Research Article Analytic Solutions for Heat Conduction in ...

9
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 816385, 8 pages http://dx.doi.org/10.1155/2013/816385 Research Article Analytic Solutions for Heat Conduction in Functionally Graded Circular Hollow Cylinders with Time-Dependent Boundary Conditions Sen-Yung Lee and Chih-Cheng Huang Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan Correspondence should be addressed to Sen-Yung Lee; [email protected] Received 16 May 2013; Revised 27 June 2013; Accepted 1 July 2013 Academic Editor: Abdelouahed Tounsi Copyright © 2013 S.-Y. Lee and C.-C. Huang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An analytic solution method, without integral transformation, is developed to find the exact solutions for transient heat conduction in functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions. By introducing suitable shiſting functions, the governing second-order regular singular differential equation with variable coefficients and time-dependent boundary conditions is transformed into a differential equation with homogenous boundary conditions. e exact solution of the system with thermal conductivity and specific heat in power functions with different orders is developed. Finally, limiting studies and numerical analyses are given to illustrate the efficiency and the accuracy of the analysis. 1. Introduction e applications of heat conduction in functionally graded (FG) circular hollow cylinders with time-dependent bound- ary conditions can be widely found in many engineering fields, such as cannon barrels, heat exchanger tubes, time var- ied heating on walls of circular structure, and heat treatment on hollow cylinders. As such, an accurate solution method is very helpful for relevant developments. e problem of heat conduction with time-dependent boundary conditions cannot be solved directly by the method of separation of variables. In most of the analyses, an integral transform has been used to remove the time-dependent term. For the problem of heat conduction in circular hollow uni- form cylinders with time-dependent boundary conditions, the associated governing differential equation is a second- order Bessel differential equation with constant coefficients. Aſter conducting a Laplace transformation, the analytical solution can be obtained and found in the book by ˝ Ozisik [1]. When the structure is an FG circular hollow cylinder, the associated governing differential equation is a second- order regular singular differential equation with variable coefficients. For problems with time-independent boundary conditions, various numerical methods have been developed, such as the perturbation method [2], the finite difference method [3], and the finite element method [4]. Jabbari et al. [5, 6] derived analytical solutions for thermal stresses of FG hollow cylinders whose material properties vary with power law distribution through the thickness due to radially symmetric loads and nonaxisymmetric loads. By using the Laplace transformation and a series expansion of Bessel func- tions, Ootao and Tanigawa [7] analyzed one-dimensional transient thermoelastic problem with the material properties varying with the powerlaw form of the radial coordinate variable. Zhao et al. [8] analyzed the temperature change when the thermal and thermoelastic properties are assumed to vary exponentially in the radial direction. Hosseini et al. [9] considered the material properties to be nonlinear with a power law distribution through the thickness, while the temperature distribution was derived analytically using the Bessel functions. In the study of heat conduction in FG circular hollow cylinders with time-dependent boundary conditions, only limited studies can be found. Ootao et al. [10] studied the transient temperature and thermal stress distribution in an infinitely long nonhomogeneous hollow cylinder due to

Transcript of Research Article Analytic Solutions for Heat Conduction in ...

Page 1: Research Article Analytic Solutions for Heat Conduction in ...

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2013 Article ID 816385 8 pageshttpdxdoiorg1011552013816385

Research ArticleAnalytic Solutions for Heat Conduction in FunctionallyGraded Circular Hollow Cylinders with Time-DependentBoundary Conditions

Sen-Yung Lee and Chih-Cheng Huang

Department of Mechanical Engineering National Cheng Kung University Tainan 701 Taiwan

Correspondence should be addressed to Sen-Yung Lee syleemailnckuedutw

Received 16 May 2013 Revised 27 June 2013 Accepted 1 July 2013

Academic Editor Abdelouahed Tounsi

Copyright copy 2013 S-Y Lee and C-C Huang This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

An analytic solutionmethod without integral transformation is developed to find the exact solutions for transient heat conductionin functionally graded (FG) circular hollow cylinders with time-dependent boundary conditions By introducing suitable shiftingfunctions the governing second-order regular singular differential equation with variable coefficients and time-dependentboundary conditions is transformed into a differential equation with homogenous boundary conditions The exact solution of thesystem with thermal conductivity and specific heat in power functions with different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiency and the accuracy of the analysis

1 Introduction

The applications of heat conduction in functionally graded(FG) circular hollow cylinders with time-dependent bound-ary conditions can be widely found in many engineeringfields such as cannon barrels heat exchanger tubes time var-ied heating on walls of circular structure and heat treatmenton hollow cylinders As such an accurate solution method isvery helpful for relevant developments

The problem of heat conduction with time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransformhas been used to remove the time-dependent termFor the problem of heat conduction in circular hollow uni-form cylinders with time-dependent boundary conditionsthe associated governing differential equation is a second-order Bessel differential equation with constant coefficientsAfter conducting a Laplace transformation the analyticalsolution can be obtained and found in the book by Ozisik [1]

When the structure is an FG circular hollow cylinderthe associated governing differential equation is a second-order regular singular differential equation with variablecoefficients For problems with time-independent boundary

conditions various numerical methods have been developedsuch as the perturbation method [2] the finite differencemethod [3] and the finite element method [4] Jabbari et al[5 6] derived analytical solutions for thermal stresses ofFG hollow cylinders whose material properties vary withpower law distribution through the thickness due to radiallysymmetric loads and nonaxisymmetric loads By using theLaplace transformation and a series expansion of Bessel func-tions Ootao and Tanigawa [7] analyzed one-dimensionaltransient thermoelastic problem with the material propertiesvarying with the powerlaw form of the radial coordinatevariable Zhao et al [8] analyzed the temperature changewhen the thermal and thermoelastic properties are assumedto vary exponentially in the radial direction Hosseini et al[9] considered the material properties to be nonlinear witha power law distribution through the thickness while thetemperature distribution was derived analytically using theBessel functions

In the study of heat conduction in FG circular hollowcylinders with time-dependent boundary conditions onlylimited studies can be found Ootao et al [10] studiedthe transient temperature and thermal stress distribution inan infinitely long nonhomogeneous hollow cylinder due to

2 Mathematical Problems in Engineering

a moving heat source in the axial direction from the innerandor outer surfaces using the layerwise theory in con-junction with the method of Fourier cosine and the Laplacetransformations Shao and Ma [11] employed the Laplacetransform techniques and the series solving method to studythermomechanical stresses in FG circular hollow cylinderswith linearly increasing boundary temperature Jabbari et al[12] developed an analytical solution for the one-dimensionaltemperature distribution mechanical and thermal stresses inan infinitely long FG hollow cylinder under a moving heatsource which moves across the thickness of the cylinderAsgari andAkhlaghi [13] employed the finite elementmethodto study the transient thermal stresses in a thick hollowcylinder with finite length mad of 2D-FGM that its materialproperties are varied in the radial and axial directions witha power law function The thermal boundary conditions atthe inner and outer radiuses are time dependent Singh et al[14] applied the finite integral transform method and theseparation of variables method to solve time-dependent heatconduction problem in a multilayer annulus MalekzadehandHeydarpour [15] used the differential quadraturemethod(DQM) in conjunctionwith the finite elementmethod (FEM)to study the response of FG cylindrical shells under movingthermomechanical loads Recently Wang and Liu [16] haveemployed the method of separation of variables to developthe analytical solution of transient temperature fields for two-dimensional transient heat conduction in a fiber-reinforcedmultilayer cylindrical composite

In the study of thermal elastic response of FG cylinderswithout mechanical loading the heat conduction problemis not incorporated with the elastic field and can be studiedindependently However the thermal field will be coupledwith the temperature field In this paper one considersthe heat conduction problem of FG cylinders only A newsolution method which is a modification on the methoddeveloped by Lee and Lin [17] and Chen et al [18] is used todevelop the analytical solution for transient heat conductionin FG circular hollow cylinders with time-dependent bound-ary conditions By introducing suitable shifting functionsthe governing second-order differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analysis are given to illustrate the efficiencyand accuracy of the solution method

2 Mathematical Modeling

Consider the transient heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionat the inner and outer surfaces as shown in Figure 1 Thegoverning differential equation of the system is

1

119903

1

120597119903[119903119896 (119903)

120597119879 (119903 119905)

120597119903] + 119892 (119903 119905) = 120588119888 (119903)

120597119879 (119903 119905)

120597119905

119886 lt 119903 lt 119887 119905 gt 0

(1)

a

b

InitiallyT0(r)

