renewable energy optimazation

download renewable energy optimazation

of 35

Transcript of renewable energy optimazation

  • 7/27/2019 renewable energy optimazation

    1/35

    Andy Walker PhD PE

    Principal Engineer

    National Renewable Energy Laboratory

    [email protected]

    Acknowledgement: US DOE Federal Energy ManagementProgram

    Renewable Energy Optimization

    mailto:[email protected]:[email protected]
  • 7/27/2019 renewable energy optimazation

    2/35

    2

    Combining Renewable Energy MeasuresPhotovoltaics

    Daylighting

    Biomass Heat/PowerConcentrating Solar

    Heat/PowerSolar Vent Air Preheat

    Solar Water HeatingWind Power

    Ground Source HeatPump

    Landfill Gas

  • 7/27/2019 renewable energy optimazation

    3/35

    3

    "Everything should be made assimple as possible,

    but not simpler."

    Albert Einstein

  • 7/27/2019 renewable energy optimazation

    4/35

    4

    Consider Even One RE Generator

    E from utility (kWh) = E load (kWh) E RE generator(kWh)

    kWh load

    kWh renewables

    kWh from utility

  • 7/27/2019 renewable energy optimazation

    5/35

    5

    Two Dimensions, power and time:E

    from utility(kWh)=P

    load(kW) *{t

    load-t

    re generator}(hours)

    Eto utility(kWh)={Pre generatorPload}(kW)*tregenerator(hours)

    t loadt re gen

    kW load kW renewables

  • 7/27/2019 renewable energy optimazation

    6/35

    6

    Two approaches to integration:

    Time Series: Identify state of system at eachtime step, and step through time series (8,760hours/year) to perform integration.

    Eg. Hourly Simulations: HOMER, SAM, IMBY,PVWatts, etc.

    Polynomial Expansion: Identify states that

    system could be in and calculate percentage oftime system is in that state. Eg. REO. Timeperiod is arbitrary (Hourly, Monthly, Annual)

  • 7/27/2019 renewable energy optimazation

    7/35

    7

    Your choice: An approximate solution to an exact equation or

    An exact solution to an approximate equation.

    There is no right answer, only models. Even the performance of the completed

    project is only a model of the ideal, not theright answer.

    With perfect out of the question, how good isgood enough???

  • 7/27/2019 renewable energy optimazation

    8/35

    8

    Whats wrong with hourly simulation?

    Lack of hourly resource data Often modeled, not measured (183/239 sites in NSRDB) Often not for the specific site High uncertainty in data

    Lack of hourly load data

    Not often recorded Often modeled or stipulated

    Ever-increasing detail of simulation programs Requires detailed design early in evaluation of a project Often run with default values Expensive

    Inaccessible in early planning

  • 7/27/2019 renewable energy optimazation

    9/35

    9

    Wind Energy in vicinity of Fairf ield CA

    Project Site

    Hourly Data Site

  • 7/27/2019 renewable energy optimazation

    10/35

    10

    Hourly vs Monthly Solar Radiation

    Global Solar Radiation for Albuquerque NM, User's Manualfor TMY2s Typical Meteorological Years Derived from the1961-1990 National Solar Radiation Data Base, WilliamMarion and Ken Urban, June 1995

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 6 12 18 24

    H o u r o f D ay

    Standard

    D

    eviation(

    %

    )

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 6 12

    M o n t h o f Y e a r

    Standard

    D

    eviation

    (%

    )

  • 7/27/2019 renewable energy optimazation

    11/35

    11

    HOMERHourlyLoad

    Inputs

  • 7/27/2019 renewable energy optimazation

    12/35

    12

    Integration of Renewables by methodof Polynomial Expansion or Mind

    your Ps and Qs

    P=the fraction of time the system is in a certainstate

    Any number of technologiesAny number of states per technology

    States that RE generator may be in:(p+q+r+s+.)=1

    States that Load may be in:

    (l+m+n+.)=1

  • 7/27/2019 renewable energy optimazation

    13/35

    13

    020000

    40000

    60000

    80000

    100000

    120000

    0 2000 4000 6000 8000

    Hours

    ACPower(W)

    ON 66 kW for 3063 hours

    OFF 0 kW for 5696 hou

    Hourly from PVWatts for 100 kW, 1-axis tracking, Boulder CO

    Consider two states (p=fraction time on, q=fraction time off) over time period T(p + q) = 1For seven RE generators:1*1*1*1*1*1*1=1(p1+q1)*(p2+q2)*(p3+q3)*(p4+q4)*(p5+q5)*(p6+q6)*(p7+q7)=1

