Reliability Study: Combustion Engineering Reactor Protection

464
NUREG/CR-5500, Vol. 10 INEL/EXT-97-00740 November 2001 Reliability Study: Combustion Engineering Reactor Protection System, 1984–1998 Thomas E. Wierman Scott T. Beck Michael B. Calley Steven A. Eide Cindy D. Gentillon William E. Kohn

Transcript of Reliability Study: Combustion Engineering Reactor Protection

Page 1: Reliability Study: Combustion Engineering Reactor Protection

NUREG/CR-5500, Vol. 10INEL/EXT-97-00740

November 2001

Reliability Study: Combustion Engineering Reactor Protection System, 1984–1998 Thomas E. Wierman Scott T. Beck Michael B. Calley Steven A. Eide Cindy D. Gentillon William E. Kohn

Page 2: Reliability Study: Combustion Engineering Reactor Protection
Page 3: Reliability Study: Combustion Engineering Reactor Protection

NUREG/CR-5500, Vol. 10INEL/EXT-97-00740

Reliability Study: Combustion Engineering Reactor Protection System, 1984–1998

Thomas E. Wierman Scott T. Beck

Michael B. Calley Steven A. Eide

Cindy D. Gentillon William E. Kohn

Manuscript Completed November 2001

Idaho National Engineering and Environmental Laboratory Risk & Reliability Assessment Department

Idaho Falls, Idaho 83415

Prepared for the Division of Risk Analysis & Applications Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission

Washington, D.C. 20555 Job Code Y6214

Page 4: Reliability Study: Combustion Engineering Reactor Protection
Page 5: Reliability Study: Combustion Engineering Reactor Protection

ABSTRACT

This report documents an analysis of the safety-related performance of the reactor protection system (RPS) at U.S. Combustion Engineering commercial reactors during the period 1984 through 1998. The analysis is based on the four variations of Combustion Engineering reactor protection system designs. RPS-operational data were collected for all U.S. Combustion Engineering commercial reactors from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on fault tree models of the systems. An engineering analysis of trends and patterns was also performed on the data to provide additional insights into RPS performance. RPS unavailability results obtained from the data were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

iii

Page 6: Reliability Study: Combustion Engineering Reactor Protection

iv

Page 7: Reliability Study: Combustion Engineering Reactor Protection

CONTENTS

Abstract .........................................................................................................................................iii

Executive Summary ......................................................................................................................xi

Foreword .....................................................................................................................................xiii

Acknowledgements ......................................................................................................................xv

Acronyms ...................................................................................................................................xvii

Terminology ................................................................................................................................xix

1. Introduction .........................................................................................................................1

2. Scope of Study.....................................................................................................................3

2.1 System Description ..........................................................................................................3 2.1.1 System Configurations .............................................................................................3 2.1.2 System Segment Description....................................................................................4 2.1.3 System Operation .....................................................................................................5 2.1.4 System Testing .......................................................................................................15 2.1.5 System Boundary....................................................................................................17

2.2 System Fault Tree ..........................................................................................................17

2.3 Operational Data Collection, Characterization, and Analysis .......................................17 2.3.1 Inoperability Data Collection and Characterization ...............................................18 2.3.2 Demand Data Collection and Characterization ......................................................20 2.3.3 Data Analysis..........................................................................................................20

3. Risk-Based Analysis of Operational Data .........................................................................22

3.1 Unavailability Estimates Based on System Operational Data .......................................22

3.2 Unavailability Estimates Based on Component Operational Data ................................22 3.2.1 Fault Tree Unavailability Results ...........................................................................22 3.2.2 Fault Tree Uncertainty Analysis.............................................................................33

3.3 Comparison with PRAs and Other Sources ...................................................................33

3.4 Regulatory Implications.................................................................................................36

4. Engineering Analysis of the Operational data...................................................................38

v

Page 8: Reliability Study: Combustion Engineering Reactor Protection

4.1 System Evaluation .........................................................................................................38

4.2 Component Evaluation ..................................................................................................38

4.3 Common-Cause Failure Evaluation...............................................................................44 4.3.1 CCF Event Trends ..................................................................................................45 4.3.2 Total Failure Probability Trends.............................................................................48

