Reporter :林煜星 Advisor : Prof. Y.M. Huang

41
1 Iterative Joint Source-Channel Sof t-Decision Sequential Decoding Algo rithms for Parallel Concatenated Variable Leng th Code and Convolutional Code Reporter 林林林 Advisor Prof. Y.M. Huang

description

Iterative Joint Source-Channel Soft-Decision Sequential Decoding Algorithms for Parallel Concatenated Variable Length Code and Convolutional Code. Reporter :林煜星 Advisor : Prof. Y.M. Huang. Outline. Introduction Related Research Transmission Model for BCJR Simulation for BCJR Algorithm - PowerPoint PPT Presentation

Transcript of Reporter :林煜星 Advisor : Prof. Y.M. Huang

Page 1: Reporter :林煜星 Advisor : Prof. Y.M. Huang

1

Iterative Joint Source-Channel Soft-Decision Sequential Decoding Algorithms for

Parallel Concatenated Variable Length Code and Convolutional Code

Reporter:林煜星Advisor: Prof. Y.M. Huang

Page 2: Reporter :林煜星 Advisor : Prof. Y.M. Huang

2

Outline

• Introduction

• Related Research– Transmission Model for BCJR

– Simulation for BCJR Algorithm

• Proposed Methodology– Transmission Model for Sequential

– Simulation for Soft-Decision Sequential Algorithm

• Conclusion

Page 3: Reporter :林煜星 Advisor : Prof. Y.M. Huang

3

DemodulatorChannel Decoder

Source Decoder

User Joint Decoder

資料壓縮

錯誤更正碼

Discrete source

Source Encoder

Channel Encoder

Modulator

Introduction

Channel

Page 4: Reporter :林煜星 Advisor : Prof. Y.M. Huang

4

Related Research

• [1]L. Guivarch, J.C. Carlach and P. Siohan

• [2]M. Jeanne, J.C. Carlach, P. Siohan and L.Guivarch

• [3]M. Jeanne, J.C. Carlach, Pierre Siohan

Page 5: Reporter :林煜星 Advisor : Prof. Y.M. Huang

5

Transmission Model for BCJR

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Page 6: Reporter :林煜星 Advisor : Prof. Y.M. Huang

6

Transmission Model for BCJR-Independent Source or first order Markov Source

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Page 7: Reporter :林煜星 Advisor : Prof. Y.M. Huang

7

Transmission Model for BCJR-Independent Source or first order Markov Source(1)

Symbol Probability

A 0.75

B 0.125

C 0.125

Page 8: Reporter :林煜星 Advisor : Prof. Y.M. Huang

8

Transmission Model for BCJR-Independent Source or first order Markov Source(2)

Page 9: Reporter :林煜星 Advisor : Prof. Y.M. Huang

9

Transmission Model for BCJR-Independent Source or first order

Markov Source(3)

Y↓ X→∣ a b C

a 0.94 0.18 0.18

b 0.03 0.712 0.108

c 0.03 0.108 0.712

0.75

P a P a P a a P b P a b P c P a c

Example:

Page 10: Reporter :林煜星 Advisor : Prof. Y.M. Huang

10

Transmission Model for BCJR-Huffman Codign

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Page 11: Reporter :林煜星 Advisor : Prof. Y.M. Huang

11

VLC Symbol Probability

0 A 0.75

10 B 0.125

11 C 0.125

1 0.125( ) 0.251 0.5P y

P yP y

Transmission Model for BCJR-Huffman Coding

Page 12: Reporter :林煜星 Advisor : Prof. Y.M. Huang

12

Transmission Model for BCJR-Turbo Coding parallel concatenation

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Page 13: Reporter :林煜星 Advisor : Prof. Y.M. Huang

13

d = (11101)

u

v

Non SystematicConvolution code

Transmission Model for BCJR-Turbo Coding parallel concatenation(1)

Page 14: Reporter :林煜星 Advisor : Prof. Y.M. Huang

14

10

(4,1)

(4,3)

(5,1)

(5,3)

(5,2)

(5,0)(4,0)

(4,2)

(3,1)

(3,3)

(3,0)

(3,2)

(2,1)

(2,3)

(2,0)

(2,2)

(1,1)

(1,3)

(1,0)

(1,2)

(0,1)

(0,3)

(0,0)

(0,2)

11

d = (11101)

01

10

01

00

Transmission Model for BCJR-Turbo Coding parallel concatenation(2)

