๐‘ln [๐ธ (๐‘’โˆ’๐‘๐œƒ)] , (12)

provided that the expectation ๐ธ(๐‘’โˆ’๐‘๐œƒ) exists and is finite [18].In Figures 1(a) and 1(b), values of ๐ฟ(๐œƒ) are plotted for the

selected values of ๐œƒ for ๐‘ = 1 and ๐‘ = โˆ’1. It is seen that, for๐‘ = 1, the function is quite asymmetricwith a value exceedingthe target being more serious than a value below the target.But, for ๐‘ = โˆ’1, the function is also quite asymmetric with avalue below the target value being more serious than a valueexceeding the target.

For small value of ๐‘, the LINEX loss function can beexpanded by Taylorโ€™s series expansion as

exp (๐‘ (๐œƒ โˆ’ ๐œƒ)) โˆ’ ๐‘ (๐œƒ โˆ’ ๐œƒ) โˆ’ 1

=โˆž

โˆ‘๐‘–=0

๐‘๐‘– (๐œƒ โˆ’ ๐œƒ)๐‘–

๐‘–!โˆ’ ๐‘ (๐œƒ โˆ’ ๐œƒ) โˆ’ 1

=โˆž

โˆ‘๐‘–=2

๐‘๐‘– (๐œƒ โˆ’ ๐œƒ)๐‘–

๐‘–!

โ‰ˆ๐‘2 (๐œƒ โˆ’ ๐œƒ)

2

2.

(13)

Thus, the LINEX loss function is approximately equal tosquared error loss function for small values of b (seeFigure 1(c)).

This loss function has been considered by Zellner [17],Basu and Ebrahimi [19], and Afify [20] for different distri-butions.

In the present study, LINEX loss function is used forestimating the shape parameter, Gini index, Mean income,and a Poverty measure in the context of Pareto distributionusing noninformative priors (Uniform prior and Jeffreysโ€™prior) and one conjugate prior (Truncated Erlang distribu-tion) along with some assumptions regarding the sampledpopulation. Bayesian approach with prior and posteriordistributions along with sampling schemes in the contextof Pareto distribution is given in Section 2. In Section 3,Bayesian estimators of shape parameter, Gini index, Meanincome, and Poverty measure using different priors under

Page 3: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Advances in Statistics 3

858.5 859.0 859.5 860.0 860.5 861.0

0.0

0.5

1.0

1.5

L(๐œƒ)

๐œƒ

(a)

858.5 859.0 859.5 860.0 860.5 861.0

0.0

0.5

1.0

1.5

L(๐œƒ)

๐œƒ

(b)

858.5 859.0 859.5 860.0 860.5 861.0

0.000

0.002

0.004

0.006

L(๐œƒ)

๐œƒ

(c)

Figure 1: (a) LINEX Loss function when ๐œƒ = 859.5 and ๐‘ = 1. (b) LINEX Loss function when ๐œƒ = 859.5 and ๐‘ = โˆ’1. (c) LINEX Loss functionwhen ๐œƒ = 859.5 and ๐‘ = 0.1.

the assumption of LINEX loss function are obtained. Finally,in Section 4, simulation is done to compare the efficiencyof three different approaches using three priors and lossfunctions. The robustness of the hyperparameters is given inSection 4.1 through simulation study. Section 5 presents theconclusion of the study.

2. Preliminary about Sampling Scheme, Priors,and Posterior Densities

The Bayesian analysis of the Pareto distribution (2) is basedon the following censored sampling scheme on personalincome data. It is assumed that annual incomes of the ๐‘›persons are under study but exact figures ๐‘ฅ

1, ๐‘ฅ2, ๐‘ฅ3, . . . , ๐‘ฅ

๐‘Ÿare

available only for those ๐‘Ÿ individuals whose annual incomedoes not exceed a prescribed annual income๐‘ค

0(> ๐‘š), and for

the remaining (๐‘›โˆ’๐‘Ÿ) individuals, the exact income figures are

unknown but we do know that their annual income exceedthe prescribed figure๐‘ค

0. Before the arrival of the sample data

on personal incomes, ๐‘› is predetermined but not ๐‘Ÿ, whichis a random. This censoring scheme used is referred as rightcensored sampling scheme.

The likelihood function ๐ฟ(๐›ผ) for complete sample in caseof Pareto distribution [4] is

๐ฟ (๐›ผ) = ๐›ผ๐‘›๐‘š๐‘›๐›ผ(๐‘›

โˆ๐‘–=1

๐‘ฅ๐‘–)

โˆ’(๐›ผ+1)

. (14)

In case of censored data, the likelihood function for anydistribution [21] is

๐ฟ (๐‘‹; ๐›ผ) =๐‘›!

(๐‘› โˆ’ ๐‘Ÿ)!

๐‘Ÿ

โˆ๐‘–=1

๐‘“ (๐‘ฅ; ๐›ผ) [1 โˆ’ ๐น (๐‘ฅ; ๐›ผ)]๐‘›โˆ’๐‘Ÿ . (15)

Page 4: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

4 Advances in Statistics

The likelihood function for Pareto distribution in censoredsample is

๐ฟ (๐›ผ) =๐›ผ๐‘Ÿ๐‘š๐‘Ÿ๐›ผ๐œ†(๐‘›โˆ’๐‘Ÿ)๐›ผ

๐‘ค

(โˆ๐‘Ÿ

๐‘–=1๐‘ฅ๐‘–)(๐›ผ+1)

โˆ ๐›ผ๐‘Ÿ๐‘’โˆ’๐›ผ๐‘๐‘ค , ๐›ผ โˆˆ (๐›ฟ,โˆž) , (16)

where ๐‘๐‘ค= ln(๐‘šโˆ’๐‘›๐‘ƒ

๐‘ค) is product income statistics [22] and

๐‘ƒ๐‘ค= ๐‘ค๐‘›โˆ’๐‘Ÿ(โˆ

๐‘Ÿ

๐‘–=1๐‘ฅ๐‘–).