T(b t) = T2(t)

T(a t) = T1(t)

Figure 1 FG circular hollow cylinder with time-dependent bound-ary conditions

The boundary conditions are

119879 (119886 119905) = 1198791(119905)

119879 (119887 119905) = 1198792(119905)

(2)

and the initial condition is

119879 (119903 0) = 1198790(119903) (3)

Here 119903 is the space variable and 119905 is the time variable 119888(119903)is the specific heat 119896(119903) is the thermal conductivity 119879(119903 119905) isthe temperature 120588 is the mass density and 119892(119903 119905) is the heatsource inside the circular hollow cylinder 119879

1(119905) and 119879

2(119905)

are the time-dependent temperatures at the inner and outersurfaces respectively

In terms of the following dimensionless parameters

119870 (120585) =119896 (119903)

119896 (119886) 119862 (120585) =

119888 (119903)

119888 (119886) 119866 (120585 120591) =

119892 (119903 119905) 1198872

119896 (119886) 119879119903

120585 =119903

119887 119903 =

119886

119887 120579 =

119879

119879119903

1205790=1198790

119879119903

120579119894=119879119894

119879119903

120591 =119896 (119886) 119905

119888 (119886) 1205881198872

(4)

where 119879119903is the reference temperature the boundary value

problem of heat conduction becomes

1

120585

1

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] + 119866 (120585 120591) = 119862 (120585)

120597120579 (120585 120591)

120597120591

119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) minus 1205791= 0

120579 (1 120591) minus 1205792= 0

120579 (120585 0) = 1205790(120585)

(5)

Mathematical Problems in Engineering 3

3 Solution Method

31 Change of Variables To find the solution for the second-order differential equation with nonhomogeneous boundaryconditions the shifting variable method developed by Leeand Lin [17] and Chen et al [18] was extended by taking

120579 (120585 120591) = ] (120585 120591) + 1198911(120591) 1198921(120585) + 119891

2(120591) 1198922(120585) (6)

where 119892119894(120585) 119894 = 1 2 are shifting functions to be specified and

](120585 120591) is the transformed function Substituting (6) into (5)yields the following partial differential equation

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591

= minus119866 (120585 120591) +

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591

minus119891119894(120591)1

120585

119889

119889120585[120585119870 (120585)

119889119892119894(120585)

119889120585]

(7)

the associated boundary conditions

] (119903 120591) + 1198911(120591) 1198921(119903) + 119891

2(120591) 1198922(119903) = 119891

1(120591)

] (1 120591) + 1198911(120591) 1198921(1) + 119891

2(120591) 1198922(1) = 119891

2(120591)

(8)

and the associated initial condition

] (120585 0) = 120579 (120585 0) minus 1198911(0) 1198921(120585) minus 119891

2(0) 1198922(120585) (9)

32 Shifting Functions To simplify the analysis the shiftingfunctions are specifically chosen such that they satisfy thefollowing differential equations and the boundary conditions

1198892119892119894(120585)

1198891205852= 0 119894 = 1 2

1198921(119903) = 1

1198921(1) = 0

1198922(119903) = 0

1198922(1) = 1

(10)

These two shifting functions can be easily determined as

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(minus119903 + 120585)

(11)

33 Reduced Homogenous Problem With these two shift-ing functions (11) the governing differential equation (7)becomes

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591= 119865 (120585 120591) (12)

where

119865 (120585 120591)

= minus119866 (120585 120591)

+

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591minus119891119894(120591)

120585

119889

119889120585[120585119870 (120585)]

119889119892119894(120585)

119889120585

(13)

The two nonhomogenous boundary conditions (8) for thetransformed function ](120585 120591) are reduced to homogenousones

] (119903 120591) = 0

] (1 120591) = 0(14)

The transformed initial condition is

] (120585 0) = 1205790(120585) minus 119891

1(0) 1198921(120585) minus 119891

2(0) 1198922(120585) = ]

0(120585) (15)

34 Solution of Transformed Variable

341 Characteristic Solution To find the solution ](120585 120591) weuse the eigenfunction expansion method and assume thesolution to be in the form

] (120585 120591) = 120601 (120585) 119861 (120591) (16)

The separation equation for the dimensionless time variable119861(120591) is

119889119861 (120591)

119889120591= minus1205822119861 (120591) (17)

and the dimensionless space variable 120601(120585) satisfies the follow-ing self-adjoin operator

1

120585

d119889120585[120585119870 (120585)

119889120601 (120585)

119889120585] + 1205822119862 (120585) 120601 (120585) = 0 120585 isin (119903 1)

(18)

120601 (119903) = 0 (19)

120601 (1) = 0 (20)

Let 119883119895(120585) 119895 = 1 2 be the two linearly independent fun-

damental solutions of the system then the solution of thedifferential equation (18) can be expressed as

120601 (120585) = 11986211198831(120585) minus 119862

21198832(120585) (21)

where 1198621and 119862

2are constants to be determined from the

boundary conditions (19)-(20)After substituting solutions (21) into the boundary con-

ditions (19)-(20) we obtain the following characteristicequation

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (22)

4 Mathematical Problems in Engineering

Consequently the eigenvalues 120582119899 119899 = 1 2 3 can be deter-

minedThe associated 119899th eigenfunction 120601119899(120585) is determined

as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (23)

where 1198831198991(120585) and 119883

1198992(120585) are respectively the fundamental

solutions1198831(120582119899 120585) and119883

2(120582119899 120585) associated with eigenvalues

120582119899 119899 = 1 2 3 They are defined as 119883

1198991(120585) = 119883

1(120582119899 120585)

and 1198831198992(120585) = 119883

2(120582119899 120585) The eigenfunctions 120601

119899(120585) constitute

an orthogonal set in the interval 119903 le 120585 le 1 with respect to aweighting function 120585119862(120585)

int

1

119903

120585119862 (120585) 120601119898(120585) 120601119899(120585) 119889120585 =

0 for 119898 = 119899

120575119899 for 119898 = 119899

(24)

where

120575119899= int

1

119903

120585119862 (120585) 1206012

119899(120585) 119889120585 (25)

In terms of eigenfunctions the transformed variable](120585 120591) can be expressed as

] (120585 120591) =infin

sum

119899=1

120601119899(120585) 119861119899(120591) (26)

Substituting (26) into (12) multiplying it by 120585120601119898 and inte-

grating from 119903 to 1 we obtain

119889119861119899(120591)

119889120591+ 1205822

119899119861119899(120591) = minus120574

119899(120591) (27)

where

120574119899(120591) =

1

120575119899

int

1

119903

120585120601119899(120585) 119865 (120585 120591) 119889120585 (28)

The general solution of (27) is

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594] (29)

120572119899is determined from the initial condition (15) and

120572119899= 119861119899(0) =

1

120575119899

int

1

119903

120585119862 (120585) 120601119899(120585) ]0(120585) 119889120585 (30)

After substituting the solution of the transformed variable(26) and the shifting functions (11) back to (6) the exactsolution for the general system is obtained

4 Verification and Examples

To illustrate the previous analysis the following examples andlimiting cases are given

Example 1 Consider the heat conduction in an uniformcircular hollow cylinder with time-dependent boundary con-ditions The boundary value problem of the heat conductionin dimension-less form is

1

120585

1

120597120585[120585120597120579 (120585 120591)

120597120585] =

120597120579 (120585 120591)

120597120591 119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) =1205951(120591)

119879119903

120579 (1 120591) =1205952(120591)

119879119903

120579 (120585 0) =1205790(120585)

119879119903

(31)

In this case 119870(120585) = 1 119862(120585) = 1 The two shifting func-tions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(32)

The two linearly independent fundamental solutions are

1198831(120582119899 120585) = 119869

0(120582119899120585)

1198832(120582119899 120585) = 119884

0(120582119899120585)

(33)

This leads to

119865 (120585 120591) =1

(1 minus 119903) 119879119903

[ (1 minus 120585) 1205951015840

1(120591) + (minus119903 + 120585) 120595

1015840

2(120591)

+1205951(120591)

120585minus1205952(120591)

120585]

(34)

where the characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (35)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) =

1198690(120582119899120585)

1198690(120582119899)minus1198840(120582119899120585)

1198840(120582119899) (36)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (35) and (36) The two coefficients in (28)-(29) are derived as

120574119899(120591) =

1

120575119899

1

(1 minus 119903) 119879119903

times int

1

119903

120601119899(120585) [ (120585 minus 120585

2) 1205951015840

1(120591) + (minus119903120585 + 120585

2) 1205951015840

2(120591)

