Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a...

31
Removal of Cu(II) ions from Removal of Cu(II) ions from aqueous solution effluent aqueous solution effluent using Melamine-Formaldehyde- using Melamine-Formaldehyde- DTPA resin in a fixed-bed up- DTPA resin in a fixed-bed up- flow column flow column By Ahmad Baraka Supervisors Prof. Peter Hall Dr. Mark Heslop Department of Chemical & Process Department of Chemical & Process Engineering Engineering

Transcript of Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a...

Page 1: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Removal of Cu(II) ions from Removal of Cu(II) ions from aqueous solution effluent using aqueous solution effluent using Melamine-Formaldehyde-DTPA Melamine-Formaldehyde-DTPA

resin in a fixed-bed up-flow resin in a fixed-bed up-flow columncolumn

By

Ahmad Baraka

Supervisors

Prof. Peter Hall

Dr. Mark Heslop

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 2: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

The problemThe problemSources of pollution (Mining-industrial Sources of pollution (Mining-industrial

activities- agricultural runoff, etc...)activities- agricultural runoff, etc...)

Discharging heavy metals into water bodiesDischarging heavy metals into water bodies

Non-degradableNon-degradable

Accumulation of toxic heavy metals Accumulation of toxic heavy metals (World wide problem)(World wide problem)

Some famous heavy metals present in different wastewaters: Chromium, Lead, Copper, Zinc, Cadmium, Nickel, Iron, Cobalt, Mercury, Silver, Aluminium, …..

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 3: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

How to solve the How to solve the problem?problem?The main methods for heavy metals The main methods for heavy metals

removalremoval

► Chemical precipitation (hydroxides and carbonates) Chemical precipitation (hydroxides and carbonates) ► Solvent extraction (liquid / liquid extraction)Solvent extraction (liquid / liquid extraction)► Ion ExchangeIon Exchange► Electrochemical method (Electrodialysis – Electrochemical method (Electrodialysis –

Electrochemical Electrochemical ion exchange (EIX)ion exchange (EIX)► Reverse osmosis (Membrane separation) Reverse osmosis (Membrane separation) ► ADSORPTIONADSORPTION (liquid / solid extraction)(liquid / solid extraction)

- Active carbon, fly ash, etc.. - Active carbon, fly ash, etc.. - - biomaterials (e.g. wastes of agricultural biomaterials (e.g. wastes of agricultural

origin)origin)- inorganic resins- inorganic resins- - organic resinsorganic resins

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 4: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

AdsorptionAdsorptionAdsorption is an attractive technology for

treatment of wastewater for retaining heavy metals from dilute solutions.

Adsorption (liquid/solid extraction):Adsorption (liquid/solid extraction): - physical adsorption (weak forces)- physical adsorption (weak forces)

- chemical adsorption (chemical bond)- chemical adsorption (chemical bond)

- surface micro-precipitation adsorption- surface micro-precipitation adsorption

- coordination adsorption (ligands or - coordination adsorption (ligands or chelates chelates and depend on O,N,S,P and depend on O,N,S,P donor atoms)donor atoms)

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 5: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Aim of the projectAim of the project

► SynthesisSynthesis and and characterizationcharacterization of a new of a new organic resin (MF-DTPA) .organic resin (MF-DTPA) .

► Studying adsorption performance of MF-Studying adsorption performance of MF-DTPA towards some heavy metals (Cu, Co, DTPA towards some heavy metals (Cu, Co, Cd, and Zn) through Cd, and Zn) through thermodynamicsthermodynamics, , kineticskinetics, and , and isothermisotherm. (batch study). (batch study)

► Estimate the adsorption mechanisms.Estimate the adsorption mechanisms.

Examine the new adsorbent under continuous mode (column study) considering Cu(II) ion

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 6: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Why MF resin?Why MF resin? (Advantages)(Advantages)

► Availability of main precursors (Melamine and Availability of main precursors (Melamine and Formaldehyde) with low price.Formaldehyde) with low price.