Bayes estimators of Gini index and Average incomewill not be convergent in the interval [0, 1/2] and [0, 1],respectively, and the method will fail to work. Hence, thisdifficulty is removed by assuming ๐›ฟ > 1, to obtain differentBayes estimators.

The prior and posterior densities for noninformativepriors (Uniform prior and Jeffreysโ€™ prior) and conjugate priorare explained below.(i) Uniform Prior. In practice, the informative priors arenot always available; for such situations, the use of nonin-formative priors is recommended. One of the most widelyused noninformative prior, due to Laplace [23], is a uniformprior. Therefore, the uniform prior has been assumed for theestimation of the shape parameter of the Pareto distribution.

Uniform prior for ๐›ผ is๐‘”๐‘ข(๐›ผ) โˆ 1. (17)

Combine likelihood function (16) with the prior density (17)by using Bayes theorem to obtain the posterior density as

๐‘”โˆ—๐‘ข(๐›ผ) =

๐ฟ (๐›ผ) โ‹… ๐‘” (๐›ผ)

โˆซโˆž

๐›ฟ

๐ฟ (๐›ผ) โ‹… ๐‘” (๐›ผ) ๐‘‘๐›ผ

=(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)๐›ผ๐‘Ÿ๐‘’โˆ’๐›ผ๐‘๐‘ค ,

(18)

where ฮ“(๐‘Ž, ๐‘ฆ) = โˆซโˆž

๐‘ฆ

๐‘ข๐‘Žโˆ’1๐‘’โˆ’๐‘ข๐‘‘๐‘ข, ๐‘ฆ > 0 is the upper incompletegamma function and posterior density ๐‘”โˆ—

๐‘ข(๐›ผ) is left truncated

Gamma distribution.(ii) Jeffreysโ€™ Prior. Another noninformative prior has beensuggested by Jeffreys [24] which is frequently used in situa-tions where one does not have much information about theparameters. This is defined as the distribution of the param-eters proportional to the square root of the determinants ofthe Fisher information matrix, that is, ๐‘”(๐›ผ) โˆ โˆš๐ผ(๐›ผ), where๐ผ(๐›ผ) = โˆ’๐ธ[(๐œ•2/๐œ•๐›ผ2) log ๐ฟ(๐›ผ | ๐‘ฅ)] is Fisherโ€™s information ofthe given distribution. In case of Pareto distribution,

๐‘”๐‘—(๐›ผ) โˆ

โˆš๐‘Ÿ

๐›ผ. (19)

A motivation for Jeffreysโ€™ prior is that Fisherโ€™s information(๐ผ(๐›ผ)) is an indicator of the amount of information broughtby the model (observations) about ๐›ผ.

The posterior density is obtained as

๐‘”โˆ—๐‘—(๐›ผ) =

(๐‘๐‘ค)๐‘Ÿ

ฮ“ (๐‘Ÿ, ๐‘๐‘ค๐›ฟ)๐›ผ๐‘Ÿโˆ’1๐‘’โˆ’๐›ผ๐‘๐‘ค , (๐›ฟ โ‰ค ๐›ผ < โˆž) , (20)

which is left truncated Gamma distribution.

Note: Extension of Jeffreysโ€™ Prior. Jeffreysโ€™ prior is a particularcase of extension of Jeffreysโ€™ prior proposed by Al-Kutubi andIbrahim [25], defined as

๐‘” (๐›ผ) โˆ [๐ผ (๐›ผ)]๐‘ , (21)

where ๐‘ is a positive constant. For ๐‘ = 0.5, it reduces toJeffreysโ€™ prior.

In case of Pareto distribution, this prior is

๐‘”๐‘’(๐›ผ) โˆ (

๐‘Ÿ

๐›ผ2)๐‘

. (22)

Theposterior distribution by using extension to Jeffreysโ€™ prioris obtained as

๐‘”โˆ—๐‘’(๐›ผ) =

(๐‘๐‘ค)๐‘Ÿโˆ’2๐‘+1

ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, ๐‘๐‘ค๐›ฟ)๐›ผ๐‘Ÿโˆ’2๐‘๐‘’โˆ’๐›ผ๐‘๐‘ค , (๐›ฟ โ‰ค ๐›ผ < โˆž) .

(23)

(iii) Conjugate Prior. The conjugate prior was introducedby Raiffa and Schlaifer [26], where the prior and posteriordistributions are from the same family, that is, the form ofthe posterior density has the same distributional form as theprior distribution. For the existence of Gini index and Meanincome for the Pareto distribution, wemust take into accounta truncated prior distribution since the random variable ๐›ผ isdefined in (๐›ฟ,โˆž), where the constant ๐›ฟ > 1 is assumed to beknown.