+ 1205951(120591) minus 120595

2(120591) ] 119889120585

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594]

(37)

Mathematical Problems in Engineering 5

where

120575119899= [int

1

119903

120585 1206012

119899(120585) 119889120585]

120572119899=

1

120575119899119879119903

int

1

119903

120585120601119899(120585) 1205790(120585) 119889120585

(38)

As a result the analytic closed solution of the system indimensionless form is

120579 (120585 120591) =

infin

sum

119899=1

[120601119899(120585) 119861119899(120591)]

+ (1 minus 120585

1 minus 119903)1205951(120591)

119879119903

+ (minus119903 + 120585

1 minus 119903)1205952(120591)

119879119903

(39)

when

1205951(120591) = 120595

2(120591) = 0 (40)

The analytic closed solution in dimensionless form is re-duced to

120579 (120585 120591) =

infin

sum

119899=1

[119890minus1205822

119899120591120601119899(120585) 120572119899] (41)

The solution is exactly the same as the one given by Ozisik [1]

Example 2 Consider the heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionsThe coefficients of thermal conductivity and the specificheat are 119870(120585) = 119896

1198981205851205731 and 119862(120585) = 119888

1198981205851205732 respectively

The boundary value problem of the heat conduction indimensionless form is

1

120585

120597

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] minus 119862 (120585)

120597120579 (120585 120591)

120597120591= 0

119903 lt 120585 lt 1 120591 gt 0

(42)

120579 (119903 120591) = 0 (43)

120579 (1 120591) = (1 minus 119890minus1198620120591) 1205792 (44)

120579 (120585 0) = 0 (45)

In this case two shifting functions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(46)

The route to two independent fundamental solutions of of(42) lies in the use of the Frobenius method which can berepresented in terms of the Bessel functions

1198831(120582119899 120585) = 120585

minus12057312119869] (120578119899120585

(2+1205732minus1205731)2)

1198832(120582119899 120585) = 120585

minus12057312119884] (120578119899120585

(2+1205732minus1205731)2)

(47)

where

120578119899= radic

119888119898

119896119898

(2120582119899

1205731minus 1205732minus 2)

] =1205731

1205731minus 1205732minus 2

(48)

Now

119865 (120585 120591)

= 119890minus11986201205911205792[11988811989812058512057321198620(119886lowast+ 119887lowast120585) + 119887

lowast(1205731+ 1) 119896

1198981205851205731minus1]

minus 119887lowast[1205792(1205731+ 1) 119896

1198981205851205731minus1]

(49)

where

119886lowast=minus119903

1 minus 119903

119887lowast=

1

1 minus 119903

(50)

The characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (51)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (52)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (51) and (52) by numerical analysis Twocoefficients in (28)ndash(30) are derived as

120574119899(120591) = 120574

1198991(120585) 119890minus1198620120591+ 1205741198992(120585)

119861119899(120591) = [120572

119899+1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198620120591minus1205741198992(120585)

1205822

119899

(53)

where

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

1205792

120575119899

int

1

119903

120601119899(120585) [11988811989812058512057321198620(119886lowast+ 119887lowast120585)

+119887lowast(1205731+ 1) 119896

1198981205851205731minus1] 119889120585

1205741198992(120585) =

minus119887lowast1205792

120575119899

[int

1

119903

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731minus1119889120585]

120572119899= 0

(54)

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Analytic Solutions for Heat Conduction in ...

2 Mathematical Problems in Engineering

a moving heat source in the axial direction from the innerandor outer surfaces using the layerwise theory in con-junction with the method of Fourier cosine and the Laplacetransformations Shao and Ma [11] employed the Laplacetransform techniques and the series solving method to studythermomechanical stresses in FG circular hollow cylinderswith linearly increasing boundary temperature Jabbari et al[12] developed an analytical solution for the one-dimensionaltemperature distribution mechanical and thermal stresses inan infinitely long FG hollow cylinder under a moving heatsource which moves across the thickness of the cylinderAsgari andAkhlaghi [13] employed the finite elementmethodto study the transient thermal stresses in a thick hollowcylinder with finite length mad of 2D-FGM that its materialproperties are varied in the radial and axial directions witha power law function The thermal boundary conditions atthe inner and outer radiuses are time dependent Singh et al[14] applied the finite integral transform method and theseparation of variables method to solve time-dependent heatconduction problem in a multilayer annulus MalekzadehandHeydarpour [15] used the differential quadraturemethod(DQM) in conjunctionwith the finite elementmethod (FEM)to study the response of FG cylindrical shells under movingthermomechanical loads Recently Wang and Liu [16] haveemployed the method of separation of variables to developthe analytical solution of transient temperature fields for two-dimensional transient heat conduction in a fiber-reinforcedmultilayer cylindrical composite

In the study of thermal elastic response of FG cylinderswithout mechanical loading the heat conduction problemis not incorporated with the elastic field and can be studiedindependently However the thermal field will be coupledwith the temperature field In this paper one considersthe heat conduction problem of FG cylinders only A newsolution method which is a modification on the methoddeveloped by Lee and Lin [17] and Chen et al [18] is used todevelop the analytical solution for transient heat conductionin FG circular hollow cylinders with time-dependent bound-ary conditions By introducing suitable shifting functionsthe governing second-order differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analysis are given to illustrate the efficiencyand accuracy of the solution method

2 Mathematical Modeling

Consider the transient heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionat the inner and outer surfaces as shown in Figure 1 Thegoverning differential equation of the system is

1

119903

1

120597119903[119903119896 (119903)

120597119879 (119903 119905)

120597119903] + 119892 (119903 119905) = 120588119888 (119903)

120597119879 (119903 119905)

120597119905

119886 lt 119903 lt 119887 119905 gt 0

(1)

a

b

InitiallyT0(r)

T(b t) = T2(t)

T(a t) = T1(t)

Figure 1 FG circular hollow cylinder with time-dependent bound-ary conditions

The boundary conditions are

119879 (119886 119905) = 1198791(119905)

119879 (119887 119905) = 1198792(119905)

(2)

and the initial condition is

119879 (119903 0) = 1198790(119903) (3)

Here 119903 is the space variable and 119905 is the time variable 119888(119903)is the specific heat 119896(119903) is the thermal conductivity 119879(119903 119905) isthe temperature 120588 is the mass density and 119892(119903 119905) is the heatsource inside the circular hollow cylinder 119879

1(119905) and 119879

2(119905)

are the time-dependent temperatures at the inner and outersurfaces respectively

In terms of the following dimensionless parameters

119870 (120585) =119896 (119903)

119896 (119886) 119862 (120585) =

119888 (119903)

119888 (119886) 119866 (120585 120591) =

119892 (119903 119905) 1198872

119896 (119886) 119879119903

120585 =119903

119887 119903 =

119886

119887 120579 =

119879

119879119903

1205790=1198790

119879119903

120579119894=119879119894

119879119903

120591 =119896 (119886) 119905

119888 (119886) 1205881198872

(4)

where 119879119903is the reference temperature the boundary value

problem of heat conduction becomes

1

120585

1

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] + 119866 (120585 120591) = 119862 (120585)

120597120579 (120585 120591)

120597120591

119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) minus 1205791= 0

120579 (1 120591) minus 1205792= 0

120579 (120585 0) = 1205790(120585)

(5)

Mathematical Problems in Engineering 3

3 Solution Method

31 Change of Variables To find the solution for the second-order differential equation with nonhomogeneous boundaryconditions the shifting variable method developed by Leeand Lin [17] and Chen et al [18] was extended by taking

120579 (120585 120591) = ] (120585 120591) + 1198911(120591) 1198921(120585) + 119891

2(120591) 1198922(120585) (6)

where 119892119894(120585) 119894 = 1 2 are shifting functions to be specified and

](120585 120591) is the transformed function Substituting (6) into (5)yields the following partial differential equation

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591

= minus119866 (120585 120591) +

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591

minus119891119894(120591)1

120585

119889

119889120585[120585119870 (120585)

119889119892119894(120585)

119889120585]

(7)

the associated boundary conditions

] (119903 120591) + 1198911(120591) 1198921(119903) + 119891

2(120591) 1198922(119903) = 119891

1(120591)

] (1 120591) + 1198911(120591) 1198921(1) + 119891

2(120591) 1198922(1) = 119891

2(120591)