► Production of Monolithic, granules, fine powder Production of Monolithic, granules, fine powder products.products.

► Controllable porosity (pH, Temp., solvent type, Controllable porosity (pH, Temp., solvent type, solvent content).solvent content).

► Good mechanical hardness.Good mechanical hardness.► Chemical and thermal stability.Chemical and thermal stability.► Ability to functionalize with differentAbility to functionalize with different

polyaminepolycarboxilic acids (e.g. DTPA, NTA, polyaminepolycarboxilic acids (e.g. DTPA, NTA, CDTA, etc…)CDTA, etc…)

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

DTPACH2

N

CH2

CH2

CH2

N

CH2CH2

CH2

N

CH2

CH2

CO

OH

C

O

OH

COOH

C

O

OH

C

O

OH

Page 7: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

NH2

N

N

N

NH2NH2

H H

OH

+

OHNHNH

NH2

N

N

N

MATRIX

H+

CH2

NH2

NH

N

N

N

N

MATRIX

(A)

(B)

(A)

+

(A)

Methylene bridge

Ether bridge

(B) +NH2

NH2

NH2

N

N

N

NH

NHNH

N

N

N

NH NH

NH2

N

N

N

MATRIX

MATRIX

MATRIX

(D)

(E)

(D)

DTPA

NH NH2

NH NH

N

N

NN

N

N

MATRIX

NH NH

MATRIX

MATRIX

NHNH

NH NH2

NH

N

N

N

NH

N

N

N

O

MATRIX

MATRIX

MATRIX

NN

N

O

OH

O

OH

O

OH

O

O

OHNH

NH NH

NN

N

MATRIX

MATRIX

Melamine

Methylol

Imine

Aminal

MF-DTPA

+

OH OHNH

NH

N

N

N NH

NH

NH2

NH N

N

N

MATRIX

MATRIX

MATRIX

H+

(C)

and / or and / or(C) (D) (E)

Formaldehyde

+

(A)

NH2

N

N

N

NH2NH2

Chemistry of preparation (MF-DTPA) resin

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

MF

matr

ix

form

ati

on

DTPA

an

chori

ng

(am

ide b

ond)

Page 8: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Chelating site

Resin

matrix

Proposed structure MF-DTPA resin

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 9: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

IR spectra of MF and MF-DTPA

MF

MF-DTPA

C=

O

O-

H

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 10: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0 50 100 150 200 250

PPM

C13-NMR of MF and MF-DTPA

MF-DTPA

MF

Page 11: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

-400 -300 -200 -100 0

ppm

N15-NMR of MF and MF-DTPA

MF-DTPA

MF

Page 12: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

ResinResin CC : : HH : : N N : : OO

MF-DTPAMF-DTPA 35.7 : 5.2 : 37.7 : 21.635.7 : 5.2 : 37.7 : 21.6

MFMF 31.7 : 5.5 : 40.4 : 22.331.7 : 5.5 : 40.4 : 22.3

From elemental analysis results, 36.7% of the resin mass is DTPA (around 0.93 mmole per gram of solid resin).

Elemental analysis

About 93.3 mmole DTPA per gram MF-DTPA resin

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 13: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Relative Pressure (P/Po)

Volu

me A

dsorb

ed (

cm

3/g

)

Des

orpt

ion

Ads

orpt

ion

BET BET Surface Surface

Area, mArea, m22/g/g

Micropore Micropore Area, mArea, m22/g/g

BJH Adsorption BJH Adsorption cumulative pore cumulative pore volume., cmvolume., cm33 /g /g

Average Average pore pore

diameter, diameter, ÅÅ

161.863161.863 0.3310.331 0.39650.3965 94.7094.70

N2 gas adsorption-desorption (BET)

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 14: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

SEM Image of MF-DTPA resin

MF-DTPA aggregates

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 15: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Cu(II) adsorptionCu(II) adsorption (continuous (continuous

mode)mode)

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 16: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Peristaltic Pump

Influent tank Effluent

tank

Packed column

Sampling valve

Experimental removal set

( fixed-bed up-flow column)( fixed-bed up-flow column)

flow

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 17: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Suggested removal Suggested removal mechanismmechanism(chelation)(chelation)

Cu(II)

Cu(II) coordination with DTPA part

Resin body resin active part

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 18: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Effect of bed height 5 7 9 cm

Effect of influent concentration 20 30 40 ppm

Effect of influent flow rate 3.2 5.5 8.1 ml/min

Parameters to discussD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ng

Page 19: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600

time (min.)