Let ๐›ผ have Truncated Erlang distribution [22]

๐‘”๐‘(๐›ผ) =

(๐›ฝ)๐‘™

ฮ“ (๐‘™, ๐›ฟ๐›ฝ)๐›ผ๐‘™โˆ’1๐‘’โˆ’๐›ฝ๐›ผ

โˆผ TED (๐›ฝ, ๐‘™; ๐›ฟ) ,

(๐›ฟ < ๐›ผ < โˆž, ๐›ฟ > 1, ๐›ฝ > 0, ๐‘™ = 1, 2, . . .) ,

(24)

where ๐›ฝ and ๐‘™ are the hyperparameters.The posterior density for ๐›ผ is

๐‘”โˆ—๐‘(๐›ผ) =

(๐›ฝ + ๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + ๐‘™, (๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

๐›ผ๐‘Ÿ+๐‘™โˆ’1๐‘’โˆ’(๐›ฝ+๐‘๐‘ค)๐›ผ

โˆผ TED ((๐›ฝ + ๐‘๐‘ค) , (๐‘Ÿ + ๐‘™) ; ๐›ฟ) .

(25)

The posterior density (๐‘”โˆ—๐‘(๐›ผ)) follows Truncated Erlang dis-

tribution with parameters (๐›ฝ + ๐‘๐‘ค) and (๐‘Ÿ + ๐‘™).

Page 5: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Advances in Statistics 5

3. Bayesian Estimation under LinearExponential (LINEX) Loss Function UsingDifferent Priors

3.1. Bayesian Estimators Using Uniform Prior. Bayesian esti-mator ๏ฟฝฬ‚๏ฟฝ of ๐›ผ using uniform prior (17) and posterior density(18), under the assumption of the LINEX loss function (ref.(12)) is obtained as

๏ฟฝฬ‚๏ฟฝ๐‘ข= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐›ผ] ,

๐ธ [๐‘’โˆ’๐‘๐›ผ] = โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘๐›ผ๐‘”โˆ—๐‘ข(๐›ผ) ๐‘‘๐›ผ

=(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐›ผ๐‘Ÿ๐‘’โˆ’(๐‘+๐‘๐‘ค)๐›ผ๐‘‘๐›ผ

=(๐‘๐‘ค)๐‘Ÿ

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

ฮ“ (๐‘Ÿ + 1, (๐‘ + ๐‘๐‘ค) ๐›ฟ)

(๐‘ + ๐‘๐‘ค)๐‘Ÿ

=ฮ“ (๐‘Ÿ + 1, (๐‘ + ๐‘

๐‘ค) ๐›ฟ)

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

(๐‘๐‘ค

๐‘ + ๐‘๐‘ค

)๐‘Ÿ+1

.

(26)

Therefore,

๏ฟฝฬ‚๏ฟฝ๐‘ข= โˆ’

1

๐‘log(

ฮ“ (๐‘Ÿ + 1, (๐‘ + ๐‘๐‘ค) ๐›ฟ)

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

(๐‘๐‘ค

๐‘ + ๐‘๐‘ค

)๐‘Ÿ+1

) . (27)

The Bayes estimator ๐บ of ๐บ, using uniform prior is

๐บ๐‘ข= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐บ] ,

๐ธ [๐‘’โˆ’๐‘๐บ] = ๐ธ [๐‘’โˆ’๐‘/(2๐›ผโˆ’1)]

=(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐›ผ๐‘Ÿ๐‘’โˆ’(๐‘/(2๐›ผโˆ’1)+๐›ผ๐‘๐‘ค)๐‘‘๐›ผ

(28)

putting ๐‘ก = 2๐›ผ โˆ’ 1

= (๐‘๐‘ค

2)๐‘Ÿ+1

๐‘’โˆ’๐‘๐‘ค/2

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—)โˆซโˆž

2๐›ฟโˆ’1

๐‘ก๐‘—๐‘’โˆ’(๐‘/๐‘ก+๐‘ก๐‘๐‘ค/2)๐‘‘๐‘ก

(By Binomial expansion)

=(๐‘๐‘ค)๐‘Ÿโˆ’1

๐‘’โˆ’๐‘๐‘ค/2

2๐‘Ÿฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—)(

2๐‘

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(โˆš2๐‘๐‘๐‘ค)

(29)

(using formula (9) of 3.471, page 368 of Gradshteyn andRyzhik [27] โˆซ

โˆž

0

๐‘ฅ]โˆ’1๐‘’โˆ’๐›ฝ/๐‘ฅโˆ’๐›พ๐‘ฅ๐‘‘๐‘ฅ = 2(๐›ฝ/๐›พ)]/2๐พ](2โˆš๐›ฝ๐›พ),[Re๐›ฝ > 0, Re ๐›พ > 0] where๐พ](โ‹…) is modified Bessel functionof third kind).

Thereby,

๐บ๐‘ข= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿโˆ’1

๐‘’โˆ’๐‘๐‘ค/2

2๐‘Ÿฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—)(

2๐‘

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(โˆš2๐‘๐‘๐‘ค)) .

(30)

The Bayes estimator ๏ฟฝฬ‚๏ฟฝ of ๐‘€, using uniform prior is

๏ฟฝฬ‚๏ฟฝ๐‘ข= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘€] ,

๐ธ [๐‘’โˆ’๐‘๐‘€] = ๐ธ [๐‘’โˆ’๐‘๐‘š๐›ผ/(๐›ผโˆ’1)]

=(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐›ผ๐‘Ÿ๐‘’โˆ’(๐‘๐‘š๐›ผ/(๐›ผโˆ’1)+๐›ผ๐‘๐‘ค)๐‘‘๐›ผ

putting ๐‘ก = ๐›ผ โˆ’ 1

=(๐‘๐‘ค)๐‘Ÿ+1

๐‘’โˆ’(๐‘๐‘š+๐‘๐‘ค)