  • 7/27/2019 renewable energy optimazation

    14/35

    14

    (p7*p6*p5*p4*p3*p2*p1)+(p7*p6*p5*p4*p3*p2*q1)+(p7*p6*p5*p4*p3*q2*p1)+(p7*p6*p5*p4*p3*q2*q1)+(p7*p6*p5*p4*q3*p2*p1)+(p7*p6*p5*p4*q3*p2*q1)+(p7*p6*p5*p4*q3*q2*p1)+(p7*p6*p5*p4*q3*q2*q1)+(p7*p6*p5*q4*p3*p2*p1)+(p7*p6*p5*q4*p3*p2*q1)+(p7*p6*p5*q4*p3*q2*p1)+(p7*p6*p5*q4*p3*q2*q1)+(p7*p6*p5*q4*q3*p2*p1)+(p7*p6*p5*q4*q3*p2*q1)+(p7*p6*p5*q4*q3*q2*p1)+(p7*p6*p5*q4*q3*q2*q1)+(p7*p6*q5*p4*p3*p2*p1)+(p7*p6*q5*p4*p3*p2*q1)+(p7*p6*q5*p4*p3*

    q2*p1)+(p7*p6*q5*p4*p3*q2*q1)+(p7*p6*q5*p4*q3*p2*p1)+(p7*p6*q5*p4*q3*p2*q1)+(p7*p6*q5*p4*q3*q2*p1)+(p7*p6*q5*p4*q3*q2*q1)+(p7*p6*q5*q4*p3*p2*p1)+(p7*p6*q5*q4*p3*p2*q1)+(p7*p6*q5*q4*p3*q2*p1)+(p7*p6*q5*q4*p3*q2*q1)+(p7*p6*q5*q4*q3*p2*p1)+(p7*p6*q5*q4*q3*p2*q1)+(p7*p6*q5*q4*q3*q2*p1)+(p7*p6*q5*q4*q3*q2*q1)+(p7*q6*p5*p4*p3*p2*p1)+(p7*q6*p5*p4*p3*p2*q1)+(p7*q6*p5*p4*p3*q2*p1)+(p7*q6*p5*p4*p3*q2*q1)+(p7*q6*p5*p4*q3*p2*p1)+(p7*q6*p5*p4*q3*p2*q1)+(p7*q6*p5*p4*q3*q2*p1)+(p7*q6*p5*p4*q3*q2*q1)+(p7*q6*p5*q4*p3*p2*p1)+(p7*q6*p5*q4*p3*p2*q1)+(p7*q6*p5*q4*p3*q2*p1)+(p7*q6*p5*q4*p3*q2*q1)+(p7*q6*p5*q4*q3*p2*p1)+(p7*q6*p5*q4*q3*p2*q1)+(p7*q6*p5*q4*q3*q2*p1)+(p7*q6*p5*q4*q3*q2*q1)+(p7*q6*q5*p4*p3*p2*p1)+(p7*q6*q5*p4*p3*p2*q1)+(p7*q6*q5*p4*p3*q2*p1)+(p7*q6*q5*p4*p3*q2*q1)+(p7*q6*q5*p4*q3*p2*p1)+(p7*q6*q5*p4*q3*p2*q1)+(p7*q6*q5*p4*q3*q2*p1)+(p7*q6*q5*p4*q3*q2*q1)+(p7*q6*q5*q4*p3*p2*p1)+(p7*q6*q5*q4*p3*p2*q1)+(p7*q6*q5*q4*p3*q2*p1)+(p7*q6*q5*q4*p3*q2*q1)+(p7*q6*q5*q4*q3*p2*p1)+(p7*q6*q5*q4*q3*p2*q1)+(p7*q6*q5*q4*q3*q2*p1)+(p7*q6*q5*q4*q3*q2*q1)+(q7*p6*p5*p4*p3*p2*p1)+(q7*p6*p5*p4*p3*p2*q1)+(q7*p6*p5*p4*p3*q2*p1)+(q7*p6*p5*p4*p3*q2*q1)+(q7*p6*p5*p4*q3*p2*p1)+(q7*p6*p5*p4*q3*p2*q1)+(q7*p6*p5*p4*q3*q2*p1)+(q7*p6*p5*p4*q3*q2*q1)+(q7*p6*p5*q4*p3*p2*p1)+(q7*p6*p5*q4*p3*p2*q1)+(q7*p6*p5*q4*p3*q2*p1)+(q7*p6*p5*q4*p3*q2*q1)+(q7*p6*p5*q4*q3*p2*p1)+(q7*p6*p5*q4*q3*p2*q1)+(q7*p6*p5*q4*q3*q2*p1)+(q7*p6*p5*q4*q3*q2*q1)+(q7*p6*q5*p4*p3*p2*p1)+(q7*p6*q5*p4*p3*p2*q1)+(q7*p6*q5*p4*p3*q2*p1)+(q7*p6*q5*p4*p3*q2*q1)+(q7*p6*q5*p4*q3*p2*p1)+(q7*p6*q5*p4*q3*p2*q1)+(q7*p6*q5*p4*q3*q2*p1)+(q7*p6*q5*p4*q3*q2*q1)+(q7*p6*q5*q4*p3*p2*p1)+(q7*p6*q5*q4*p3*p2*q1)+(q7*p6*q5*q4*p3*q2*p1)+(q7*p6*q5*q4*p3*q2*q1)+(q7*p6*q5*q4*q3*p2*p1)+(q7*p6*q5*q4*q3*p2*q1)+(q7*p6*q5*q4*q3*q2*p1)+(q7*p6*q5*q4*q3*q2*q1)+(q7*q6*p5*p4*p3*p2*p1)+(q