5. Summary and Conclusions ................................................................................................52

6. References .........................................................................................................................54

Appendices

Appendix A—RPS Data Collection and Analysis Methods ......................................................A-1

Appendix B—Data Summary ....................................................................................................B-1

Appendix C—Quantitative Results of Basic Component Operational Data Analysis ...............C-1

Appendix D—Fault Trees ..........................................................................................................D-1

Appendix E—Common-Cause Failure Analysis........................................................................E-1

Appendix F—Fault Tree Quantification Results........................................................................F-1

Appendix G—Sensitivity Analysis ............................................................................................G-1

vi

Page 9: Reliability Study: Combustion Engineering Reactor Protection

LIST OF FIGURES

Figure 2-1. Group 1 Combustion Engineering RPS simplified schematic......................................7

Figure 2-2. Groups 2 and 3 Combustion Engineering RPS simplified schematic...........................8

Figure 2-3. Group 4 Combustion Engineering RPS simplified schematic......................................9

Figure 2-4. Group 1 Combustion Engineering RPS simplified diagram.......................................10

Figure 2-5. Groups 2, 3, and 4 Combustion Engineering RPS simplified diagram. .....................11

Figure 2-6. Group 1 Combustion Engineering RPS trip contactor and control element assemblies simplified diagram.............................................................................................12

Figure 2-7. Group 2 & 3 Combustion Engineering RPS trip circuit breaker and control element assemblies simplified diagram.............................................................................................13

Figure 2-8. Group 4 Combustion Engineering RPS trip circuit breaker and control element assemblies simplified diagram.............................................................................................14

Figure 2-9. Data collection, characterization, and analysis process. .............................................19

Figure 2-10. RPS data sets. ...........................................................................................................21

Figure 3-1. Combustion Engineering IPE and RPS Study RPS unavailabilities...........................36

Figure 4-1. Trend analysis for Combustion Engineering unplanned reactor trips, per plant operating year, from 1985 to 1998.......................................................................................39

Figure 4-2. Trend analysis for frequency of Combustion Engineering failures of components in unavailability analysis, per plant year, including uncertain failures. ...................................40

Figure 4-3. Trend analysis for frequency of Combustion Engineering digital core protection calculator failures, including uncertain failures. ..................................................................41

Figure 4-4. Trend analysis for the Combustion Engineering bistable failure frequency...............41

Figure 4-5. Trend analysis for the Combustion Engineering logic relay failure frequency. .........42

Figure 4-6. Trend analysis for the Combustion Engineering temperature sensor/transmitter failure frequency. .................................................................................................................42

Figure 4-7. Trend analysis for the Combustion Engineering breaker undervoltage coil failure frequency. ............................................................................................................................43

Figure 4-8. Trend analysis for the Combustion Engineering pressure sensor/transmitter failure frequency. ............................................................................................................................43

Figure 4-9. Trend analysis for frequency of LER-reported failures of Combustion Engineering components in the data analysis, per plant year, including uncertain failures. ....................44

vii

Page 10: Reliability Study: Combustion Engineering Reactor Protection

Figure 4-10. Trend analysis for Combustion Engineering CCF events per plant calendar year. ..46

Figure 4-11. Trend analysis for Combustion Engineering temperature sensor/transmitter CCF events. ..................................................................................................................................46

Figure 4-12. Trend analysis for Combustion Engineering digital core protection calculator CCF events. ..................................................................................................................................47

Figure 4-13. Trend analysis for Combustion Engineering CCF bistable events. ..........................47

Figure 4-14. Trend analysis for PWR CCF events among the components in the Combustion Engineering data analysis, per reactor calendar year. ..........................................................48

Figure 4-15. Trend analysis for Combustion Engineering pressure sensor/transmitter total failure rate, including uncertain failures, while the plants were operating. .........................49

Figure 4-16. Trend analysis for Combustion Engineering digital core protection calculator total failure rate, including uncertain failures. .............................................................................49

Figure 4-17. Trend analysis for Combustion Engineering bistable total failure probability, based on failures detected in testing during plant operations (including uncertain failures). ........50

Figure 4-18. Trend analysis for Combustion Engineering temperature sensors/transmitter failures that are not demand-related, including uncertain failures. ......................................50