(8)

and the associated initial condition

] (120585 0) = 120579 (120585 0) minus 1198911(0) 1198921(120585) minus 119891

2(0) 1198922(120585) (9)

32 Shifting Functions To simplify the analysis the shiftingfunctions are specifically chosen such that they satisfy thefollowing differential equations and the boundary conditions

1198892119892119894(120585)

1198891205852= 0 119894 = 1 2

1198921(119903) = 1

1198921(1) = 0

1198922(119903) = 0

1198922(1) = 1

(10)

These two shifting functions can be easily determined as

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(minus119903 + 120585)

(11)

33 Reduced Homogenous Problem With these two shift-ing functions (11) the governing differential equation (7)becomes

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591= 119865 (120585 120591) (12)

where

119865 (120585 120591)

= minus119866 (120585 120591)

+

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591minus119891119894(120591)

120585

119889

119889120585[120585119870 (120585)]

119889119892119894(120585)

119889120585

(13)

The two nonhomogenous boundary conditions (8) for thetransformed function ](120585 120591) are reduced to homogenousones

] (119903 120591) = 0

] (1 120591) = 0(14)

The transformed initial condition is

] (120585 0) = 1205790(120585) minus 119891

1(0) 1198921(120585) minus 119891

2(0) 1198922(120585) = ]

0(120585) (15)

34 Solution of Transformed Variable

341 Characteristic Solution To find the solution ](120585 120591) weuse the eigenfunction expansion method and assume thesolution to be in the form

] (120585 120591) = 120601 (120585) 119861 (120591) (16)

The separation equation for the dimensionless time variable119861(120591) is

119889119861 (120591)

119889120591= minus1205822119861 (120591) (17)

and the dimensionless space variable 120601(120585) satisfies the follow-ing self-adjoin operator

1

120585

d119889120585[120585119870 (120585)

119889120601 (120585)

119889120585] + 1205822119862 (120585) 120601 (120585) = 0 120585 isin (119903 1)

(18)

120601 (119903) = 0 (19)

120601 (1) = 0 (20)

Let 119883119895(120585) 119895 = 1 2 be the two linearly independent fun-

damental solutions of the system then the solution of thedifferential equation (18) can be expressed as

120601 (120585) = 11986211198831(120585) minus 119862

21198832(120585) (21)

where 1198621and 119862

2are constants to be determined from the

boundary conditions (19)-(20)After substituting solutions (21) into the boundary con-

ditions (19)-(20) we obtain the following characteristicequation

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (22)

4 Mathematical Problems in Engineering

Consequently the eigenvalues 120582119899 119899 = 1 2 3 can be deter-

minedThe associated 119899th eigenfunction 120601119899(120585) is determined

as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (23)

where 1198831198991(120585) and 119883

1198992(120585) are respectively the fundamental

solutions1198831(120582119899 120585) and119883

2(120582119899 120585) associated with eigenvalues

120582119899 119899 = 1 2 3 They are defined as 119883

1198991(120585) = 119883

1(120582119899 120585)

and 1198831198992(120585) = 119883

2(120582119899 120585) The eigenfunctions 120601

119899(120585) constitute

an orthogonal set in the interval 119903 le 120585 le 1 with respect to aweighting function 120585119862(120585)

int

1

119903

120585119862 (120585) 120601119898(120585) 120601119899(120585) 119889120585 =

0 for 119898 = 119899

120575119899 for 119898 = 119899

(24)

where

120575119899= int

1

119903

120585119862 (120585) 1206012

119899(120585) 119889120585 (25)

In terms of eigenfunctions the transformed variable](120585 120591) can be expressed as

] (120585 120591) =infin

sum

119899=1

120601119899(120585) 119861119899(120591) (26)

Substituting (26) into (12) multiplying it by 120585120601119898 and inte-

grating from 119903 to 1 we obtain

119889119861119899(120591)

119889120591+ 1205822

119899119861119899(120591) = minus120574

119899(120591) (27)

where

120574119899(120591) =

1

120575119899

int

1

119903

120585120601119899(120585) 119865 (120585 120591) 119889120585 (28)

The general solution of (27) is

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594] (29)

120572119899is determined from the initial condition (15) and

120572119899= 119861119899(0) =

1

120575119899

int

1

119903

120585119862 (120585) 120601119899(120585) ]0(120585) 119889120585 (30)

After substituting the solution of the transformed variable(26) and the shifting functions (11) back to (6) the exactsolution for the general system is obtained

4 Verification and Examples

To illustrate the previous analysis the following examples andlimiting cases are given

Example 1 Consider the heat conduction in an uniformcircular hollow cylinder with time-dependent boundary con-ditions The boundary value problem of the heat conductionin dimension-less form is

1

120585

1

120597120585[120585120597120579 (120585 120591)

120597120585] =

120597120579 (120585 120591)

120597120591 119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) =1205951(120591)

119879119903

120579 (1 120591) =1205952(120591)

119879119903

120579 (120585 0) =1205790(120585)

119879119903

(31)

In this case 119870(120585) = 1 119862(120585) = 1 The two shifting func-tions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(32)

The two linearly independent fundamental solutions are

1198831(120582119899 120585) = 119869

0(120582119899120585)

1198832(120582119899 120585) = 119884

0(120582119899120585)

(33)

This leads to

119865 (120585 120591) =1

(1 minus 119903) 119879119903

[ (1 minus 120585) 1205951015840

1(120591) + (minus119903 + 120585) 120595

1015840

2(120591)

+1205951(120591)

120585minus1205952(120591)

120585]

(34)

where the characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (35)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) =

1198690(120582119899120585)

1198690(120582119899)minus1198840(120582119899120585)

1198840(120582119899) (36)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (35) and (36) The two coefficients in (28)-(29) are derived as

120574119899(120591) =

1

120575119899

1

(1 minus 119903) 119879119903

times int

1

119903

120601119899(120585) [ (120585 minus 120585

2) 1205951015840

1(120591) + (minus119903120585 + 120585

2) 1205951015840

2(120591)

+ 1205951(120591) minus 120595

2(120591) ] 119889120585

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594]

(37)

Mathematical Problems in Engineering 5

where

120575119899= [int

1

119903

120585 1206012

119899(120585) 119889120585]

120572119899=

1

120575119899119879119903

int

1

119903

120585120601119899(120585) 1205790(120585) 119889120585

(38)

As a result the analytic closed solution of the system indimensionless form is

120579 (120585 120591) =

infin

sum

119899=1

[120601119899(120585) 119861119899(120591)]

+ (1 minus 120585

1 minus 119903)1205951(120591)

119879119903

+ (minus119903 + 120585

1 minus 119903)1205952(120591)

119879119903

(39)

when

1205951(120591) = 120595

2(120591) = 0 (40)

The analytic closed solution in dimensionless form is re-duced to

120579 (120585 120591) =

infin

sum

119899=1

[119890minus1205822

119899120591120601119899(120585) 120572119899] (41)

The solution is exactly the same as the one given by Ozisik [1]

Example 2 Consider the heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionsThe coefficients of thermal conductivity and the specificheat are 119870(120585) = 119896

1198981205851205731 and 119862(120585) = 119888

1198981205851205732 respectively

The boundary value problem of the heat conduction indimensionless form is

1

120585

120597

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] minus 119862 (120585)

120597120579 (120585 120591)

120597120591= 0

119903 lt 120585 lt 1 120591 gt 0

(42)

120579 (119903 120591) = 0 (43)

120579 (1 120591) = (1 minus 119890minus1198620120591) 1205792 (44)

120579 (120585 0) = 0 (45)

In this case two shifting functions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(46)

The route to two independent fundamental solutions of of(42) lies in the use of the Frobenius method which can berepresented in terms of the Bessel functions

1198831(120582119899 120585) = 120585

minus12057312119869] (120578119899120585

(2+1205732minus1205731)2)

1198832(120582119899 120585) = 120585

minus12057312119884] (120578119899120585

(2+1205732minus1205731)2)

(47)

where

120578119899= radic

119888119898

119896119898

(2120582119899

1205731minus 1205732minus 2)

] =1205731

1205731minus 1205732minus 2

(48)

Now

119865 (120585 120591)

= 119890minus11986201205911205792[11988811989812058512057321198620(119886lowast+ 119887lowast120585) + 119887

lowast(1205731+ 1) 119896

1198981205851205731minus1]

minus 119887lowast[1205792(1205731+ 1) 119896

1198981205851205731minus1]

(49)

where

119886lowast=minus119903

1 minus 119903

119887lowast=

1

1 minus 119903

(50)

The characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (51)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (52)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (51) and (52) by numerical analysis Twocoefficients in (28)ndash(30) are derived as

120574119899(120591) = 120574

1198991(120585) 119890minus1198620120591+ 1205741198992(120585)

119861119899(120591) = [120572

119899+1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198620120591minus1205741198992(120585)

1205822

119899

(53)

where

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

1205792

120575119899

int

1

119903

120601119899(120585) [11988811989812058512057321198620(119886lowast+ 119887lowast120585)

+119887lowast(1205731+ 1) 119896

1198981205851205731minus1] 119889120585

1205741198992(120585) =

minus119887lowast1205792

120575119899

[int

1

119903

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731minus1119889120585]

120572119899= 0

(54)

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Analytic Solutions for Heat Conduction in ...