    7*q6*p5*p4*p3*p2*q1)+(q7*q6*p5*p4*p3*q2*p1)+(q7*q6*p5*p4*p3*q2*q1)+(q7*q6*p5*p4*q3*p2*p1)+(q7*q6*p5*p4*q3*p2*q1)+(q7*q6*p5*p4*q3*q2*p1)+(q7*q6*p5*p4*q3*q2*q1)+(q7*q6*p5*q4*p3*p2*p1)+(q7*q6*p5*q4*p3*p2*q1)+(q7*q6*p5*q4*p3*q2*p1)+(q7*q6*p5*q4*p3*q2*q1)+(q7*q6*p5*q4*q3*p2*p1)+(q7*q6*p5*q4*q3*p2*q1)+(q7*q6*p5*q4*q3*q2*p1)+(q7*q6*p5*q4*q3*q2*q1)+(q7*q6*q5*p4*p3*p2*p1)+(q7*q6*q5*p4*p3*p2*q1)+(q7*q6*q5*p4*p3*q2*p1)+(q7*q6*q5*p4*p3*q2*q1)+(q7*q6*q5*p4*q3*p2*p1)+(q7*q6*q5*p4*q3*p2*q1)+(q7*q6*q5*p4*q3*q2*p1)+(q7*q6*q5*p4*q3*q2*q1)+(q7*q6*q5*q4*p3*p2*p1)+(q7*q6*q5*q4*p3*p2*q1)+(q7*q6*q5*q4*p3*q2*p1)+(q7*q6*q5*q4*p3*q2*q1)+(q7*q6*q5*q4*q3*p2*p1)+(q7*q6*q5*q4*q3*p2*q1)+(q7*q6*q5*q4*q3*q2*p1)+(q7*q6*q5*q4*q3*q2*q1) =1

  • 7/27/2019 renewable energy optimazation

    15/35

    15

    Stochastic Integration of Renewable Energy Technologies by themethod of Polynomial Expansion (SIRET)

    This simplified figure shows seven possible states the system could be in,but the model actually has 128 states for seven technologies.

    100%

  • 7/27/2019 renewable energy optimazation

    16/35

    16

    What is the best integration period?

    Pros Cons

    Annual

    (year/1)

    Resource and Load dataavailable.

    No seasonal or diurnalvariation

    Hourly

    (Year/8760)

    Seasonal and DiurnalVariation

    Resource and Load variableand/or unavailable

    Monthly

    (Year/12)

    Seasonal variation

    Load from Utility Bills

    Resource more certain

    No diurnal variation

    Monthly Day/Night

    (Year/24)

    Load information available

    Resource more certain

    Seasonal Variation

    Diurnal Variation

    Utility bill may not tabulateby time-of-use.