Figure 4-19. Trend analysis for Combustion Engineering breaker undervoltage coil total failure probability, including uncertain failures. .............................................................................51

LIST OF TABLES

Table ES-1. Summary of Combustion Engineering RPS model results.........................................xi

Table F-1. Summary of risk-important information specific to the Combustion Engineering RPS. ................................................................................................................................... xiii

Table 2-1. Combustion Engineering RPS configuration table. .......................................................3

Table 2-2. Combustion Engineering RPS group descriptions.........................................................3

Table 2-3. Segments of Combustion Engineering RPS...................................................................4

Table 2-4. Typical rod banking arrangement. .................................................................................5

Table 2-5. Generic Combustion Engineering RPS trip signals. ....................................................15

Table 2-6. Combustion Engineering RPS components used in the probabilistic risk assessment.16

Table 2-7. Data classification scheme. ..........................................................................................20

Table 3-1. Combustion Engineering RPS fault tree independent failure basic events. .................23

viii

Page 11: Reliability Study: Combustion Engineering Reactor Protection

Table 3-2. Combustion Engineering RPS fault tree CCF basic events. ........................................25

Table 3-3. Combustion Engineering RPS fault tree other basic events.........................................30

Table 3-4. Combustion Engineering RPS segment contribution...................................................31

Table 3-5. Combustion Engineering RPS failure contributions (CCF and independent failures).32

Table 3-6. Combustion Engineering fault tree model results with uncertainty.............................33

Table 3-7. Combustion Engineering calculated unavailabilities from CEN-327-A......................34

Table 3-8. Summary of plant review for Combustion Engineering RPS unavailability values. ...35

Table 5-1. Summary of Combustion Engineering RPS model results. .........................................52

ix

Page 12: Reliability Study: Combustion Engineering Reactor Protection

x

Page 13: Reliability Study: Combustion Engineering Reactor Protection

EXECUTIVE SUMMARY

This report documents an analysis of the safety-related performance of the reactor protection system (RPS) at U.S. Combustion Engineering (CE) commercial nuclear reactors during the period 1984 through 1998. The objectives of the study were (1) to estimate RPS unavailability based on operational experience data and compare the results with models used in probabilistic risk assessments and individual plant examinations, and (2) to review the operational data from an engineering perspective to determine trends and patterns, and to gain additional insights into RPS performance. The CE RPS designs covered in the unavailability estimation include four versions. Fault trees developed for this study were based on these four versions, which represent all CE plants.

Combustion Engineering RPS operational data were collected from Licensee Event Reports as recorded in the Sequence Coding and Search System and the Nuclear Plant Reliability Data System. The period covered 1984 through 1998. Data from both sources were evaluated by engineers with operational experience at nuclear power plants. Approximately 2400 events were evaluated for applicability to this study. Data not excluded were further characterized as to the type of RPS component, type of failure, failure detection, status of the plant during the failure, etc. Characterized data include both independent component failures and common-cause failures (CCFs) of more than one component. The CCF data were classified as outlined in the report Common-Cause Failure Data Collection and Analysis System (NUREG/CR-6268). Component demand counts were obtained from plant reactor trip histories and component test frequency information.

The risk-based analysis of the RPS operational data focused on obtaining failure probabilities for component independent failure and common-cause failure events in the RPS fault tree. The level of detail of the basic events includes channel trip signal sensor/transmitters and associated bistables, process switches and relays, and control rod drives and control rods. Common-cause failure events were modeled for all redundant, similar types of components.

Fault trees for each of the four designs of the CE RPS were developed and quantified using U.S. CE commercial nuclear reactor data from the period 1984 through 1998. All CE plants use the same channel through trip module design, except later plants use a digital core protection calculator. The Group 1 design uses trip contactors without any form of circuit breaker. The other three groups use either an eight-breaker design (Groups 2 and 3) or a four-breaker design (Group 4). Table ES-1 summarizes the RPS unavailability results of this study.