Mathematical Problems in Engineering 3

3 Solution Method

31 Change of Variables To find the solution for the second-order differential equation with nonhomogeneous boundaryconditions the shifting variable method developed by Leeand Lin [17] and Chen et al [18] was extended by taking

120579 (120585 120591) = ] (120585 120591) + 1198911(120591) 1198921(120585) + 119891

2(120591) 1198922(120585) (6)

where 119892119894(120585) 119894 = 1 2 are shifting functions to be specified and

](120585 120591) is the transformed function Substituting (6) into (5)yields the following partial differential equation

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591

= minus119866 (120585 120591) +

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591

minus119891119894(120591)1

120585

119889

119889120585[120585119870 (120585)

119889119892119894(120585)

119889120585]

(7)

the associated boundary conditions

] (119903 120591) + 1198911(120591) 1198921(119903) + 119891

2(120591) 1198922(119903) = 119891

1(120591)

] (1 120591) + 1198911(120591) 1198921(1) + 119891

2(120591) 1198922(1) = 119891

2(120591)

(8)

and the associated initial condition

] (120585 0) = 120579 (120585 0) minus 1198911(0) 1198921(120585) minus 119891

2(0) 1198922(120585) (9)

32 Shifting Functions To simplify the analysis the shiftingfunctions are specifically chosen such that they satisfy thefollowing differential equations and the boundary conditions

1198892119892119894(120585)

1198891205852= 0 119894 = 1 2

1198921(119903) = 1

1198921(1) = 0

1198922(119903) = 0

1198922(1) = 1

(10)

These two shifting functions can be easily determined as

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(minus119903 + 120585)

(11)

33 Reduced Homogenous Problem With these two shift-ing functions (11) the governing differential equation (7)becomes

1

120585

120597

120597120585[120585119870 (120585)

120597] (120585 120591)

120597120585] minus 119862 (120585)

120597] (120585 120591)

120597120591= 119865 (120585 120591) (12)

where

119865 (120585 120591)

= minus119866 (120585 120591)

+

2

sum

119894=1

119862 (120585) 119892119894(120585)119889119891119894(120591)

119889120591minus119891119894(120591)

120585

119889

119889120585[120585119870 (120585)]

119889119892119894(120585)

119889120585

(13)

The two nonhomogenous boundary conditions (8) for thetransformed function ](120585 120591) are reduced to homogenousones

] (119903 120591) = 0

] (1 120591) = 0(14)

The transformed initial condition is

] (120585 0) = 1205790(120585) minus 119891

1(0) 1198921(120585) minus 119891

2(0) 1198922(120585) = ]

0(120585) (15)

34 Solution of Transformed Variable

341 Characteristic Solution To find the solution ](120585 120591) weuse the eigenfunction expansion method and assume thesolution to be in the form

] (120585 120591) = 120601 (120585) 119861 (120591) (16)

The separation equation for the dimensionless time variable119861(120591) is

119889119861 (120591)

119889120591= minus1205822119861 (120591) (17)

and the dimensionless space variable 120601(120585) satisfies the follow-ing self-adjoin operator

1

120585

d119889120585[120585119870 (120585)

119889120601 (120585)

119889120585] + 1205822119862 (120585) 120601 (120585) = 0 120585 isin (119903 1)

(18)

120601 (119903) = 0 (19)

120601 (1) = 0 (20)

Let 119883119895(120585) 119895 = 1 2 be the two linearly independent fun-

damental solutions of the system then the solution of thedifferential equation (18) can be expressed as

120601 (120585) = 11986211198831(120585) minus 119862

21198832(120585) (21)

where 1198621and 119862

2are constants to be determined from the

boundary conditions (19)-(20)After substituting solutions (21) into the boundary con-

ditions (19)-(20) we obtain the following characteristicequation

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (22)

4 Mathematical Problems in Engineering

Consequently the eigenvalues 120582119899 119899 = 1 2 3 can be deter-

minedThe associated 119899th eigenfunction 120601119899(120585) is determined

as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (23)

where 1198831198991(120585) and 119883

1198992(120585) are respectively the fundamental

solutions1198831(120582119899 120585) and119883

2(120582119899 120585) associated with eigenvalues

120582119899 119899 = 1 2 3 They are defined as 119883

1198991(120585) = 119883

1(120582119899 120585)

and 1198831198992(120585) = 119883

2(120582119899 120585) The eigenfunctions 120601

119899(120585) constitute

an orthogonal set in the interval 119903 le 120585 le 1 with respect to aweighting function 120585119862(120585)

int

1

119903

120585119862 (120585) 120601119898(120585) 120601119899(120585) 119889120585 =

0 for 119898 = 119899

120575119899 for 119898 = 119899

(24)

where

120575119899= int

1

119903

120585119862 (120585) 1206012

119899(120585) 119889120585 (25)

In terms of eigenfunctions the transformed variable](120585 120591) can be expressed as

] (120585 120591) =infin

sum

119899=1

120601119899(120585) 119861119899(120591) (26)

Substituting (26) into (12) multiplying it by 120585120601119898 and inte-

grating from 119903 to 1 we obtain

119889119861119899(120591)

119889120591+ 1205822

119899119861119899(120591) = minus120574

119899(120591) (27)

where

120574119899(120591) =

1

120575119899

int

1

119903

120585120601119899(120585) 119865 (120585 120591) 119889120585 (28)

The general solution of (27) is

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594] (29)

120572119899is determined from the initial condition (15) and

120572119899= 119861119899(0) =

1

120575119899

int

1

119903

120585119862 (120585) 120601119899(120585) ]0(120585) 119889120585 (30)

After substituting the solution of the transformed variable(26) and the shifting functions (11) back to (6) the exactsolution for the general system is obtained

4 Verification and Examples

To illustrate the previous analysis the following examples andlimiting cases are given

Example 1 Consider the heat conduction in an uniformcircular hollow cylinder with time-dependent boundary con-ditions The boundary value problem of the heat conductionin dimension-less form is

1

120585

1

120597120585[120585120597120579 (120585 120591)

120597120585] =

120597120579 (120585 120591)

120597120591 119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) =1205951(120591)

119879119903

120579 (1 120591) =1205952(120591)

119879119903

120579 (120585 0) =1205790(120585)

119879119903

(31)

In this case 119870(120585) = 1 119862(120585) = 1 The two shifting func-tions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(32)

The two linearly independent fundamental solutions are

1198831(120582119899 120585) = 119869

0(120582119899120585)

1198832(120582119899 120585) = 119884

0(120582119899120585)

(33)

This leads to

119865 (120585 120591) =1

(1 minus 119903) 119879119903

[ (1 minus 120585) 1205951015840

1(120591) + (minus119903 + 120585) 120595

1015840

2(120591)

+1205951(120591)

120585minus1205952(120591)

120585]

(34)

where the characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (35)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) =

1198690(120582119899120585)

1198690(120582119899)minus1198840(120582119899120585)

1198840(120582119899) (36)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (35) and (36) The two coefficients in (28)-(29) are derived as

120574119899(120591) =

1

120575119899

1

(1 minus 119903) 119879119903

times int

1

119903

120601119899(120585) [ (120585 minus 120585

2) 1205951015840

1(120591) + (minus119903120585 + 120585

2) 1205951015840

2(120591)

+ 1205951(120591) minus 120595

2(120591) ] 119889120585

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594]

(37)

Mathematical Problems in Engineering 5

where

120575119899= [int

1

119903

120585 1206012

119899(120585) 119889120585]

120572119899=

1

120575119899119879119903

int

1

119903

120585120601119899(120585) 1205790(120585) 119889120585

(38)