Ct/C

o

5 cm

7 cm

9 cm

Effect of bed height

10%

Flow rate=5.5 ml/min

C (initial)= 30 ppm

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 20: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600time (min)

Ct/C

o20 ppm

30 ppm

40 ppm

Effect of influent concentration

Flow rate=5.5 ml/min

Bed height = 7 cm

10%

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 21: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800

time (min)

Ct/C

o

3.2 ml/min 5.5 ml/min 8.1 ml/min

Effect of influent flow rate

10%

Flow rate=5.5 ml/min

C (initial)= 30 ppmDep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 22: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

Experimental results of up-flow column adsorption considering bed height, influent concentration and influent flow rate

[[ZZ(cm)(cm) ,,CC○○ (mg l (mg l-1-1)) , , υυ (ml min (ml min-1-1)])]VVeffeff

(ml)(ml)TTbb

(min)(min)qqmm

(mg g(mg g-1-1))

[5, 30, 5.5][5, 30, 5.5] 10721072 195195 27.6227.62

[7, 30, 5.5][7, 30, 5.5] 17881788 320320 32.2632.26

[9, 30, 5.5][9, 30, 5.5] 25302530 460460 33.4333.43

[7, 20, 5.5][7, 20, 5.5] 24752475 450450 29.229.2

[7, 40, 5.5][7, 40, 5.5] 14031403 255255 33.3133.31

[7, 30, 3.2][7, 30, 3.2] 22122212 660660 48.4948.49

[7, 30, 8.1][7, 30, 8.1] 12961296 160160 19.2519.25

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 23: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

The data collected in continuous mode studies was used to determine the kinetic parameters using the Thomas model which is widely used for column studies.

The Thomas model has the following expression;

Thomas model (Kinetics)

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 24: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

-4

-3

-2-1

0

1

23

4

5

100 300 500

time (min)

ln(C

o/C

t - 1

)

Z= 5 cm

Z= 7 cm

Z= 9 cm

-4

-3

-2

-1

0

1

2

3

4

100 300 500

time (min)

ln(C

o/C

t-1)

20 ppm

30 ppm

40 ppm

-4

-3

-2

-1

0

1

2

3

4

0 200 400 600 800

time (min)

ln(C

o/C

t-1)

3.2 ml/min

5.5 ml/min

8.1 ml/min

Parameters predicted from Thomas model considering bed height, influent concentration and influent flow rate

[[ZZ(cm)(cm) ,,CC○○

(mg l(mg l-1-1)) , , υυ (ml min (ml min-1-1)])]

kkThTh (l mg (l mg-1-1

minmin-1-1))

QQ (mg g(mg g--

11))RR22

[5, 30, 5.5][5, 30, 5.5]1.17 × 101.17 × 10-3-3 21.9721.97

0.9740.97488

[7, 30, 5.5][7, 30, 5.5]1.21 × 101.21 × 10-3-3 32.3032.30

0.9760.97666

[9, 30, 5.5][9, 30, 5.5]1.25 × 101.25 × 10-3-3 43.7543.75

0.9800.98000

[7, 20, 5.5][7, 20, 5.5]1.50 × 101.50 × 10-3-3 29.6929.69

0.9590.95933

[7, 40, 5.5][7, 40, 5.5]1.32 × 101.32 × 10-3-3 33.1633.16

0.9700.97022

[7, 30, 3.2][7, 30, 3.2]9.13 × 109.13 × 10-4-4 36.5536.55

0.9920.99233

[7, 30, 8.1][7, 30, 8.1]1.42 × 101.42 × 10-3-3 26.1326.13

0.9840.98477

height

concentration

Flow rate

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 25: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

BDST modelBDST model((BBed ed DDepth epth SService ervice TTime)ime)

Minutes

cm

BDST constants:

N○ = 7232 mg/ml (25.8 mg per gram of solid resin)

kad = 4.91×10-4 l mg-1 min-1

Z○ = 2.2 cm.