Page 15: Reporter :林煜星 Advisor : Prof. Y.M. Huang

15

Recursive Systematic Convolution(RSC)

kd 1lu

2lu

2 4

3 41

11, D D D

D DG D

Transmission Model for BCJR-Turbo Coding parallel concatenation(3)

Rate=1/2

Page 16: Reporter :林煜星 Advisor : Prof. Y.M. Huang

16

Rate=1/4

2lv

ld

1lv

1lu

2lu

Transmission Model for BCJR-Turbo Coding parallel concatenation(4)

Page 17: Reporter :林煜星 Advisor : Prof. Y.M. Huang

17

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Interleaver

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Transmission Model for BCJR-Turbo Coding parallel concatenation(5)

Page 18: Reporter :林煜星 Advisor : Prof. Y.M. Huang

18

Rate=1/4

2lv

ld

1lv

1lu

2lu

Transmission Model for BCJR-Turbo Coding parallel concatenation(6)

Turbo Code rate1/3

Page 19: Reporter :林煜星 Advisor : Prof. Y.M. Huang

19

Turbo Code rate=1/2

ld lu

2lu

2lv

lv

Transmission Model for BCJR-Turbo Coding parallel concatenation(7)

Page 20: Reporter :林煜星 Advisor : Prof. Y.M. Huang

20

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Transmission Model for BCJR-AWGN

Page 21: Reporter :林煜星 Advisor : Prof. Y.M. Huang

21

Transmission Model for BCJR-AWGN(1)

Page 22: Reporter :林煜星 Advisor : Prof. Y.M. Huang

22

Independent Source

or first orderMarkov Source

Huffman CodingTurbo Coding

parallelconcatenation

Additive WhiteGaussian Noise

Channel

Turbo decodingUtilization

of the SUBMAP

HuffmanDecoding

ku

kv

pcP symbols

kdK bits

ku

kv

kx

ky

ˆkd

K bits

ˆkd

P symbols

a priori

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP

,k k kx y r

Page 23: Reporter :林煜星 Advisor : Prof. Y.M. Huang

23

BCJR1

priori

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(5)

BCJR2

Page 24: Reporter :林煜星 Advisor : Prof. Y.M. Huang

24

MAP Decoder

1( ) P K

k kAPP d d R

Define

1

1

1

( , )

( ) ( )

, , , , 0,1k

k

k k

N

k k k

d

k k k k k k k

m P m R

m P R m

r m m P d m r m d

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(1)

1 1

K

KR r r

0,1kd

Page 25: Reporter :林煜星 Advisor : Prof. Y.M. Huang

25

( 1)( 0)( ) ln k

k

APP dAPP dkd

Logarithm of Likelihood Ratio(LLR)

11

0 0

01

0 0

, ,

, ,ln

M M

k k k km mM M

k k k km m

r m m m m

r m m m m

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(2)

Recall

1

1ln( ) maxn

ii ne e

Page 26: Reporter :林煜星 Advisor : Prof. Y.M. Huang

26

(4,1)

(4,3)10

01

00

11

(5,1)

(5,3)10

01

00

11

(5,2)

10

0 0 1 1( ) MN m 0 0 0m

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(3)

Page 27: Reporter :林煜星 Advisor : Prof. Y.M. Huang

27

(0,0)

(2,3) (3,3)

(5,0)

2 3 3 3 1

3 3,2,3r2

2 1(3 , )P R 3 3 21,3 , 3P r 5

4 33P R

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(4)

( 1) ?kAPP d

Page 28: Reporter :林煜星 Advisor : Prof. Y.M. Huang

28

BCJR1

priori

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(5)

BCJR2

Page 29: Reporter :林煜星 Advisor : Prof. Y.M. Huang

29

11

0 0

01

0 0

, ,

, ,ln

M M

k k k km mM M

k k k km m

r m m m m

kr m m m m

d

k c k kLa L x Le

Pr (1)

0 0)

1

Pr (ln k

k

iP

Pk iLa

22

cL

Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(6)

Page 30: Reporter :林煜星 Advisor : Prof. Y.M. Huang

30

Simulation for BCJR Algorithm

• The end of the transmission occurs when either the maximum bit error number fixed to 1000, or the maximum transmitted bits equal to 10 000 000 is reached.