As a result the analytic closed solution of the system indimensionless form is

120579 (120585 120591) =

infin

sum

119899=1

[120601119899(120585) 119861119899(120591)]

+ (1 minus 120585

1 minus 119903)1205951(120591)

119879119903

+ (minus119903 + 120585

1 minus 119903)1205952(120591)

119879119903

(39)

when

1205951(120591) = 120595

2(120591) = 0 (40)

The analytic closed solution in dimensionless form is re-duced to

120579 (120585 120591) =

infin

sum

119899=1

[119890minus1205822

119899120591120601119899(120585) 120572119899] (41)

The solution is exactly the same as the one given by Ozisik [1]

Example 2 Consider the heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionsThe coefficients of thermal conductivity and the specificheat are 119870(120585) = 119896

1198981205851205731 and 119862(120585) = 119888

1198981205851205732 respectively

The boundary value problem of the heat conduction indimensionless form is

1

120585

120597

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] minus 119862 (120585)

120597120579 (120585 120591)

120597120591= 0

119903 lt 120585 lt 1 120591 gt 0

(42)

120579 (119903 120591) = 0 (43)

120579 (1 120591) = (1 minus 119890minus1198620120591) 1205792 (44)

120579 (120585 0) = 0 (45)

In this case two shifting functions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(46)

The route to two independent fundamental solutions of of(42) lies in the use of the Frobenius method which can berepresented in terms of the Bessel functions

1198831(120582119899 120585) = 120585

minus12057312119869] (120578119899120585

(2+1205732minus1205731)2)

1198832(120582119899 120585) = 120585

minus12057312119884] (120578119899120585

(2+1205732minus1205731)2)

(47)

where

120578119899= radic

119888119898

119896119898

(2120582119899

1205731minus 1205732minus 2)

] =1205731

1205731minus 1205732minus 2

(48)

Now

119865 (120585 120591)

= 119890minus11986201205911205792[11988811989812058512057321198620(119886lowast+ 119887lowast120585) + 119887

lowast(1205731+ 1) 119896

1198981205851205731minus1]

minus 119887lowast[1205792(1205731+ 1) 119896

1198981205851205731minus1]

(49)

where

119886lowast=minus119903

1 minus 119903

119887lowast=

1

1 minus 119903

(50)

The characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (51)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (52)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (51) and (52) by numerical analysis Twocoefficients in (28)ndash(30) are derived as

120574119899(120591) = 120574

1198991(120585) 119890minus1198620120591+ 1205741198992(120585)

119861119899(120591) = [120572

119899+1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198620120591minus1205741198992(120585)

1205822

119899

(53)

where

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

1205792

120575119899

int

1

119903

120601119899(120585) [11988811989812058512057321198620(119886lowast+ 119887lowast120585)

+119887lowast(1205731+ 1) 119896

1198981205851205731minus1] 119889120585

1205741198992(120585) =

minus119887lowast1205792

120575119899

[int

1

119903

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731minus1119889120585]

120572119899= 0

(54)

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Analytic Solutions for Heat Conduction in ...

4 Mathematical Problems in Engineering

Consequently the eigenvalues 120582119899 119899 = 1 2 3 can be deter-

minedThe associated 119899th eigenfunction 120601119899(120585) is determined

as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (23)

where 1198831198991(120585) and 119883

1198992(120585) are respectively the fundamental

solutions1198831(120582119899 120585) and119883

2(120582119899 120585) associated with eigenvalues

120582119899 119899 = 1 2 3 They are defined as 119883

1198991(120585) = 119883

1(120582119899 120585)

and 1198831198992(120585) = 119883

2(120582119899 120585) The eigenfunctions 120601

119899(120585) constitute

an orthogonal set in the interval 119903 le 120585 le 1 with respect to aweighting function 120585119862(120585)

int

1

119903

120585119862 (120585) 120601119898(120585) 120601119899(120585) 119889120585 =

0 for 119898 = 119899

120575119899 for 119898 = 119899

(24)

where

120575119899= int

1

119903

120585119862 (120585) 1206012

119899(120585) 119889120585 (25)

In terms of eigenfunctions the transformed variable](120585 120591) can be expressed as

] (120585 120591) =infin

sum

119899=1

120601119899(120585) 119861119899(120591) (26)

Substituting (26) into (12) multiplying it by 120585120601119898 and inte-

grating from 119903 to 1 we obtain

119889119861119899(120591)

119889120591+ 1205822

119899119861119899(120591) = minus120574

119899(120591) (27)

where

120574119899(120591) =

1

120575119899

int

1

119903

120585120601119899(120585) 119865 (120585 120591) 119889120585 (28)

The general solution of (27) is

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594] (29)

120572119899is determined from the initial condition (15) and

120572119899= 119861119899(0) =

1

120575119899

int

1

119903

120585119862 (120585) 120601119899(120585) ]0(120585) 119889120585 (30)

After substituting the solution of the transformed variable(26) and the shifting functions (11) back to (6) the exactsolution for the general system is obtained

4 Verification and Examples

To illustrate the previous analysis the following examples andlimiting cases are given

Example 1 Consider the heat conduction in an uniformcircular hollow cylinder with time-dependent boundary con-ditions The boundary value problem of the heat conductionin dimension-less form is

1

120585

1

120597120585[120585120597120579 (120585 120591)

120597120585] =

120597120579 (120585 120591)

120597120591 119903 lt 120585 lt 1 120591 gt 0

120579 (119903 120591) =1205951(120591)

119879119903

120579 (1 120591) =1205952(120591)

119879119903

120579 (120585 0) =1205790(120585)

119879119903

(31)

In this case 119870(120585) = 1 119862(120585) = 1 The two shifting func-tions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(32)

The two linearly independent fundamental solutions are

1198831(120582119899 120585) = 119869

0(120582119899120585)

1198832(120582119899 120585) = 119884

0(120582119899120585)

(33)

This leads to

119865 (120585 120591) =1

(1 minus 119903) 119879119903

[ (1 minus 120585) 1205951015840

1(120591) + (minus119903 + 120585) 120595

1015840

2(120591)

+1205951(120591)

120585minus1205952(120591)

120585]

(34)

where the characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (35)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) =

1198690(120582119899120585)

1198690(120582119899)minus1198840(120582119899120585)

1198840(120582119899) (36)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (35) and (36) The two coefficients in (28)-(29) are derived as

120574119899(120591) =

1

120575119899

1

(1 minus 119903) 119879119903

times int

1

119903

120601119899(120585) [ (120585 minus 120585

2) 1205951015840

1(120591) + (minus119903120585 + 120585

2) 1205951015840

2(120591)

+ 1205951(120591) minus 120595

2(120591) ] 119889120585

119861119899(120591) = 119890

minus1205822

119899120591[120572119899minus int

120591

0

1198901205822

119899120594120574119899(120594) 119889120594]

(37)

Mathematical Problems in Engineering 5

where

120575119899= [int

1

119903

120585 1206012

119899(120585) 119889120585]

120572119899=

1

120575119899119879119903

int

1

119903

120585120601119899(120585) 1205790(120585) 119889120585

(38)

As a result the analytic closed solution of the system indimensionless form is

120579 (120585 120591) =

infin

sum

119899=1

[120601119899(120585) 119861119899(120591)]

+ (1 minus 120585

1 minus 119903)1205951(120591)

119879119903

+ (minus119903 + 120585

1 minus 119903)1205952(120591)

119879119903

(39)

when

1205951(120591) = 120595

2(120591) = 0 (40)

The analytic closed solution in dimensionless form is re-duced to

120579 (120585 120591) =

infin

sum

119899=1

[119890minus1205822

119899120591120601119899(120585) 120572119899] (41)

The solution is exactly the same as the one given by Ozisik [1]

Example 2 Consider the heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionsThe coefficients of thermal conductivity and the specificheat are 119870(120585) = 119896

1198981205851205731 and 119862(120585) = 119888

1198981205851205732 respectively

The boundary value problem of the heat conduction indimensionless form is

1

120585

120597

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] minus 119862 (120585)

120597120579 (120585 120591)

120597120591= 0

119903 lt 120585 lt 1 120591 gt 0

(42)

120579 (119903 120591) = 0 (43)

120579 (1 120591) = (1 minus 119890minus1198620120591) 1205792 (44)

120579 (120585 0) = 0 (45)

In this case two shifting functions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(46)

The route to two independent fundamental solutions of of(42) lies in the use of the Frobenius method which can berepresented in terms of the Bessel functions