  • 7/27/2019 renewable energy optimazation

    17/35

    17

    Best Mix of Renewable Energy

    Technologies Depends on: Renewable Energy Resources

    Technology Characterization Cost ($/kW installed, O&M Cost)

    Performance (efficiency)

    Economic Parameters Discount rates

    Fuel Escalation Rates

    State, Utility and Federal Incentives

    Mandates (Executive Order, Legislation)

  • 7/27/2019 renewable energy optimazation

    18/35

    18

    Technology Characteristics

    Heuristic ModelsCost

    (Size, m2)*(Unit Cost, $/m2)

    Performance

    (Size, m2)*(Resource, kWh/m2)*(efficiency)

  • 7/27/2019 renewable energy optimazation

    19/35

    19

    Comparison of TEAM REO and Site Visi t Reports for DOE Sites

  • 7/27/2019 renewable energy optimazation

    20/35

    20

    Optimization Procedure

    Site Data

    Geographical Information System (GIS) Data

    Incentive Data from DSIREUSA.ORG

    PV SVPWind DaylightingSWH CSP Biomass

    Dispatch AlgorithmDispatch Algorithm

    Life Cycle CostLife Cycle Cost

    Technology Characteristics.

    OptimizationOptimization

  • 7/27/2019 renewable energy optimazation

    21/35

    21

    Optimization Problem

    Determine the least cost

    combination of renewable

    energy technologies for a

    facility

    Objective: Minimize Life CycleCost ($)

    Variables: Size of EachTechnology (kW of PV, kW ofwind, etc)

    Constraints: such as 15% ofenergy from renewables

  • 7/27/2019 renewable energy optimazation

    22/35

    22

    $10,000

    $100,000

    $1,000,000

    $10,000,000

    $10,000 $100,000 $1,000,000 $10,000,000

    Hourly Simulation REOCO Commercial $655,076 $614,862CO Industrial $5,158,624 $5,870,856CO Residential $62,117 $49,463WA Commercial $460,039 $568,455

    WA Industrial $3,149,595 $4,533,277WA Residential $53,587 $62,304

    AZ Commercial $555,003 $522,448AZ Industrial $4,469,720 $4,891,129AZ Residential $53,567 $41,256

    Compare/Contrast with Hourly

    Simulation

    Comparison of Annual Average and Hourly Simu lation in Renewable Energy Technology System SizingChristine L. Lee, University of Colorado at Boulder, 2009

    REO

    Simulation

    Life Cycle Cost ($)

  • 7/27/2019 renewable energy optimazation

    23/35

    23

    Compare/Contrast with Hourly

    Simulation

    Hourly Simulation REO % Difference

    PV Energy, kWh 705,725 740,583 4.9%

    Wind Energy, kWh 324,069 291,283 -10.1%Energy from Utility, kWh 1,169,264 1,407,744 20.4%Energy to Utility, kWh 139,478 380,030 172.5%Life Cycle Cost, $ $5,158,624 $5,870,856 13.8%

    Percent Renewables 50% 41.80% -16.4%

    Comparison of Annual Average and Hourly Simu lation in Renewable Energy Technology System SizingChristine L. Lee, University of Colorado at Boulder, 2009

    Industrial Load Profile; Colorado Climate; 2,059,580 kWh/year load;464 kW PV; 493 kW Wind

  • 7/27/2019 renewable energy optimazation

    24/35

    24

    Examples of Renewable Energy

    Optimization (REO) Analysis Town of Greensburg, KS Frito Lay North America plants (7) National Zoo, DC Anheuser Busch facilities (62) High School in Sun Valley, ID

    San Nicolas Island, CA DOE Waste Isolation Pilot Plant, NM DOE Savannah River Plant SC Agricultural Research Stations in TX (8) DOE Laboratories (31) Air Force Bases (85) GSA Land Ports of Entry (121) DHS Land Ports of Entry (32) USCG Bases (3) Presidio of San Francisco Others.

  • 7/27/2019 renewable energy optimazation

    25/35

    25

    Results of Renewable Energy Optimization:Technology Sizes

    PhotovoltaicsSize (kW)

    WindCapacity(kW)

    Solar VentPreheatArea (ft2)

    SolarWaterHeatingArea (ft2)

    SolarThermalArea (ft2)

    SolarThermalElectric(kW)

    Biomass BoilerSize (M Btu/h)

    BiomassCogenerationSize (kW)

    DaylightingOffice UtilitySkylight/FloorArea Ratio

    DaylightingWarehouseSkylight/FloorArea Ratio

    10 0 15258 29,179 0 0 0 0 3.968% 3.036%0 957 0 0 0.00 0.00 1.34 101 0.000% 0.000%