Table ES-1. Summary of Combustion Engineering RPS model results. 5% Mean 95%

Group 1 RPS Model No credit for manual trip by operator 1.2E-6 6.5E-6 1.8E-5 Credit for manual trip by operator 8.8E-7 5.7E-6 1.7E-5

Group 2 RPS Model No credit for manual trip by operator 1.9E-6 7.5E-6 1.9E-5 Credit for manual trip by operator 3.9E-7 1.9E-6 5.1E-6

Group 3 RPS Model No credit for manual trip by operator 1.9E-6 7.5E-6 1.9E-5 Credit for manual trip by operator 3.9E-7 1.9E-6 5.1E-6

Group 4 RPS Model No credit for manual trip by operator 1.6E-6 7.2E-6 1.9E-5 Credit for manual trip by operator 2.4E-7 1.6E-6 4.7E-6

xi

Page 14: Reliability Study: Combustion Engineering Reactor Protection

The computed mean unavailabilities for the various CE design groups ranged from 6.5E-6 to 7.5E-6 (with no credit for manual trips). These are comparable to the values CE IPEs, which ranged from 3.7E-6 to 1.0E-5, and other reports. Common-cause failures contribute approximately 99 percent to the overall unavailability of the various designs. The individual component failure probabilities are generally comparable to failure probability estimates listed in previous reports.

The RPS fault tree was also quantified for manual trip by the operator (assuming an operator failure probability of 0.01). The mean unavailabilities improved 13 percent (Group 1) to 78 percent (Group 4), with a range of 1.6E-6 to 5.7E-6.

The study revealed several general insights:

• The dominant failure contribution to the Combustion Engineering RPS designs involve CCFs of the trip relays (K-1 through K-4, Groups 2, 3, and 4 or M-1 through M-4 Group 1) and the CCF of the mechanical portion of the trip breakers (except Group 1).

• Issues from the early 1980s that affected the performance of the reactor trip breakers (e.g., dirt, wear, lack of lubrication, and component failure) are not currently evident. Improved maintenance has resulted in improved performance of these components.

• Overall, the trends in unplanned trips, component failures, and CCF events decreased significantly over the time span of this study.

• The calculated unavailability of plants that have analog rather than digital core protection calculators shows no sensitivity to this design difference.

• The causes of the CE CCF events are similar to those of the rest of the industry. That is, over all RPS designs for all vendors for the components used in this study, the vast majority (80 percent) of RPS common-cause failure events can be attributed to either normal wear or out-of-specification conditions. These events, are typically degraded states, rather than complete failures. Design and manufacturing causes led to the next highest category (7 percent) and human errors (operations, maintenance, and procedures) were the next highest category (6 percent). Environmental problems and the state of other components (e.g., power supplies) led to the remaining RPS common-cause failure events. No evidence was found that these proportions are changing over time.

• The principle method of detection of failures of components in this study was either by testing or by observation during routine plant tours. Only two failures were detected by actual trip demands, neither of which was a CCF. No change over time in the overall distribution of detection method is apparent.

xii

Page 15: Reliability Study: Combustion Engineering Reactor Protection

FOREWORD

This report presents information relevant to the reliability of the Combustion Engineering reactor protection system (RPS). It summarizes the event data used in the analysis. The results, findings, conclusions, and information contained in this study, the initiating event update study, and related system reliability studies conducted by the Office of Nuclear Regulatory Research are intended to support several risk-informed regulatory activities. This includes providing information about relevant operating experience that can be used to enhance plant inspections of risk-important systems, and information used to support staff technical reviews of proposed license amendments, including risk-informed applications. In the future, this work will be used in developing risk-based performance indicators that will be based largely on plant-specific system and equipment performance.

The Executive Summary presents findings and conclusions from the analyses of the Combustion Engineering RPS based on 1984–1998 operating experience. Sections 3 and 4, respectively, present the results of the quantitative analysis and engineering analysis. Table F-1 summarizes the information supporting risk-informed regulatory activities relating to the Combustion Engineering RPS. The table is an index of risk-important data and results presented in the discussions, tables, figures, and appendices of this report.

Table F-1. Summary of risk-important information specific to the Combustion Engineering RPS.

