Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

download Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

of 23

Transcript of Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    1/23

    Verona 14-17 Sept., 2009

    Renzo L. RiccaRenzo L. Ricca

    Department of Mathematics & Applications, U.Department of Mathematics & Applications, U. MilanoMilano--BicoccaBicocca, ITALY, ITALY

    E-mail:E-mail: [email protected] URL:URL: http://www.ttp://www.matappatapp.unimibnimib.it/~it/~riccaicca

    Aims

    Theoretical goals:- describe and classify complex morphologies;

    - study possible relationships between energy and complexity;

    - understand and predict energy localization and transfer;

    Applications:- implement new visiometric tools and diagnostics;

    - develop real-time energy analysis of dynamical processes.

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    2/23

    Coherent structures

    Leonardo da Vinci

    (Water studies, 1506)

    Werl, ONERA, 1974

    (Van Dyke, 1982)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    3/23

    Kida et al.

    (Toki-Kyoto, 2002)

    Vorticity localization in classical and quantum fluids

    Miyazaki et al.

    (Physica D, 2009)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    4/23

    Geometric approach to vortex filament motion

    Solitons and integrable vortex dynamics

    Stationary solutions

    Topological properties and fluid invariants

    Localized induction approximation(LIA) and intrinsic kinematics

    Structural complexity analysis of vortex dynamics

    Measures of morphological complexity

    Energy/complexity relations

    Shapefinders and eigenvalue analysis

    Dynamical properties in terms of graph analysis

    Geometry and topology of fluid flows

    T

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    5/23

    Localized induction approximation (LIA)

    homogeneous

    incompressible

    inviscid

    fluid in : in

    as

    u = 0

    u = 0

    X

    u = u X,t( )

    = u

    Space curve , given by:

    Ct

    Ct:

    X(s,t) := Xt(s) C

    s [0,L]R 3

    Intrinsic reference on , given by:(Frenet frame)

    Ct

    t:= X(s,t) = Xs

    Vortex line on :

    Ct

    t

    n

    b

    Ct

    asymptotic theory

    ( )

    no self-intersections

    X(s,t) X

    t X X = cb u

    LIA

    t, n, b{ },

    LIA:

    =0t

    0, = constant

    R / a 1(Da Rios, 1906; Hama & Arms, 1961)

    3 3

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    6/23

    Intrinsic equations under LIA and NLSE

    Intrinsic description: , curvature, torsion;

    under LIA: , , .

    u = (ut,u

    n,u

    b)

    uLIA

    = cb

    ut= u

    n= 0 u

    b= c

    Ct:=

    t(C)

    c = (c ) c

    = c c2c

    + c c

    Da Rios, 1906

    Betchov, 1965

    NLSE via Madelung transform:

    c s ,t ( )

    s,t( )

    s,t( ) = c s,t( ) ei , t( )d

    0

    s

    c

    Da Rios-Betchov eqs. from NLSE:

    by taking log-derivative of

    (Hasimoto, 1972)

    e

    m

    i

    +

    + 12

    2

    =

    0NLSE:

    s,t( )c = fc (s,t)

    = f(s,t)

    Ct:=

    t(C)

    2

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    7/23

    Higher-order LIAs and integrable geometric dynamics

    Higher-order effects:

    : inhomogeneities(Lakshmanan & Ganesan, 1985)

    ,

    : non-linear stretching(Onuki, 1985)

    : axial flow and vorticity(Fukumoto & Miyazaki, 1991)

    u = + s( )cb + + s( )t+ 12c2t+ c n + c b( )

    Higher-order LIAs:

    u0( )= u

    LIA

    (Langer & Perline, 1991) (Nakayama et al., 1992)

    =P unei( ) +Q ubei( )

    Integrable geometric dynamics:

    uj+1( )

    = F=1

    j+1

    u

    0( )

    s

    = R u

    0( )( )

    u = ut,u

    n,u

    b( )

    s = fs t( )

    c = fc (s,t)

    = f(s,t)

    Germano, 1983

    Ricca, 1991Ct :=t(C)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    8/23

    Conserved quantities from integrable dynamics

    Geometric invariants:

    P L( ) = IjLj

    j= 0

    = const.

    (Langer & Perline, 1991; Ricca, 1991)

    Marsden &

    Weistein, 1983

    kinetic energy:

    pseudo-helicity:

    enstrophy:

    linear momentum:

    angular momentum:

    Fukumoto, 1987

    Ricca, 1992

    Physical conserved quantities:

    = const. Arms &Hama, 1965

    ;

    ... ...

    A = X X ds

    I0 = ds

    L = ds

    I1= c

    2ds

    I2= c

    2ds

    I3=

    c4

    4

    c 2 c 22

    ds

    H= u u( ) d3X

    K=1

    2u

    2

    d3X

    E= d3X

    P =1

    2X( ) d3X

    M=1

    3X X( ) d3X

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    9/23

    Structural complexity analysis of 3D vortex tangles

    domain extraction projected diagramanalysis

    experimentor simulation

    Dynamical systems analysis:

    - topological entropy

    - eigenvalue analysis

    Measures of structural complexity:Geometric information:

    - tropicity directions

    - coiling, writhing

    - alignment

    - signed areaTopological information:- minimal crossing number

    - linking numbers

    - topological changes

    Algebraic information:

    - average crossing number

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    10/23

    Energy and helicity of a vortex tangle

    Kinetic energy:

    If , then the kinetic helicity is given by (Moffatt, 1969; Moffatt & Ricca, 1992):

    fromLamb (1932),we have:

    ;

    ,

    with total length of vortex filaments given by .