    Example: Town of Greensburg KS

    BuildingsCentral Plant

  • 7/27/2019 renewable energy optimazation

    26/35

    26

    Annual Energy from Each Technology

    (with Basecase)

    0

    20000

    40000

    60000

    80000

    100000

    120000

    Base

    case

    RE

    Case

    An

    nualEnergy(Mbtu)

    Electric (Mbtu) Natural Gas (Mbtu) Other Fuel (Mbtu)

    Photovoltaics (Mbtu) Wind (Mbtu) Solar Vent Preheat (Mbtu)

    Solar Water Heating Solar Themal (Mbtu) Biomass (Mbtu)

    Daylighting (Mbtu)

    Example: Town of Greensburg KS

  • 7/27/2019 renewable energy optimazation

    27/35

    27

    Wind Energy

    Build ing Name Wind Capaci ty (kW)

    Wind Annual

    EnergyDelivery

    (kWh/year)

    Capacity

    Factor (%)

    WindAnnual Cost

    Savings ($)

    Wind

    AnnualO&M Cost

    ($/year)

    Wind

    PaybackPeriod

    (years)Central Plant 957 2,533,894 30.23% $276,194 $7,560 7.0

  • 7/27/2019 renewable energy optimazation

    28/35

    28

    Example: Frito Lay North AmericaMinimum Life Cycle Cost (no constraints)

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    Plant#

    1Basecase

    Plant#

    1RE

    Case

    Plant#

    2Basecase

    Plant

    #2RE

    Case

    Plant#

    3Ba

    secase

    Plant

    #3RE

    Case

    Plant#

    4BaseC

    ase

    Plant#

    4RE

    Case

    Plant$

    5Ba

    secase

    Plant

    #5RE

    Case

    Plant

    #6Basecas

    e

    Plant

    #6RE

    Case

    Plant#

    7Ba

    secase

    Plant

    #7RE

    Case

    AnnualEnergy(Mbtu)

    Electric (Mbtu) Natural Gas (Mbtu) Other Fuel (Mbtu)

    Photovoltaics (Mbtu) Wind (Mbtu) Solar Vent Preheat (Mbtu)

    Solar Themal (Mbtu) Biomass (Mbtu) Daylighting (Mbtu)

  • 7/27/2019 renewable energy optimazation

    29/35

    29

    Frito Lay North AmericaSolar Thermal at Sunchips Plant

    Modesto CA

  • 7/27/2019 renewable energy optimazation

    30/35

    30

    Example: Frito Lay North AmericaMinimum Life Cycle Cost (Net Zero constraint)

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    Plant

    #1Ba

    secase

    Plant

    #1Net

    Zero

    Plant

    #2Ba

    secase

    Plant

    #2Net

    Zero

    Plant

    #3Basecase

    Plant

    #3Net

    Zero

    Plant

    #4BaseC

    ase

    Plant

    #4Net

    Zero

    Plant

    #5Basecase

    Plant#

    5Net

    Zero

    Plant

    #6Ba

    secase

    Plant#

    6Net

    Zero

    Plant#

    7

    Plant

    #7Net

    Zero

    AnnualEnergy(Mbtu)

    Electric (Mbtu) Natural Gas (Mbtu) Other Fuel (Mbtu)

    Photovoltaics (Mbtu) Wind (Mbtu) Solar Vent Preheat (Mbtu)

    Solar Themal (Mbtu) Biomass (Mbtu) Daylighting (Mbtu)

  • 7/27/2019 renewable energy optimazation

    31/35

    31

    Example: Frito Lay Optimization

    for Seven Manufacturing PlantsConstraint: Net Zero

    Photovoltaics

    Size (kW)

    Wind

    Capacity

    (kW)

    Solar Vent

    Preheat

    Area (ft 2)

    Solar

    Thermal

    Area (f t2)

    Biomass

    Boiler Size

    (M Btu/h)

    Biomass

    Cogeneration

    Size (kW)

    Daylighting

    Office Utility

    Skylight/Floor

    Area Ratio

    Daylighting

    Warehouse

    Skylight/Floor

    Area RatioPlant #1 200 491 5456 509196 19 1669 2.2% 2.1%

    Plant #2 0 6187 8953 391987 87 3097 3.8% 2.0%

    Plant #3 0 3107 13098 469621 44 3180 4.9% 3.6%

    Plant #4 1011 1000 10213 1360535 78 4108 3.4% 1.8%

    Plant #5 1003 998 10327 704140 44 3327 6.1% 3.4%

    Plant #6 0 0 10322 1529609 74 6020 err err

    Plant #7 0 3699 10802 673761 43 2193 3.3% 3.7%

  • 7/27/2019 renewable energy optimazation

    32/35

    32

  • 7/27/2019 renewable energy optimazation

    33/35

    33

    REO Example: Net Zero ZooNational Zoological Park (NZP) and Conservation Research Center