1198831(120582119899 120585) = 120585

minus12057312119869] (120578119899120585

(2+1205732minus1205731)2)

1198832(120582119899 120585) = 120585

minus12057312119884] (120578119899120585

(2+1205732minus1205731)2)

(47)

where

120578119899= radic

119888119898

119896119898

(2120582119899

1205731minus 1205732minus 2)

] =1205731

1205731minus 1205732minus 2

(48)

Now

119865 (120585 120591)

= 119890minus11986201205911205792[11988811989812058512057321198620(119886lowast+ 119887lowast120585) + 119887

lowast(1205731+ 1) 119896

1198981205851205731minus1]

minus 119887lowast[1205792(1205731+ 1) 119896

1198981205851205731minus1]

(49)

where

119886lowast=minus119903

1 minus 119903

119887lowast=

1

1 minus 119903

(50)

The characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (51)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (52)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (51) and (52) by numerical analysis Twocoefficients in (28)ndash(30) are derived as

120574119899(120591) = 120574

1198991(120585) 119890minus1198620120591+ 1205741198992(120585)

119861119899(120591) = [120572

119899+1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198620120591minus1205741198992(120585)

1205822

119899

(53)

where

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

1205792

120575119899

int

1

119903

120601119899(120585) [11988811989812058512057321198620(119886lowast+ 119887lowast120585)

+119887lowast(1205731+ 1) 119896

1198981205851205731minus1] 119889120585

1205741198992(120585) =

minus119887lowast1205792

120575119899

[int

1

119903

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731minus1119889120585]

120572119899= 0

(54)

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Analytic Solutions for Heat Conduction in ...

Mathematical Problems in Engineering 5

where

120575119899= [int

1

119903

120585 1206012

119899(120585) 119889120585]

120572119899=

1

120575119899119879119903

int

1

119903

120585120601119899(120585) 1205790(120585) 119889120585

(38)

As a result the analytic closed solution of the system indimensionless form is

120579 (120585 120591) =

infin

sum

119899=1

[120601119899(120585) 119861119899(120591)]

+ (1 minus 120585

1 minus 119903)1205951(120591)

119879119903

+ (minus119903 + 120585

1 minus 119903)1205952(120591)

119879119903

(39)

when

1205951(120591) = 120595

2(120591) = 0 (40)

The analytic closed solution in dimensionless form is re-duced to

120579 (120585 120591) =

infin

sum

119899=1

[119890minus1205822

119899120591120601119899(120585) 120572119899] (41)

The solution is exactly the same as the one given by Ozisik [1]

Example 2 Consider the heat conduction in an FG circularhollow cylinder with time-dependent boundary conditionsThe coefficients of thermal conductivity and the specificheat are 119870(120585) = 119896

1198981205851205731 and 119862(120585) = 119888

1198981205851205732 respectively

The boundary value problem of the heat conduction indimensionless form is

1

120585

120597

120597120585[120585119870 (120585)

120597120579 (120585 120591)

120597120585] minus 119862 (120585)

120597120579 (120585 120591)

120597120591= 0

119903 lt 120585 lt 1 120591 gt 0

(42)

120579 (119903 120591) = 0 (43)

120579 (1 120591) = (1 minus 119890minus1198620120591) 1205792 (44)

120579 (120585 0) = 0 (45)

In this case two shifting functions are

1198921(120585) =

1

1 minus 119903(1 minus 120585)

1198922(120585) =

1

1 minus 119903(120585 minus 119903)

(46)

The route to two independent fundamental solutions of of(42) lies in the use of the Frobenius method which can berepresented in terms of the Bessel functions

1198831(120582119899 120585) = 120585

minus12057312119869] (120578119899120585

(2+1205732minus1205731)2)

1198832(120582119899 120585) = 120585

minus12057312119884] (120578119899120585

(2+1205732minus1205731)2)

(47)

where

120578119899= radic

119888119898

119896119898

(2120582119899

1205731minus 1205732minus 2)

] =1205731

1205731minus 1205732minus 2

(48)

Now

119865 (120585 120591)

= 119890minus11986201205911205792[11988811989812058512057321198620(119886lowast+ 119887lowast120585) + 119887

lowast(1205731+ 1) 119896

1198981205851205731minus1]

minus 119887lowast[1205792(1205731+ 1) 119896

1198981205851205731minus1]

(49)

where

119886lowast=minus119903

1 minus 119903

119887lowast=

1

1 minus 119903

(50)

The characteristic equation is

1198831(1)1198832(119903) minus 119883

1(119903)1198832(1) = 0 (51)

The associated 119899th eigenfunction 120601119899(120585) is determined as

120601119899(120585) = 119883

2(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585) (52)

The eigenvalues 120582119899and the associated eigenfunctions 120601

119899(120585)

are obtained from (51) and (52) by numerical analysis Twocoefficients in (28)ndash(30) are derived as

120574119899(120591) = 120574

1198991(120585) 119890minus1198620120591+ 1205741198992(120585)

119861119899(120591) = [120572

119899+1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198620120591minus1205741198992(120585)

1205822

119899

(53)

where

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

1205792

120575119899

int

1

119903

120601119899(120585) [11988811989812058512057321198620(119886lowast+ 119887lowast120585)

+119887lowast(1205731+ 1) 119896

1198981205851205731minus1] 119889120585

1205741198992(120585) =

minus119887lowast1205792

120575119899

[int

1

119903

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731minus1119889120585]

120572119899= 0

(54)

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Analytic Solutions for Heat Conduction in ...

6 Mathematical Problems in Engineering

Table 1 Temperature distribution of FG circular hollow cylinders with constant value of 1205732and various parameters of 120573

1and 119862

0at 120591 = 05

[119896119898= 1 119888119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 and 120596 = 25]

1198620

1205731

1205732

120585

05 06 07 08 09 10

01075

10 4595 2259 1845 1632 0380

1 0 4592 2285 1990 1820 0380

125 0 4486 2279 2133 1975 0380

1075

10 45952 22589 18453 16320 3796

1 0 45920 22848 19895 18202 3796

125 0 44865 22788 21329 19752 3796

10075

10 459520 225888 184526 163201 37959

1 0 459196 228480 198950 182017 37959

125 0 448647 227881 213290 197520 37959

30

25

20

15

10

05

00

120579

120591C0 = 10

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

1205731 = 1 1205732 = 51205731 = 1 1205732 = 05

C0 = 1

001 01 1 10

Figure 2 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and119862

0at 120585 = 075

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

Consequently the analytic closed solution for the systemcan be derived as

120579 (120585 120591)

=

(1 minus 119890minus1198620120591) 1205792

1 minus 119903(120585 minus 119903)

+

infin

sum

119899=1

1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)

times

[1205741198991(120585)

1205822

119899minus 1198620

+1205741198992(120585)

1205822

119899

] 119890minus1205822

119899120591

minus1205741198991(120585)

1205822

119899minus 1198620

119890minus1198880120591minus1205741198992(120585)

1205822

119899

(55)

30

35

40

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = infin

C0 = 10

1205731 = 0 1205732 = 0

1205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

1205731 = 0 1205732 = 0

C0 = 11205731 = 1 1205732 = 5

1205731 = 1 1205732 = 1

Figure 3 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

In Figure 2 the temperature variation of FG circularhollow cylinders with various parameters of 120573

1 1205732 and 119862

0

at 120585 = 075 is shown It can be found that when 1198620is a

positive constant the temperature parameter of the mediumsat 120585 = 075 increases then reaches the associated constanttemperatures over time The temperature increase rate forthe system with a higher value of 119862

0is greater than that

of one with a lower value of 1198620 Figures 3 and 4 show the

temperature distribution of FG circular hollow cylinders withvarious parameters of 120573

1 1205732 and 119862

0at 120591 = 02 From these

figures it can be observed that with constant parameter 1205731

the temperature of the mediums increases as parameter 1205732

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Analytic Solutions for Heat Conduction in ...