    E(T) 2

    8ti t

    j

    Xi Xjij dsidsj

    ij

    L(T) = ti

    i

    i

    dsi

    u = 0t

    where Lkij = Lk i ,j( )

    i

    Calugareanu-White invariant

    Gauss linking number

    i-th vortexcirculation

    E(T)

    1

    2u

    T2

    d3 X = u X( )

    T d3X

    H(T) u d3XT

    = Lkii2+ 2 Lkijij

    i j

    i

    Lki= Lk

    i,

    i( ) =Wri + Twi

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    11/23

    Tangle analysis by indented projections

    i

    Let

    i

    i=(T

    i) be the indented projection of the oriented tangleT

    i

    component ; assign the value to each apparent crossing in .i i

    Ti

    writhing:

    average crossing number:

    linking:

    Wr =Wr(T) = rrT

    Cij

    = C(i

    ,j

    ) = rri j

    , ;

    , ;

    ;

    .

    1

    1

    +1

    i

    Wri=Wr(

    i) =

    r

    ri

    Lkij = Lk(i ,j) =1

    2r

    ri j

    i j

    Lktot = LkijrT

    ij

    ,

    C=

    CijrT

    r= 1

    estimated values:

    W r = rrT

    ,

    C = rrT

    T= ii

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    12/23

    A vortex tangle test case (Barenghi, Ricca & Samuels, 2001)

    t = 0

    t = 0.015

    t= 0.050 t= 0.087

    ABC-type flow field super-imposedon initial vorticity distribution

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    13/23

    Vortex tangle test case: energy-complexity relation

    time

    logH

    logC

    logC

    logWr

    logLktot

    log(L /L0)

    mature tangle

    O(165 s1

    )

    O(83 s1)

    C(t) E(t)[ ]2

    log(E /E0)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    14/23

    Energy-complexity relation

    : since

    C=

    1

    4

    Xi Xj( ) ti tjXi Xj

    3 ij ds

    idsjij

    we have

    (E/ E0)

    s

    Xi Xj

    , andCs

    Xi X

    j

    2

    ,

    .C (E / E0 )2

    C(t) E(t)[ ]2

    ;

    hence

    If , , then we have(Ricca, 2008):

    and .H(t) 22C(t)

    d H(t)

    dt 2

    2 dC(t)

    dt

    Lkii = 0 i = i T

    Helicity-complexity bounds

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    15/23

    Tropicity interpretation of eigenvalues

    Eigenvalue analysis: let .1

    2

    3

    From (Vilanova et al., 2006), we have:

    Cf =

    1

    2

    ii

    Cp =

    2 2

    3( )i

    i

    Cs =

    33

    ii

    , , .

    Shapefinders: let

    V = d3XD A = d

    2XD HG = 12 1R

    1

    + 1R

    2

    d2X

    D E = 12 1R1R

    2

    d2XD, , , .

    ThenL =

    HG

    4E

    W =A

    HG

    T =3V

    A

    (Sahni et al., 1998), , ;

    If is convex and , we can defineL W T > 0D

    CF=

    L W

    L +W + T C

    P=

    2(W T)

    L +W + T C

    S=

    3T

    L +W + T

    so that1 L

    2W

    3T, , .

    , , ,

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    16/23

    Interpretation of momenta in terms of projected areas

    Linear momentum:

    Angular momentum:

    Under Euler (and LIA) equations:

    Then (Arms & Hama, 1965; Ricca, 1992):

    ,

    .

    P

    1

    2X d3X

    T =1

    2

    i

    i

    X X ds

    i

    M1

    3X X( ) d3X

    T =1

    3

    i

    i

    X X X( ) ds

    i

    dP

    dt

    = 0

    dM

    dt

    = 0, .

    Pxy= Axy Pyz = Ayz Pzx = Azx

    Mxy = dzAxy Myz = dxAyz Mzx = dyAzx

    , , ;

    , , .

    p(T) : 3 2Plane graph by standard projection

    xy p

    zT( )

    Axy A xy( )xy

    ...

    yz zx

    .. ., , .

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    17/23

    Signed area and weight of projected graphs

    +1

    t

    Rj

    j

    j =kkLk, j

    Lj

    Let and :j = p(j) Rj int j ( )

    j

    j

    p Cauchy index : at eachintersection assign

    and take

    i

    = 1

    .

    I

    j= I

    j

    ( )

    Signed area:

    I

    j= I

    j( ) = i

    j

    Aj ( ) = IjAj(Rj)

    j

    Weighted circulation:

    +1

    1

    12

    0

    Example

    j

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    18/23

    Momenta by signed area interpretation:geometric method(Ricca, 2008)

    : , , ;

    T= ii Let be a vortex tangle. Then, by considering the associatedprincipal projected graphs, we have

    P = Pxy ,Pyz ,Pzx( ) Pxy = jIjAxy Rj( )

    j

    Pyz = ... Pzx = ...

    M = Mxy,Myz,Mzx( ) Mxy = dz jIjAxy Rj( )

    j

    Myz = ... Mzx = ...: , , .

    Examples

    (a) (b)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    19/23

    Vortex analysis by geomertic method

    FollowingAref & Zawadzki (Nature, 1991):

    before after

    :

    weighted areas

    +1

    +1

    +2

    +1

    1

    1 +1

    0

    Zero-area momentum (P= 0) interaction:

    +

    +

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    20/23

    Head-on collision and breakdown of vortex rings (Lim, Nature, 1992)

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    21/23

    Head-on collision of vortex rings (Lim, Nature, 1992):Re=1071

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    22/23

    Head-on collision of vortex rings (Lim, Nature, 1992):Re=1573

  • 8/3/2019 Renzo L. Ricca- Vortex dynamics by geometric and structured complexity analysis

    23/23

    Selected references