    (CRC), Washington DC

    -40000

    -20000

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    Base

    case

    RECase

    AnnualEnergy(M

    btu)

    Daylighting (Mbtu)

    Biomass (Mbtu)

    Solar Themal (Mbtu)

    Solar Water Heating

    Solar Vent Preheat (Mbtu)

    Wind (Mbtu)

    Photovoltaics (Mbtu)

    Other Fuel (Mbtu)

    Natural Gas (Mbtu)

    Electric (Mbtu)

    Electric

    generation

    at CRC

    Cancels

    remaining

    gas use at

    NZP

    Zoo EntranceTai Shan the Panda

  • 7/27/2019 renewable energy optimazation

    34/35

    34

    Initial Cost for Renewable Energy Projects ($) $269,634,839Annual Electric Savings (kWh/year) 217,734,776

    Annual Gas/Fuel Savings (therms/year) 8,693,565

    Annual Cost Savings ($/year) $26,241,533

    Simple Payback Period (years) 10.3Rate of Return 11.3%

    Sizes of Each Technology:Photovoltaics (kW) 0Wind Energy (kW) 41714Solar Ventilation Air Preheat (sf) 460988

    Solar Water Heating (sf) 1274264Solar Thermal Parabolic Trough (sf) 452991

    Solar Thermal Electric (kW) 0Biomass Gasification Boiler (MBH) 51Biomass Gasification Cogen (kW) 139

    Biomass Anaerobic Digester r (Ft3)) 0Biomass Anaerobic Digester Cogen (kW) 0

    Skylight Area (sf) 2602033

    31 DOESites

    050000

    100000150000

    200000250000300000350000400000

    AmesLaborat

    ory

    Argonn

    eNatio

    nalLaboratorySiteD

    BrookhavenNationalLaboratory

    FermiN

    ationalA

    ccelerat

    orLaboratory

    Forre

    stalH

    eadquarters

    Germ

    antow

    n

    IdahoN

    ation

    alLa

    boratory -I

    daho

    Falls

    IdahoNationa

    lLaboratory

    -Scoville

    Knolls

    Atomic -

    Kesserling

    KnollsAtom

    ic -Niskayuna

    LasVegas

    NV/L

    V

    Lawrence

    Berkele

    yNationalLaborat

    ory

    ...LawrenceLiverm

    oreNationalLabora

    LosAlamo

    sNationalLaboratory

    NETL

    Albany

    NETL

    Morgantown

    Nevada

    TestSite

    OakRidg

    eNation

    alLabO

    ffice

    (Oak

    Ridg

    eNati

    onalLaboratory (X

    -10

    PacificNorthwes

    tNationalLaboratory

    PaducahG

    aseous

    PantexSiteOffice

    Princ

    etonPlasm

    aPhysicsLaboratory

    Richlan

    dOperatio

    nsOffic

    e -Hanford1

    SandiaN

    ationalLaboratoryCA

    SandiaNa

    tionalLaboratoryNM

    SandiaN

    ation

    alLaboratoryNV

    Savannah

    River

    StanfordLine

    arAcceleratorCenter

    ..Thoma

    sJefferso

    nNationalAc

    celerat

    WasteIsolation

    PilotPlant

    Y-12

    AnnualEn

    ergy(Mbtu)

    Wind (Mbtu) Solar Vent Preheat (Mbtu) Solar Water Heating

    Solar Thermal (Mbtu) Biomass Gasifier (Mbtu) Anaerobic Digester (Mbtu)

    Daylighting (Mbtu) Photovoltaics (Mbtu)

  • 7/27/2019 renewable energy optimazation

    35/35

    35

    It's so much easier tosuggest solutions

    when you don't knowtoo much about the

    problem.

    - Malcolm Forbes

    Thank You!

    Andy WalkerSenior Engineer

    National Renewable Energy [email protected]

    Simplicity is quiteoften the mark ofexcellence-Allen Bennett, SMDC

    mailto:[email protected]:[email protected]