Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

15
Representing molecules as atomicscale electrical circuits with fluctuatingcharge models Jiahao Chen Department of Chemistry and Beckman Institute University of Illinois at UrbanaChampaign APS Meeting P19.5, 20070307 Funding •NSF DMR03 25939 ITR •DOE DEFG0205ER46260 + q 1 + q 2 Acknowledgments •Todd Martínez •Martínez Group members

description

Slides for my talk at the APS (March 2007) national meeting.

Transcript of Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Page 1: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Representing molecules as atomic‐scale electrical circuits with fluctuating‐charge models

Jiahao ChenDepartment of Chemistry and Beckman Institute

University of Illinois at Urbana‐ChampaignAPS Meeting P19.5, 2007‐03‐07

Funding•NSF DMR‐03 25939 ITR•DOE DE‐FG02‐05ER46260

+

q1

+

q2

Acknowledgments•Todd Martínez•Martínez Group members

Page 2: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Polarization and charge transfer in molecular mechanics (MM)

• Want to describe both polarization and charge transfer with reasonable computational cost

• Common models to describe polarization:– Charge‐on‐spring/Drude oscillator, e.g. Drude (1902)– Point‐polarizable dipole, e.g. Vesely (1977)– Chemical potential equilibration (CPE), a.k.a. fluctuating‐charge: Rappé and Goddard (1991); Rick, Stuart and Berne (1994)

• Only CPE models can account for both effects

P. Drude, The Theory of Optics, Longmans, Green and Co., New York (1902); F.J. Vesely, J. Comp. Phys. 24 (1977), 361‐371;  A. K. Rappé, W. A. Goddard, III, J. Phys. Chem. 95(1991), 3358‐3363; S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101 (1994), 6141‐6156.

Page 3: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

A simple DC circuit

capacitorDC source

ground

+

‐CV

0 V

Page 4: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

A simple DC circuitWhat is the charge q on C?

capacitorDC source

ground

+

‐CV

0 V

chargeq

This Hamiltonian approach works for molecules too:fluctuating‐charge/electronegativity equilibration models

energy depletedfrom DC source

energy gainof capacitor

E = −qV + 12C−1q2

∂E

∂q= −V + C−1q = 0

∴ q = V C

Page 5: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

E =Xi

qiχi +1

2ηiq

2i

+1

2

Xi 6=j

qiqjJij

CPE models: The QEq model

+

‐χ1

μ

η1 q1

chemicalhardness

electronegativity

chemicalpotential

+

‐χ2

η2 q2

Coulombinteraction

J12

A. K. Rappé, W. A. Goddard III, J. Phys. Chem. 95 (1991), 3358‐3363.

sourceterm

capacitanceterm

QEq model for a diatomic molecule

Coulombterm

∂E

∂qi= μ

Page 6: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

QEq: wrong NaCl dissociation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0R/Å

q/e

QEq

ab initio DMA0CASSCF(8/5)/6‐31G*

equilibrium geometry

QEq, R → ∞

DMA0 = distributed multipole analysis restricted to point charges onlyCASSCF = complete active space self‐consistent field method

J12 → 0+‐

+‐

+‐

+‐

Page 7: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

The QTPIE model: Motivation

J. Chen, T. J. Martínez, Chem. Phys. Lett., in press.

1. Introduce charge transfer variables qi =Xj

pji

2. Introduce overlap integral: explicit notion of distance

∂EQTPIE∂pji

= 0

EQEq =Xi

qiχi +1

2ηiq

2i +

Xi 6=jqiqjJij

=Xij

pjiχi +Xijk

1

2ηipjipki +

1

2

Xijkl

pkipljJij

EQTPIE =Xij

pjiχiSij +Xijk

1

2ηipjipki +

1

2

Xijkl

pkipljJij

Page 8: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

QTPIE: Correct NaCl asymptote

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0R/Å

q/e

QEq

QTPIE

ab initio

equilibrium geometry

QTPIE prediction improved over QEq without reoptimizingparameters, but variation is still slower than ab initio

Page 9: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Water fragments correctly• Asymmetric dissociation: correct asymptotics, charge 

transfer on OH fragment retained

‐1.0

‐0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

R/Å

q/e equilibrium geometry

R

QEq

QTPIE

ab initio

Page 10: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Water parameters transferable• Parameters transferable across geometries

‐1.0

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0R/Å

q/e

HO H

QEq

QEq

QTPIEQTPIEDMA

DMA

H

O H

‐1.0

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0R/Å

q/e

QEq

QEq

QTPIEQTPIEDMA

DMA

‐1.0

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.5 2.5 3.5 4.5R/Å

q/e

H

O H

QEq

QEq

QTPIEQTPIEDMA

DMA

H

O H

‐1.0

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.5 2.5 3.5 4.5R/Å

q/e

QEq

QEq

QTPIEQTPIEDMA

DMA

Page 11: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Dipole polarizability of phenol• Response of dipole moment to external electric field

• QTPIE: overestimates less than QEq

zyx

6.99810.00000.000012.362110.756620.327013.675813.029824.6244

ab initio*QTPIEQEq

(ų)

*ab initiomethod: MP2/aug‐cc‐pVDZ

Page 12: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

Conclusions

• Fluctuating‐charge models are analogous to DC electrical circuits

• QTPIE (our new charge model) predicts correct dissociation behavior of atomic charges

• Explicit distance cutoff for electronegativitiesimproves qualitative behavior

Thank You

Page 13: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

QEq v. ab initio charges

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0R/Å

q/e

QEq

equilibrium geometry

MullikenDMA

Ideal dipole

ab initiocharges

Page 14: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

QEq1, a fluctuating charge model

• Given geometry, find charge distribution

• Minimization with fixed total charge defines Lagrange multiplier μ

1. A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358‐3363.

q5q4

q3

q2

q1

energy to charge atom Coulomb interaction

Page 15: Representing molecules as atomic-scale electrical circuits with fluctuating-charge models

QTPIE: charge transfer with polarization current equilibration

• Shift focus to charge transfer variables pji:– Charge accounting: where it came from, where it’s going

– Explicitly penalize long‐distance charge transfer

p12

p23

p34p45