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—)โˆซโˆž

๐›ฟโˆ’1

๐‘ก๐‘—๐‘’โˆ’(๐‘๐‘š/๐‘ก+๐‘ก๐‘๐‘ค)๐‘‘๐‘ก

=(๐‘๐‘ค)๐‘Ÿ+1

๐‘’โˆ’(๐‘๐‘š+๐‘๐‘ค)

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—) 2(

๐‘๐‘š

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(2โˆš๐‘๐‘š๐‘๐‘ค)

(31)

(using formula (9) of 3.471, page 368 of Gradshteyn andRyzhik [27] โˆซ

โˆž

0

๐‘ฅ]โˆ’1๐‘’โˆ’๐›ฝ/๐‘ฅโˆ’๐›พ๐‘ฅ๐‘‘๐‘ฅ = 2(๐›ฝ/๐›พ)]/2๐พ](2โˆš๐›ฝ๐›พ),[Re๐›ฝ > 0, Re ๐›พ > 0] where๐พ](โ‹…) is modified Bessel functionof third kind)

๏ฟฝฬ‚๏ฟฝ๐‘ข= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿ+1

๐‘’โˆ’(๐‘๐‘š+๐‘๐‘ค)

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿ

โˆ‘๐‘—=0

(๐‘Ÿ๐‘—) 2(

๐‘๐‘š

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(2โˆš๐‘๐‘š๐‘๐‘ค)) .

(32)

The Bayes estimator ๏ฟฝฬ‚๏ฟฝ0of ๐‘ƒ0, using uniform prior, is

๏ฟฝฬ‚๏ฟฝ0๐‘ข= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘ƒ0] ,

๐ธ [๐‘’โˆ’๐‘๐‘ƒ0] = ๐ธ [๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)]

Page 6: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

6 Advances in Statistics

=(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐›ผ๐‘Ÿ๐‘’โˆ’๐›ผ๐‘๐‘ค๐‘‘๐›ผ,

๏ฟฝฬ‚๏ฟฝ0๐‘ข= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿ+1

ฮ“ (๐‘Ÿ + 1, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐›ผ๐‘Ÿโˆ’1๐‘’โˆ’๐›ผ๐‘๐‘ค๐‘‘๐›ผ) .

(33)

3.2. Bayesian Estimators Using Jeffreysโ€™ Prior. In case ofJeffreysโ€™ prior (19) and using posterior density (20), theBayesian estimators of ๐›ผ,๐บ,๐‘€, and ๐‘ƒ

0under the assumption

of the LINEX loss function are obtained as follows:

๏ฟฝฬ‚๏ฟฝ๐‘—= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐›ผ]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘๐›ผ๐‘”โˆ—๐‘—(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

ฮ“ (๐‘Ÿ, (๐‘ + ๐‘๐‘ค) ๐›ฟ)

ฮ“ (๐‘Ÿ, ๐‘๐‘ค๐›ฟ)

(๐‘๐‘ค

๐‘ + ๐‘๐‘ค

)๐‘Ÿ

) ,

๐บ๐‘—= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐บ]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘/(2๐›ผโˆ’1)๐‘”โˆ—๐‘—(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐‘๐‘ค)๐‘Ÿ

๐‘’โˆ’๐‘๐‘ค/2

2๐‘Ÿโˆ’1ฮ“ (๐‘Ÿ, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿโˆ’1

โˆ‘๐‘—=0

(๐‘Ÿ โˆ’ 1๐‘—

)(2๐‘

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(โˆš2๐‘๐‘๐‘ค)) ,

๏ฟฝฬ‚๏ฟฝ๐‘—= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘€]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘๐‘š๐›ผ/(๐›ผโˆ’1)๐‘”โˆ—๐‘—(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐‘๐‘ค)๐‘Ÿ

๐‘’โˆ’(๐‘๐‘š+๐‘๐‘ค)

ฮ“ (๐‘Ÿ, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿโˆ’1

โˆ‘๐‘—=0

(๐‘Ÿ โˆ’ 1๐‘—

) 2(๐‘๐‘š

๐‘๐‘ค

)(๐‘—+1)/2

โ‹… ๐พ๐‘—+1

(2โˆš๐‘๐‘š๐‘๐‘ค)) ,

๏ฟฝฬ‚๏ฟฝ0๐‘—= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘ƒ0]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐‘”โˆ—๐‘—(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐‘๐‘ค)๐‘Ÿ

ฮ“ (๐‘Ÿ, ๐‘๐‘ค๐›ฟ)

โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐›ผ๐‘Ÿโˆ’1๐‘’โˆ’๐›ผ๐‘๐‘ค๐‘‘๐›ผ) .

(34)

Note. The expression for extension of Jeffreysโ€™ prior can beobtained with some modifications in Jeffreysโ€™ prior and arelisted below:

๏ฟฝฬ‚๏ฟฝ๐‘’= โˆ’

1

๐‘log(

ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, (๐‘ + ๐‘๐‘ค) ๐›ฟ)

ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, ๐‘๐‘ค๐›ฟ)

(๐‘๐‘ค

๐‘ + ๐‘๐‘ค

)๐‘Ÿโˆ’2๐‘+1

) ,

๐บ๐‘’= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿโˆ’2๐‘+1

๐‘’โˆ’๐‘๐‘ค/2

2๐‘Ÿโˆ’2๐‘ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿโˆ’2๐‘

โˆ‘๐‘—=0

(๐‘Ÿ โˆ’ 2๐‘๐‘—

)(2๐‘

๐‘๐‘ค

)(๐‘—+1)/2

๐พ๐‘—+1

(โˆš2๐‘๐‘๐‘ค)),

๏ฟฝฬ‚๏ฟฝ๐‘’= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿโˆ’2๐‘+1

๐‘’โˆ’(๐‘๐‘š+๐‘๐‘ค)

ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, ๐‘๐‘ค๐›ฟ)

โ‹…๐‘Ÿโˆ’2๐‘

โˆ‘๐‘—=0

(๐‘Ÿ โˆ’ 2๐‘๐‘—

) 2(๐‘๐‘š

๐‘๐‘ค

)(๐‘—+1)/2

โ‹… ๐พ๐‘—+1

(2โˆš๐‘๐‘š๐‘๐‘ค)) ,

๏ฟฝฬ‚๏ฟฝ0๐‘’= โˆ’

1

๐‘log(

(๐‘๐‘ค)๐‘Ÿโˆ’2๐‘+1

ฮ“ (๐‘Ÿ โˆ’ 2๐‘ + 1, ๐‘๐‘ค๐›ฟ)

โ‹… โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐›ผ๐‘Ÿโˆ’2๐‘๐‘’โˆ’๐›ผ๐‘๐‘ค๐‘‘๐›ผ) .

(35)

3.3. Bayesian Estimators Using Conjugate Prior. Using theBayesian posterior density (25), the Bayes estimators of ๐›ผ, ๐บ,๐‘€, and ๐‘ƒ

0, under the assumption of the LINEX loss function

are

๏ฟฝฬ‚๏ฟฝ๐‘= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐›ผ]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘๐›ผ๐‘”โˆ—๐‘(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

ฮ“ (๐‘Ÿ + ๐‘™, (๐‘ + ๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

ฮ“ (๐‘Ÿ + ๐‘™, (๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

(๐›ฝ + ๐‘

๐‘ค

๐‘ + ๐›ฝ + ๐‘๐‘ค

)๐‘Ÿ+๐‘™

) ,

๐บ๐‘= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐บ]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘/(2๐›ผโˆ’1)๐‘”โˆ—๐‘(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐›ฝ + ๐‘๐‘ค)๐‘Ÿ+๐‘™

๐‘’โˆ’(๐›ฝ+๐‘๐‘ค)/2

2๐‘Ÿ+๐‘™โˆ’1ฮ“ (๐‘Ÿ + ๐‘™, (๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

โ‹…๐‘Ÿ+๐‘™โˆ’1

โˆ‘๐‘—=0

(๐‘Ÿ + ๐‘™ โˆ’ 1

๐‘—)(

2๐‘

๐›ฝ + ๐‘๐‘ค

)

(๐‘—+1)/2

โ‹… ๐พ๐‘—+1

(โˆš2๐‘๐‘๐‘ค)) ,

Page 7: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Advances in Statistics 7

๏ฟฝฬ‚๏ฟฝ๐‘= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘€]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘๐‘š๐›ผ/(๐›ผโˆ’1)๐‘”โˆ—๐‘(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐›ฝ + ๐‘๐‘ค)๐‘Ÿ+๐‘™

๐‘’โˆ’(๐‘๐‘š+๐›ฝ+๐‘๐‘ค)

ฮ“ (๐‘Ÿ + ๐‘™, (๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

โ‹…๐‘Ÿ+๐‘™โˆ’1

โˆ‘๐‘—=0

(๐‘Ÿ + ๐‘™ โˆ’ 1

๐‘—) 2(

๐‘๐‘š

๐›ฝ + ๐‘๐‘ค

)

(๐‘—+1)/2

โ‹… ๐พ๐‘—+1

(2โˆš๐‘๐‘š๐‘๐‘ค)) ,

๏ฟฝฬ‚๏ฟฝ0๐‘= โˆ’

1

๐‘log๐ธ [๐‘’โˆ’๐‘๐‘ƒ0]

= โˆ’1

๐‘log(โˆซ

โˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐‘”โˆ—๐‘—(๐›ผ) ๐‘‘๐›ผ)

= โˆ’1

๐‘log(

(๐›ฝ + ๐‘๐‘ค)๐‘Ÿ+๐‘™

ฮ“ (๐‘Ÿ + ๐‘™, (๐›ฝ + ๐‘๐‘ค) ๐›ฟ)

โ‹… โˆซโˆž

๐›ฟ

๐‘’โˆ’๐‘(1โˆ’๐œ†๐›ผ

0)๐›ผ๐‘Ÿ+๐‘™โˆ’1๐‘’โˆ’(๐›ฝ+๐‘๐‘ค)๐›ผ๐‘‘๐›ผ) .

(36)

Note: Case of Complete Sample. The Bayesian estimatorsfor complete sample can be obtained using noninformativepriors and conjugate prior by simply substituting ๐‘Ÿ = ๐‘› in theabove estimators.

4. Simulation Study

In order to assess the statistical performance of these esti-mators of shape parameter, Gini index, Mean income, andPoverty measure using LINEX loss function, a simulationstudy is conduced. The estimated losses are computed usinggenerated random samples from Pareto distribution of dif-ferent sizes. These estimated losses are computed for samplesizes ๐‘› = 20 (20) 100, ๐›ผ = 2.5 (1) 4.5, ๐‘ = 1, ๐›ฟ = 1.5,and ๐‘š = 450. The value of ๐‘ค

0= 859.6 should be taken

from Poverty line given by the Government of India in 2009-10 for urban people. For the conjugate prior, the values ofhyperparameter are taken as ๐›ฝ = 0.5, ๐‘™ = 2; ๐›ฝ = 2, and๐‘™ = 2. The estimated losses of ๐›ผ, ๐บ, ๐‘€, and ๐‘ƒ

0with LINEX

loss function by using noninformative (Uniform prior andJeffreysโ€™ prior) and conjugate priors are tabulated in Tables1, 2, 3, and 4, respectively.