• Input date into blocks of 4096 bits

Page 31: Reporter :林煜星 Advisor : Prof. Y.M. Huang

31

Simulation for BCJR Algorithm(1)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.5 1 1.5 2 Eb/N0

BER

1NP2NP3NP4NP1P2P3P4P

1NP: 1次 iteration independent sourceNo Use a priori probability

1NP: 1次 iteration independent sourceUse a priori probability

Page 32: Reporter :林煜星 Advisor : Prof. Y.M. Huang

32

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Eb/N0

BER

1NP

2NP

3NP

4NP

1MP

2MP

3MP

4MP

Simulation for BCJR Algorithm(2)1NP:1次 iterationMarkov SourceNo use a proiri probability

1MP:1次 iterationMarkov SourceUse Markvo a prioriprobability

Page 33: Reporter :林煜星 Advisor : Prof. Y.M. Huang

33

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.5 1 1.5 2

Eb/N0

BER

12D22D32D42D13D23D33D43D

Simulation for BCJR Algorithm(3)12D:1次 iterationIndependent SourceUse a priori probabilityBit time(level)、 Convolutionstate

13D:1次 iterationIndependent SourceUse a priori probabilityBit time(level)、 tree stateConvolution state

Page 34: Reporter :林煜星 Advisor : Prof. Y.M. Huang

34

Proposed Methodology

• [4]Catherine Lamy, Lisa Perros-Meilhac

Page 35: Reporter :林煜星 Advisor : Prof. Y.M. Huang

35

Sequential

priori

Transmission Model for Sequential-Sequential Decoding

BCJR2

Page 36: Reporter :林煜星 Advisor : Prof. Y.M. Huang

36

1( ) Pr ......... 0,1N

k k kAPP d d R d

1 1

0 0

ln Pr ln Prpk

K n

k pk k k k kk k

pi c cr c r iy c y

ky 1 : if 0kr

0 : Otherwise

:pkc Code word bits

Transmission Model for Sequential-Sequential Decoding(1)

Page 37: Reporter :林煜星 Advisor : Prof. Y.M. Huang

37(0,0)

0

(0,0)

3

1

(0,0)

(1,1)

1100

y=(10)

|r|=(13)

(1,0)

(0,0)(1,1)

(1,0)

Origin node

Open

y=(00)

|r|=(21)

1

4

(2,1)

1100 (2,0)

(2,1)

(1,1)

(2,0)

(1,0)

(1,0)4

1

(3,1)

1100

y=(11)

|r|=(21)

(3,0)(3,1)

(3,0)(2,0)

(2,0)

Close

4

2

(4,3)

01

10

y=(11)

|r|=(31)

(4,2)

(2,1)

(3,0)

(4,3)

(1,1)

(4,2)

(3,1)

(3,1)(5,0)

y=(00)

|r|=(12)

(5,1)

2

5

00

11

(5,0)

(2,1)

(3,0)

(4,3)

(1,1)

(5,1)

(4,2)(4,2)

Example:r=(-1, 3,2,1,-2,-1,-3,-1,1,2)y=(1,0,0,0,1,1,1,1,0,0)

2

3

4

4

4

5

Transmission Model for Sequential-Sequential Decoding(2)

Page 38: Reporter :林煜星 Advisor : Prof. Y.M. Huang

38

1

1

( 1)( 0)1( ) ln APP d

APP dd

2 3 1

2

2

( 1)( 0)2( ) ln APP d

APP dd

2 4 2

Transmission Model for Sequential-Sequential Decoding(2)

Page 39: Reporter :林煜星 Advisor : Prof. Y.M. Huang

39

Simulation for Sequential Algorithm

1.0E-02

1.0E-01

1.0E+00

0 0.5 1 1.5 2

Eb/N0

BER

3D1

3D2

3D3

3D4

2D1

2D2

2D3

2D4

2D1:1次 iterationIndependent SourceUse a priori probabilityBit time(level)、 Convolutionstate

3D1:1次 iterationIndependent SourceUse a priori probabilityBit time(level)、 Convolutionstate、 tree state

Page 40: Reporter :林煜星 Advisor : Prof. Y.M. Huang

40

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.5 1 1.5 2

Eb/N0

BER

2D1

2D2

2D3

2D4

1NP

1P

Page 41: Reporter :林煜星 Advisor : Prof. Y.M. Huang

41

• Heuristic方法求 Sequential Decoder Soft-Output value運用在 Iterative解碼架構,雖然使錯誤降低,節省運算時間,但解碼效果無法接近 Tubro Decoder的解碼效果,為來將繼續研究更佳的方法求 Sequential Decoder Soft-Output value使解碼效果更逼近 Turbo Decoder的解碼效果

Conclusion