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 26: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

BDST model analysis

0

100

200

300

400

500

600

4 5 6 7 8 9 10

Bed height (cm)

Ser

vice

tim

e (m

in.)

0.033

0.1

0.5

0.9

The BDST equations of these lines are as follows:Ts = 62.5 Z – 144.17 for Ct/C○ = 0.033

(R2=0.9995)Ts = 67.5 Z – 149.17 for Ct/C○ = 0.1

(R2=0.9995)Ts = 66.3 Z – 65.417 for Ct/C○ = 0.5

(R2=0.9999)Ts = 63.8 Z – 1.25 for Ct/C○ = 0.9

(R2=0.9988)

BDST plots at Ct/C○ = 0.033, 0.1, 0.5 and 0.9.

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 27: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

2.2 cm

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 28: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

BDST model fitting with influent concentration condition and influent flow

rate condition

[[ZZ(cm)(cm) ,,CC○○ (mg l (mg l-1-1)) , , υυ (ml min (ml min-1-1)])]Experimental Experimental service time service time

(min)(min)

BDST BDST model model

time,time, T TSS

(min)(min)

[7, 20, 5.5][7, 20, 5.5] 450450 485485

[7, 30, 5.5][7, 30, 5.5] 320320 324324

[7, 40, 5.5][7, 40, 5.5] 252252 243243

[7, 30, 3.2][7, 30, 3.2] 660660 663663

[7, 30, 8.1][7, 30, 8.1] 160160 172172

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 29: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

0

10

20

30

40

50

60

0 50 100 150 200 250

time (min)

C (

mg g-1)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500time (min)

Ct/C

o

First adsorption process

Second adsorptionprocess

Regeneration and re-adsorption

EDTA (0.01 M)

9 bed volumes

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring Regeneration efficiency 84% (Ct/Co=1)

Capacity decreased by 20% (Ct/Co=1)

due to Hydrolysis

Page 30: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

ConclusionsConclusions► Instrumental analysis (IR, NMR, Elemental Instrumental analysis (IR, NMR, Elemental

analysis, BET, SEM) gave proof for synthesis analysis, BET, SEM) gave proof for synthesis success of the new chelating resin, MF-DTPA and success of the new chelating resin, MF-DTPA and showed its high porosity .showed its high porosity .

► The metal removal was due to strong chelating The metal removal was due to strong chelating agent (DTPA) which can coordinate several types agent (DTPA) which can coordinate several types of heavy metals. of heavy metals.

► Thomas model fitted data and can be used to Thomas model fitted data and can be used to determine capacity and rate constant.determine capacity and rate constant.

► High rate constant of removal.High rate constant of removal.► The dynamic capacity is around 30 mg Cu(II) / g.The dynamic capacity is around 30 mg Cu(II) / g.► BDST model fitted data and can be used for BDST model fitted data and can be used for

scaling up the system for practical application.scaling up the system for practical application.► Regeneration by EDTA solution.Regeneration by EDTA solution.

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring

Page 31: Removal of Cu(II) ions from aqueous solution effluent using Melamine-Formaldehyde-DTPA resin in a fixed-bed up-flow column By Ahmad Baraka Supervisors.

THANK YOUTHANK YOU

Dep

artm

ent o

f C

hem

ical

& P

roce

ss E

ngin

eeri

ngD

epar

tmen

t of

Che

mic

al &

Pro

cess

Eng

inee

ring