Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State...

40
Remote Sensing Remote Sensing Technology for Scalable Technology for Scalable Information Networks Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln

Transcript of Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State...

Page 1: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Remote Sensing Technology for Remote Sensing Technology for Scalable Information NetworksScalable Information Networks

Douglas G. GoodinKansas State University

Geoffrey M. HenebryUniversity of Nebraska - Lincoln

Page 2: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Ecological Remote Sensing enables recurrent observation…

What is the role of remote sensing in ecological research?

Page 3: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

…at vast but variable spatial extents…

Page 4: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

…at multiple spatial scales…

Konza Prairie – 4 m resolution Konza Prairie – 1000 m resolution

Konza

Page 5: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

…and provides regional context

*Konza

Page 6: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Elements of Remote Sensing

Page 7: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Remote Sensing Technology is…

Hardware – sensors, computers, storage, distribution networks

Software – commercial, public domain,

user-created

“Wetware”– scientists, data managers

Page 8: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

What are the Elements of Remote Sensing Technology (from an ecological perspective)?

Orbital, airborne, near-ground sensor systems Ranges of spatial, temporal, & spectral

resolutions

System for data acquisition, processing,

distribution, & archiving Algorithms to retrieve biogeophysical variables Theory for interpretation & prediction

Page 9: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Observed

Phenomenon

Spectral Region

Biogeophysical Variables

Representative

Sensors

Ranges of Resolutions

Solar Reflectance

Visible,

Near-IR,

Mid-IR

Albedo

fPAR

Land Cover

NPP

AVHRR SeaWiFS

MODIS MERIS

TM/ETM+ ALI IKONOS

AVIRIS MASTER

1 m – 1 km

<1 d – 18 d

1–228 bands

Terrestrial Emission

Mid-IR,

Thermal-IR,

Microwaves

Surface temperature

Surface moisture

SMMR SSM/I

AVHRR MODIS

ASTER TIMS

25 m - 25 km

<1 d – 3 d

1 – 50+ bands

Anthropogenic Radiation

RADAR,

LIDAR,

[SONAR]

Surface roughness

Soil moisture

Terrain

RADARSAT ASAR

JERS SIR-C

VCL LVIS

8 m – 150 m

18 d

<10 bands

Types of Earth Observing Sensors

Page 10: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Orbital Remote Sensing Systems

Page 11: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Landsat

US – Private/Gov’t

Moderate spatial resolution

1972-Present

Page 12: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

IKONOS

US – Private

1999 – present

Very fine spatial resolution (1-4m)

Page 13: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

NOAA – Polar Orbiter

US Government

Coarse spatial resolution, global coverage

1982 - Present

Page 14: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

RADARSAT

Canada – Gov’t/private

Imaging radar

1996 - Present

Page 15: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Terra/EO-1“Next-Generation” – Earth Observation

• Multi-instrument platform

• Multispectral, hyperspectral

Coordinated observationWith Landsat - 7

Page 16: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Aircraft Sensing Systems

• Flexible mission planning• Selectable spatial resolution• High cost (?)

Page 17: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

AVIRIS

• US Gov’t (NASA)

• Hyperspectral (224 bands)

• Multiple Aircraft (ER-2, Twin Otter)

Page 18: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Other Aircraft Systems

•Multiple (light) aircraft platforms

•(Relatively) modest cost

•Researcher control!

Page 19: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Close Range Remote Sensing

•A wide variety of multi/hyper spectral instruments

•Not just “ground truth”

•Researcher control

Page 20: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

TheData

Pyramid

Coordinated Observation at Multiple Scales

Page 21: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

What are the Elements of Remote Sensing Technology (from an Ecological perspective)?

Orbital, airborne, near-ground sensor systems Ranges of spatial, temporal, & spectral

resolutions System for data acquisition, processing,

distribution, & archiving Algorithms to retrieve biogeophysical variables Theory for interpretation & prediction

Page 22: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Observed

Phenomenon

Spectral Region

Biogeophysical Variables

Representative

Sensors

Ranges of Resolutions

Solar Reflectance

Visible,

Near-IR,

Mid-IR

Albedo

fPAR

Land Cover

NPP

AVHRR SeaWiFS

MODIS MERIS

TM/ETM+ ALI IKONOS

AVIRIS MASTER

1 m – 1 km

<1 d – 18 d

1–228 bands

Terrestrial Emission

Mid-IR,

Thermal-IR,

Microwaves

Surface temperature

Surface moisture

SMMR SSM/I

AVHRR MODIS

ASTER TIMS

25 m - 25 km

<1 d – 3 d

1 – 50+ bands

Anthropogenic Radiation

RADAR,

LIDAR,

[SONAR]