It is observed from the above simulation study (ref. Tables1, 2, 3, and 4) that

(i) Bayesian estimators with conjugate prior (hyperpa-rameter ๐›ฝ = 0.5, ๐‘™ = 2) perform better as compared tononinformative priors as it has smaller estimated lossfor ๐›ผ, ๐บ,๐‘€, and ๐‘ƒ

0;

(ii) in case of noninformative priors, Jeffreysโ€™ prior hasless estimated loss than uniform prior, which impliesthat Bayesian methods with Jeffreysโ€™ prior are better;

Table 1: Estimated loss functions for ๐›ผ using LINEX loss function.

๐‘› ๐›ผUniformprior

Jeffreyโ€™sprior

Conjugate prior๐›ฝ = 0.5๐‘™ = 2

๐›ฝ = 2๐‘™ = 2

202.5 0.200543 0.173893 0.112013 0.1132993.5 0.423936 0.357678 0.281125 0.3718234.5 0.719781 0.456351 0.311154 0.710794

402.5 0.110843 0.077269 0.050112 0.0728723.5 0.207535 0.204212 0.145707 0.1743984.5 0.324085 0.228739 0.207738 0.344289

602.5 0.065696 0.061891 0.058858 0.0593363.5 0.135812 0.104322 0.102511 0.1235644.5 0.283127 0.211419 0.149228 0.224148

802.5 0.048582 0.052477 0.044407 0.0452433.5 0.094729 0.094126 0.081215 0.0898614.5 0.146575 0.140906 0.126948 0.163061

1002.5 0.047068 0.040324 0.034990 0.0383363.5 0.072414 0.071366 0.065080 0.0705024.5 0.112283 0.104459 0.099383 0.131260

Table 2: Estimated loss functions for G using LINEX loss function.

๐‘› ๐›ผUniformprior

Jeffreyโ€™sprior

Conjugate prior๐›ฝ = 0.5๐‘™ = 2

๐›ฝ = 2๐‘™ = 2

202.5 0.003944 0.0031157 0.002672 0.0573223.5 0.000849 0.0007378 0.000700 0.0167334.5 0.000671 0.0005303 0.000463 0.009637

402.5 0.001503 0.0011873 0.000963 0.0083623.5 0.000642 0.0005590 0.000516 0.0037824.5 0.000314 0.0002975 0.000197 0.002782

602.5 0.000811 0.0007397 0.000692 0.0063733.5 0.000415 0.0003852 0.000319 0.0017834.5 0.000200 0.0001726 0.000159 0.000873

802.5 0.000687 0.0006286 0.000586 0.0026373.5 0.000298 0.0002746 0.000189 0.0009784.5 0.000141 0.0001403 0.000116 0.000512

1002.5 0.000611 0.0005395 0.000483 0.0010323.5 0.000231 0.0002250 0.000102 0.0008224.5 0.000115 0.0001073 0.000083 0.000421

(iii) a change in the value of ๐›ฝ on higher side does resultin an increase in the loss; the loss remains unaffectedby the change in the value of ๐‘™.

In Table 5 simulation study is taken to find estimated lossfor ๐›ผ, ๐บ, ๐‘€, and ๐‘ƒ

0under the assumptions of SELF using

different priors by considering small as well as large samplesfor comparisons purpose with the LINEX loss function.

From Table 5 and its comparison with LINEX loss func-tion (ref. Tables 1, 2, 3, and 4), it is observed that LINEXloss function gives smaller loss in comparison with SELF for

Page 8: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

8 Advances in Statistics

Table 3: Estimated loss functions forM using LINEX loss function.

๐‘› ๐›ผUniformprior

Jeffreyโ€™sprior

Conjugate prior๐›ฝ = 0.5๐‘™ = 2

๐›ฝ = 2๐‘™ = 2

202.5 0.073957 0.0657402 0.026145 0.0564653.5 0.061835 0.0558135 0.015994 0.0467434.5 0.056649 0.0418561 0.012289 0.035673

402.5 0.073204 0.0555914 0.025888 0.0436743.5 0.060616 0.0466542 0.016802 0.0403014.5 0.055089 0.0435518 0.013802 0.031533

602.5 0.072393 0.0458580 0.026035 0.0393733.5 0.059386 0.0376830 0.017845 0.0363734.5 0.053528 0.0352241 0.015377 0.025377

802.5 0.071778 0.0360502 0.026361 0.0300123.5 0.058222 0.0286558 0.018818 0.0297334.5 0.051894 0.0267040 0.016845 0.020345

1002.5 0.071070 0.0263228 0.020575 0.0279733.5 0.057185 0.0196096 0.019812 0.0287324.5 0.030343 0.0183061 0.018161 0.019637

Table 4: Estimated loss functions for ๐‘ƒ0using LINEX loss function.

๐‘› ๐›ผUniformprior

Jeffreyโ€™sprior

Conjugate prior๐›ฝ = 0.5๐‘™ = 2

๐›ฝ = 2๐‘™ = 2

202.5 0.003918 0.0016639 0.0015042 0.00373603.5 0.007714 0.0012619 0.0011718 0.00335104.5 0.006892 0.0006375 0.0006100 0.0033324

402.5 0.003030 0.0012092 0.0011452 0.00135733.5 0.001033 0.0007198 0.0007159 0.00162994.5 0.001099 0.0003325 0.0003235 0.0011149

602.5 0.002237 0.0009517 0.0008915 0.00112493.5 0.001652 0.0004774 0.0004483 0.00089254.5 0.001019 0.0002165 0.0002040 0.0005813

802.5 0.001769 0.0007372 0.0007191 0.00090473.5 0.001163 0.0003889 0.0003795 0.00063154.5 0.000659 0.0001677 0.0001622 0.0003924

1002.5 0.001009 0.0006512 0.0005704 0.00071863.5 0.000465 0.0002854 0.0002770 0.00042694.5 0.000287 0.0001354 0.0001240 0.0002843

noninformative priors and conjugate prior for small as wellas large sample sizes. When sample size increases estimatedloss decreases in all cases.