Mathematical Problems in Engineering 7

30

35

25

20

15

10

05

00

120579

05 06 07 08 09 10120585

C0 = 10 C0 = 11205731 = 075 1205732 = 11205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 1 1205732 = 1

1205731 = 125 1205732 = 1

1205731 = 075 1205732 = 1

Figure 4 Temperature distribution of FG circular hollow cylinderswith constant value of 120573

2and various values of 120573

1and 119862

0at 120591 = 02

[119896119898= 1 119888119898= 1 120579(1 120591) = (1 minus 119890minus1198620120591)120579

2 1205792= 4]

400350300250200150100500

minus50minus100minus150minus200minus250minus300minus350minus400

05 10 15 20 25 30 35 40 45

120579

120591

C0 = 10

1205731 = 1 1205732 = 075

1205731 = 1 1205732 = 1

1205731 = 1 1205732 = 125

Figure 5 Temperature variation of FG circular hollow cylinderswith constant value of 120573

1and various values of 120573

2at 120585 = 075

[119896119898= 1 119888

119898= 1 120579(1 120591) = (119862

0sin120596120591)120579

2 1205792= 4 119862

0= 10 and

120596 = 25]

is increased With constant parameter 1205732 the temperature of

the mediums increases as parameter 1205731is increased

Example 3 Consider the same physical system as discussedin Example 2 In this case the time dependent boundarycondition at 120585 = 1 (44) is changed to the form

120579 (1 120591) = (1198620sin120596120591) 120579

2 (56)

In this case the eigenvalues and eigenfunctions are the sameas those given in Example 2

Now

119865 (120585 120591) =minus12057921198620

1 minus 119903[(1205731+ 1) 119896

1198981205851205731 sin120596120591

minus (120585 minus 119903) 1205961198881198981205851205732 cos120596120591]

(57)

Following the same solution procedures as shown theexact solution for the general system can be derived as

120579 (120585 120591) =1198620sin1205961205911 minus 119903

1205792(120585 minus 119903)

+

infin

sum

119899=1

[1198832(1)1198831198991(120585) minus 119883

1(1)1198831198992(120585)] 119861

119899(120591)

(58)

where

119861119899(120591) =

1

120596 [(1205822

119899120596)2

+ 1]

times

(1205822

119899

120596cos120596120591 + sin120596120591 minus

1205822

119899

120596119890minus1205822

119899120591)1205741198991(120585)

minus(1205822

119899

120596sin120596120591 minus cos120596120591 minus 119890minus120582

2

119899120591)1205741198992(120585)

120575119899= [int

1

119903

1198881198981205851205732+11206012

119899(120585) 119889120585]

1205741198991(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120585 minus 119903) 120596119888

1198981205851205732+1119889120585]

1205741198992(120585) =

minus12057921198620

(1 minus 119903) 120575119899

[int

1

0

120601119899(120585) (120573

1+ 1) 119896

1198981205851205731+1119889120585]

120572119899= 0

(59)

Figure 5 shows the harmonic temperature variation of FGcircular hollow cylinders with constant value of 120573

1 various

parameters of 1205732at 120585 = 075 119862

0= 10 and 120596 = 25 It can

be observed that with constant value of 1205731 the amplitude of

temperature oscillation for the system with a higher value of1205732will be more than that of one with a lower value of 120573

2

In Table 1 the temperature variations of FG circularhollow cylinders with constant value of 120573

2and various values

of 1205731and 119862

0at 120591 = 05 are given It can be observed that with

constant parameter 1205732 the temperature of the mediums will

decrease as parameter 1205731is decreased

5 Conclusions

Theproblemof heat conductionwith general time-dependentboundary conditions cannot be solved directly by themethodof separation of variables In most of the analyses an integraltransform was used to remove the time-dependent term

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Analytic Solutions for Heat Conduction in ...

8 Mathematical Problems in Engineering

In this paper a new analytic solution method is developedto find the analytic closed solutions for the transient heatconduction in FG circular hollow cylinders with generaltime-dependent boundary conditions The developed solu-tion method is free of any kind of integral transformation

By introducing suitable shifting functions the governingsecond-order regular singular differential equation with vari-able coefficients and time-dependent boundary conditions istransformed into a differential equation with homogenousboundary conditionsThe analytic solution of the systemwiththermal conductivity and specific heat in power functionswith different orders is developed Finally limiting studiesand numerical analyses are given to illustrate the efficiencyand the accuracy of the analysis The proposed solutionmethod can also be extended to the problems with variouskinds of FG materials and time-dependent boundary condi-tions

Acknowledgment

It is gratefully acknowledged that this research was supportedby the National Science Council of Taiwan Taiwan underGrant NSC 99-2221-E-006-021

References

[1] M N Ozisik Boundary Value Problems of Heat ConductionInternational Textbook Company Scranton Pa USA 1st edi-tion 1968

[2] Y Obata and N Noda ldquoSteady thermal stresses in a hollowcircular cylinder and a hollow sphere of a functionally gradientmaterialrdquo Journal of Thermal Stresses vol 17 no 3 pp 471ndash4871994

[3] H Awaji and R Sivakumar ldquoTemperature and stress distribu-tions in a hollow cylinder of functionally graded material thecase of temperature-independent material propertiesrdquo Journalof the American Ceramic Society vol 84 no 5 pp 1059ndash10652001

[4] G N Praveen and J N Reddy ldquoNonlinear transient ther-moelastic analysis of functionally graded ceramic-metal platesrdquoInternational Journal of Solids and Structures vol 35 no 33 pp4457ndash4476 1998

[5] M Jabbari S Sohrabpour and M R Eslami ldquoMechanical andthermal stresses in a functionally graded hollow cylinder dueto radially symmetric loadsrdquo International Journal of PressureVessels and Piping vol 79 no 7 pp 493ndash497 2002

[6] M Jabbari S Sohrabpour and M R Eslami ldquoGeneral solutionfor mechanical and thermal stresses in a functionally gradedhollow cylinder due to nonaxisymmetric steady-state loadsrdquoASME Transactions Journal of Applied Mechanics vol 70 no1 pp 111ndash118 2003

[7] Y Ootao and Y Tanigawa ldquoTransient thermoelastic analysisfor a functionally graded hollow cylinderrdquo Journal of ThermalStresses vol 29 no 11 pp 1031ndash1046 2006

[8] J Zhao X Ai Y Li and Y Zhou ldquoThermal shock resistanceof functionally gradient solid cylindersrdquo Materials Science andEngineering A vol 418 no 1-2 pp 99ndash110 2006

[9] S M Hosseini M Akhlaghi and M Shakeri ldquoTransient heatconduction in functionally graded thick hollow cylinders by

analytical methodrdquo Heat and Mass Transfer vol 43 no 7 pp669ndash675 2007

[10] Y Ootao T Akai and Y Tanigawa ldquoThree-dimensional tran-sient thermal stress analysis of a nonhomogeneous hollowcircular cylinder due to a moving heat source in the axialdirectionrdquo Journal ofThermal Stresses vol 18 no 5 pp 497ndash5121995

[11] Z S Shao and GWMa ldquoThermo-mechanical stresses in func-tionally graded circular hollow cylinder with linearly increasingboundary temperaturerdquo Composite Structures vol 83 no 3 pp259ndash265 2008

[12] M Jabbari A H Mohazzab and A Bahtui ldquoOne-dimensionalmoving heat source in a hollow FGM cylinderrdquo ASME Transac-tions Journal of Pressure Vessel Technology vol 131 no 2 article021202 7 pages 2009

[13] M Asgari andM Akhlaghi ldquoTransient thermal stresses in two-dimensional functionally graded thick hollow cylinder withfinite lengthrdquo Archive of Applied Mechanics vol 80 no 4 pp353ndash376 2010

[14] S Singh P K Jain and R-U Rizwan-Uddin ldquoFinite integraltransform method to solve asymmetric heat conduction in amultilayer annulus with time-dependent boundary conditionsrdquoNuclear Engineering andDesign vol 241 no 1 pp 144ndash154 2011

[15] P Malekzadeh and Y Heydarpour ldquoResponse of functionallygraded cylindrical shells under moving thermo-mechanicalloadsrdquoThin-Walled Structures vol 58 pp 51ndash66 2012

[16] H M Wang and C B Liu ldquoAnalytical solution of two-dimensional transient heat conduction in fiber-reinforcedcylindrical compositesrdquo International Journal of Thermal Sci-ences vol 69 pp 43ndash52 2013

[17] S Y Lee and S M Lin ldquoDynamic analysis of nonuniformbeams with time-dependent elastic boundary conditionsrdquoASME Transactions Journal of Applied Mechanics vol 63 no2 pp 474ndash478 1996

[18] H T Chen S L Sun H C Huang and S Y Lee ldquoAnalyticclosed solution for the heat conduction with time dependentheat convection coefficient at one boundaryrdquo Computer Model-ing in Engineering and Sciences vol 59 no 2 pp 107ndash126 2010

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Analytic Solutions for Heat Conduction in ...

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of