Surface roughness

Soil moisture

Terrain

RADARSAT ASAR

JERS SIR-C

VCL LVIS

8 m – 150 m

18 d

<10 bands

Types of Earth Observing Sensors

Page 23: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Spatial Resolution

Coarse FineModerate

Page 24: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Spectral Resolution

Panchromatic: 1 spectral band - very broad

Multispectral: 4-10 spectral bands - broad

Superspectral: 10-30 spectral bands - variable

Hyperspectral: >30 spectral bands - narrow

The challenge of hyperspectra is to reduce dense, voluminous, redundant data into a compact, effective suite of superspectral bands and indices for retrieval of biogeophysical fields.

Page 25: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

What are the Elements of Remote Sensing Technology (from an Ecological perspective)?

Orbital, airborne, near-ground sensor systems Ranges of spatial, temporal, & spectral

resolutions System for data acquisition, processing,

distribution, & archiving Algorithms to retrieve biogeophysical variables Theory for interpretation & prediction

Page 26: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Acquisition

Processing

Distribution/Storage

Data Handling System - Hardware

Page 27: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Data analysis system – linkages are critical

Archiving/Distribution

Researchers/Groups

Page 28: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

The MODIS systemAn example

Page 29: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

What are the Elements of Remote Sensing Technology (from an Ecological perspective)?

Orbital, airborne, near-ground sensor systems Ranges of spatial, temporal, & spectral

resolutions System for data acquisition, processing,

distribution, & archiving Algorithms to retrieve biogeophysical variables Theory for interpretation & prediction

Page 30: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

NDVI = (NIR - Red)/(NIR + Red)

R = f(,) sin cos d d

0 = [((i=1..N)xi2)/N] * [(C/k) * (sin )/(sin ref)]

Retrieval of Biogeophysical Quantities & Indices

EVI =2.5*(NIR-Red)/(L+NIR+C1*Red-C2*Blue)

Page 31: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Calibration to derive physical quantities: an engineering problem

Does the instrument give the correct physical data?

Is the instrument’s range & sensitivity appropriate for the application?

Cross-sensor calibration

Page 32: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Calibration to derive ecological quantities: a scientific problem

Can the sensor data yield ecologically relevant relationships?

NOT ground “truth” – ground level observation RESCALING

Empirical relationships are site & time specific but reflectance, emission, and backscattering are interactions not intrinsic properties of observable entities

Page 33: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Calibration to derive ecological quantities: a scientific problem

Top-down vs. bottom-up modeling perspectives

Model invertibility

Model robustness

Page 34: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

(4) June 1998 sampling

NDVI = 0.1226(ln{total aboveground biomass}) - 0.3171

r2 = 0.6075

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8

total aboveground biomass ln(g/m2)

ND

VI

Moss-Annual

Not Moss-Annual

Linear (Not Moss-Annual)

Empirical Model – Top down

Page 35: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Analytical Models – Bottom up

Page 36: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

What are the Elements of Remote Sensing Technology (from an Ecological perspective)?

Orbital, airborne, near-ground sensor systems Ranges of spatial, temporal, & spectral

resolutions System for data acquisition, processing,

distribution, & archiving Algorithms to retrieve biogeophysical variables Theory for interpretation & prediction

Page 37: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

To enable ecological forecasting, we need monitoring strategies for

change detection: perceiving the differences

change quantification: measuring the magnitudes of the differences

change assessment: determining whether the differences are significant

change attribution: identifying or inferring the proximate cause of the change

Page 38: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Observations

Ground segmentAcquisition, processing,

storage, & archiving

Ground segmentAcquisition, processing,

storage, & archiving

Retrieval of biogeophysical variables

Spatio-Spectral-Temporal

analysisDefinitions of nominal trajectories and

estimates of uncertainty

Assimilation of current observational datastreams

Change detection Change quantification

Change attribution Change assessment

Ecological Questions &Hypotheses

Information for Ecological Forecasting

Page 39: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

Tuning the macroscope of remote sensing to support ecological inference requires an integrated and sustained

approach to technology & theory

Page 40: Remote Sensing Technology for Scalable Information Networks Douglas G. Goodin Kansas State University Geoffrey M. Henebry University of Nebraska - Lincoln.

ACKNOWLEDGMENTS

DGG acknowledges support from NASA EPSCoR subcontract 12860.

GMH acknowledges support from NSF #9696229/0196445 & #0131937.