4.1. Choice of Hyperparameters. Sinha and Howlader [28]suggested that a Bayes estimate is robust with respect to itshyperparameter if it leads to a high (min /max) index of theestimate for the varying values of those hyperparameter. Tocheck results, simulations are done by taking different values

Table 5: Estimated loss functions for ๐›ผ, G, M, and ๐‘ƒ0using different

priors under the assumptions of SELF.

๐‘› ๐›ผUniformprior

Jeffreyโ€™sprior

Conjugate prior๐›ฝ = 0.5๐‘™ = 2

๐›ฝ = 2๐‘™ = 2

For๐›ผ

402.5 0.198417 0.188773 0.105229 0.1490433.5 0.545553 0.315654 0.301779 0.3030944.5 0.636095 0.546807 0.511984 0.662855

1002.5 0.081056 0.080694 0.065290 0.0722333.5 0.178339 0.192881 0.138684 0.1395104.5 0.261753 0.299142 0.231038 0.215135

For๐บ

402.5 0.002541 0.002135 0.001879 0.0534373.5 0.001215 0.001071 0.001055 0.0336834.5 0.000989 0.000629 0.000222 0.026677

1002.5 0.001347 0.001311 0.001054 0.0113183.5 0.000604 0.000408 0.000407 0.0069674.5 0.000228 0.000236 0.000165 0.005405

For๐‘€

402.5 0.085215 0.075152 0.061571 0.0972153.5 0.092519 0.085051 0.070570 0.1023104.5 0.157210 0.115720 0.095721 0.105721

1002.5 0.105721 0.097121 0.050712 0.0987213.5 0.097215 0.070125 0.033710 0.0597134.5 0.080712 0.052325 0.092530 0.082173

For๐‘ƒ0

402.5 0.003513 0.004420 0.003916 0.0051923.5 0.001382 0.003596 0.002156 0.0049214.5 0.001224 0.001993 0.001057 0.003051

1002.5 0.001152 0.001907 0.001805 0.0019823.5 0.000538 0.000914 0.000705 0.0015724.5 0.000260 0.000896 0.000679 0.000971

of hyperparameter and keeping ๐›ผ and ๐‘› fixed (ref. Tables 6and 7).

The ratio (min /max) in case of both Gini index andPoverty measure is close to 1 for different combinations of๐‘™ and ๐›ฝ indicating thereby the Bayes estimates are robustwith respect to hyperparameters, which justifies the use ofhyperparameters in simulation study.

5. Conclusion

The simulation study as carried out in Section 4 suggests thatBayesian estimators using conjugate prior (hyperparameter๐›ฝ = 0.5, ๐‘™ = 2) perform better than two noninformativepriors (Uniform prior and Jeffreysโ€™ prior) in general. It is alsoobserved that LINEX loss function results in smaller loss thanthe SELF for both small and large samples irrespective of thechoice of the priors taken for the Bayesian estimators. Hence,the combinations of conjugate prior and LINEX loss results insmaller loss than the choice of other two priors and squarederror loss function. One can further infer that as sample sizeincreases the expected loss function decreases for all cases.

Page 9: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Advances in Statistics 9

Table 6: Bayes estimate of Gini index using conjugate prior (๐‘› = 100, ๐›ผ = 3.5).

๐›ฝ๐‘™

(Min /Max) | ๐›ฝ1 2 3 4 5

0.5 0.21247 0.22623 0.24944 0.23980 0.24143 0.8531 0.23816 0.25030 0.22015 0.25817 0.23342 0.8521.5 0.20394 0.22034 0.21269 0.23569 0.22392 0.8652 0.22687 0.24029 0.22722 0.26901 0.25348 0.8432.5 0.21976 0.23529 0.25022 0.24789 0.26048 0.845(Min /Max) | ๐‘™ 0.856 0.880 0.850 0.879 0.859

Table 7: Bayes estimate of Poverty measure using conjugate prior (๐‘› = 100, ๐›ผ = 3.5).

๐›ฝ๐‘™

(Min /Max) | ๐›ฝ1 2 3 4 5

0.5 0.89102 0.89271 0.89536 0.89844 0.89987 0.9981 0.88525 0.88800 0.89170 0.89269 0.89549 0.9891.5 0.88163 0.88560 0.88582 0.88885 0.89141 0.9892 0.87639 0.87720 0.88162 0.88555 0.88619 0.9882.5 0.87005 0.87451 0.87786 0.87947 0.88246 0.985(Min /Max) | ๐‘™ 0.976 0.979 0.980 0.978 0.980

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

Acknowledgments

The authors are thankful to the anonymous referees and theeditor for their valuable suggestions and comments.

References

[1] V. Pareto,CoursDโ€™ Economic Politique Paris, Rouge and cie, 1897.[2] C. Gini, Variability and Mutabiltity, C. Cuppini, Bologna, Italy,

1912.[3] J. Foster, J. Greer, and E. Thorbecke, โ€œA class of decomposable

poverty measures,โ€ Econometrica, vol. 52, no. 3, pp. 761โ€“766,1984.

[4] B. C. Arnold and S. J. Press, โ€œBayesian inference for Paretopopulations,โ€ Journal of Econometrics, vol. 21, no. 3, pp. 287โ€“306,1983.

[5] T. S. Moothathu, โ€œSampling distributions of Lorenz curve andGini index of the Pareto distribution,โ€ Sankhya (Statistics),Series B, vol. 47, no. 2, pp. 247โ€“258, 1985.

[6] P. K. Sen, โ€œTheharmonicGini coefficient and affluence indexes,โ€Mathematical Social Sciences, vol. 16, no. 1, pp. 65โ€“76, 1988.

[7] P. M. Dixon, J. Weiner, T. Mitchell-Olds, and R. Woodley,โ€œBootstrapping the Gini coefficient of inequality,โ€ Ecology, vol.68, no. 5, pp. 1548โ€“1561, 1987.

[8] P. Bansal, S. Arora, and K. K. Mahajan, โ€œTesting homogeneityof Gini indices against simple-ordered alternative,โ€ Communi-cations in Statistics: Simulation and Computation, vol. 40, no. 2,pp. 185โ€“198, 2011.

[9] E. I. Abdul-Sathar, E. S. Jeevanand, and K. R. M. Nair, โ€œBayesestimation of Lorenz curve and Gini-index for classical Pareto

distribution in some real data situation,โ€ Journal of AppliedStatistical Science, vol. 17, no. 2, pp. 315โ€“329, 2009.

[10] S. K. Bhattacharya, A. Chaturvedi, and N. K. Singh, โ€œBayesianestimation for the Pareto income distribution,โ€ StatisticalPapers, vol. 40, no. 3, pp. 247โ€“262, 1999.

[11] R. Kass and L.Wasserman, โ€œThe selection of prior distributionsby formal rules,โ€ Journal of American Statistical Association, vol.91, no. 431, pp. 1343โ€“1370, 1996.

[12] J. Berger, โ€œThe case for objective Bayesian analysis,โ€ BayesianAnalysis, vol. 1, no. 3, pp. 385โ€“402, 2006.

[13] J. Aitchison and I. R. Dunsmore, Statistical Prediction Analysis,Cambridge University Press, London, UK, 1975.

[14] J. O. Berger, Statistical Decision Theory Foundations, Conceptsand Methods, Springer, New York, NY, USA, 1980.

[15] R. V. Canfield, โ€œA bayesian approach to reliability estimationusing a lossfunction,โ€ IEEE Transaction on Reliability, vol. R-19,no. 1, pp. 13โ€“16, 1970.

[16] H. R. Varian, โ€œA bayesian approach to real estate assessment,โ€in Studies in Bayesian Econometrics and Statistics in Honor ofLeonard J. Savage, S. E. Fienberg and A. Zellner, Eds., pp. 195โ€“208, North-Holland, Amsterdam, The Netherlands, 1975.

[17] A. Zellner, โ€œBayesian estimation and prediction using asymmet-ric loss functions,โ€ Journal of the American Statistical Associa-tion, vol. 81, no. 394, pp. 446โ€“451, 1986.

[18] R. Calabria and G. Pulcini, โ€œAn engineering approach toBayes estimation for the Weibull distribution,โ€MicroelectronicsReliability, vol. 34, no. 5, pp. 789โ€“802, 1994.

[19] A. P. Basu and N. Ebrahimi, โ€œBayesian approach to life testingand reliability estimation using asymmetric loss function,โ€Journal of Statistical Planning and Inference, vol. 29, no. 1-2, pp.21โ€“31, 1991.

[20] W. M. Afify, โ€œOn estimation of the exponentiated Pareto distri-bution under different sample schemes,โ€ Applied MathematicalSciences, vol. 4, no. 8, pp. 393โ€“402, 2010.

[21] A. C. Cohen, โ€œMaximum likelihood estimation in the Weibulldistribution based on complete and on censored samples,โ€Technometrics, vol. 7, pp. 579โ€“588, 1965.

Page 10: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

10 Advances in Statistics

[22] A. Ganguly, N. K. Singh, H. Choudhuri, and S. K. Bhattacharya,โ€œBayesian estimation of the Gini index for the PID,โ€ Test, vol. 1,no. 1, pp. 93โ€“104, 1992.

[23] P. S. Laplace, Theorie Analytique des Probabilities, VeuveCourcier, Paris, France, 1812.

[24] H. Jeffreys, โ€œAn invariant form for the prior probability inestimation problems,โ€ Proceedings of the Royal Society. London,Series A: Mathematical, Physical and Engineering Sciences, vol.186, pp. 453โ€“461, 1946.

[25] H. S. Al-Kutubi and N. A. Ibrahim, โ€œBayes estimator for expo-nential distributionwith extension of Jeffery prior information,โ€Malaysian Journal of Mathematical Sciences, vol. 3, no. 2, pp.297โ€“313, 2009.

[26] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory,Division of Research, Graduate School of Business Administra-tion, Harvard University, 1961.

[27] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series andProducts, United States of America, 7th edition, 2007.

[28] S. K. Sinha and H. A. Howlader, โ€œOn the sampling distributionsof Bayesian estimators of the Pareto Parameter with proper andimproper priors and associated goodness of fit,โ€ Tech. Rep. #103,Department of Statistics, University of Manitoba, Winnipeg,Canada, 1980.

Page 11: Research Article Bayesian Estimation of Inequality and ...downloads.hindawi.com/archive/2015/964824.pdfis loss function has been considered by Zellner [ ], Basu and Ebrahimi [ ], and

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of