1. General insights and conclusions regarding RPS unavailability Section 5 2. Dominant contributors to RPS unavailability Table 3-4 and

Table 3-5 3. Dominant contributors to RPS unavailability by importance ranking Appendix F 4. Causal factors affecting dominant contributors to RPS unavailability Sections 4.2 and 4.3 5. Component-specific independent failure data used in the RPS fault

tree quantification Table 3-1

6. Component-specific common-cause failure data used in RPS fault tree quantification

Table 3-2

7. Failure information from the 1984-1998 operating experience used to estimate system unavailability (independent and common-cause failure events)

Tables B-1, B-2, and B-3

8. Details of the common-cause failure parameter estimation Appendix E 9. Details of the failure event classification and parameter estimation Appendix A 10. Comparison with PRAs and IPEs Figure 3-1,

Section 3.3 11. Trends in component failure occurrence rates Section 4.2 12. Trends in CCF occurrence rates Section 4.3 13. Trends in component total failure probabilities Section 4.3

xiii

Page 16: Reliability Study: Combustion Engineering Reactor Protection

The application of results to plant-specific applications may require a more detailed review of the relevant Licensee Event Report (LER) and Nuclear Plant Reliability Data System (NPRDS) data than cited in this report. Such a review is needed to determine if generic experiences described in this report and specific aspects of the RPS events documented in the LER and NPRDS failure records are applicable to the design and operational features at a specific plant or site. Factors such as RPS design, specific components installed in the system, and test and maintenance practices would need to be considered in light of specific information provided in the LER and NPRDS failure records. Other documents, such as logs, reports, and inspection reports, that contain information about plant-specific experience (e.g., maintenance, operation, or surveillance testing) should be reviewed during plant inspections to supplement the information contained in this report.

Additional insights into plant-specific performance may be gained by examining specific events in light of overall industry performance. In addition, review of recent LERs and plant-specific component failure information in NPRDS or Equipment Performance Information and Exchange System (EPIX) may yield indications of whether performance has undergone any significant change since the last year of this report. Search of the LER database can be conducted through the NRC’s Sequence Coding and Search System (SCSS) to identify RPS events that occurred after the reporting period covered by this report. The SCSS contains the full text LERs and is available to NRC staff on the SCSS home page (http://scss.ornl.gov/). Nuclear industry organizations and the general public can obtain information from the SCSS on a cost recovery basis by contacting the Oak Ridge National Laboratory directly.

Information in this report will be periodically updated, as additional data become available.

Scott F. Newberry, Director Division of Risk Analysis and Applications Office of Nuclear Regulatory Research

xiv

Page 17: Reliability Study: Combustion Engineering Reactor Protection

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support and suggestions from H. Hamzehee, M. Harper, T. Wolf, D. Rasmuson, and S. Mays of the U.S. Nuclear Regulatory Commission.

xv

Page 18: Reliability Study: Combustion Engineering Reactor Protection

xvi

Page 19: Reliability Study: Combustion Engineering Reactor Protection

ACRONYMS

ac alternating current ACRS Advisory Committee on Reactor Safeguards (U.S. NRC) ATWS anticipated transient without scram BME trip breaker mechanical BSN trip breaker shunt trip device BUV trip breaker undervoltage device BWR boiling water reactor CBI channel bistable (trip unit) CCF common-cause failure CEA control element assembly CEDM control element assembly drive mechanism CF complete failure CPA core protection calculator, analog CPD core protection calculator, digital CPR channel pressure sensor/transmitter CRD control rod drive CTP channel temperature sensor/transmitter dc direct current DNBR departure from nucleate boiling ratio FS fail-safe (component failure not impacting safety function) INEEL Idaho National Engineering and Environmental Laboratory IPE Individual Plant Examination MSW manual scram switch NF no failure NFS non-fail-safe (component failure impacting safety function) NPRDS Nuclear Plant Reliability Data System NRC Nuclear Regulatory Commission (U.S.) PRA probabilistic risk assessment PWR pressurized water reactor RES Office of Nuclear Regulatory Research RMA rod and control rod drive ROD control rod RPS reactor protection system RTB reactor trip breaker RYL logic relay RYT trip relay SCSS Sequence Coding and Search System UC unknown completeness (unknown if failure was CF or NF)

xvii

Page 20: Reliability Study: Combustion Engineering Reactor Protection

UKN unknown (unknown if failure was NFS or FS)

xviii

Page 21: Reliability Study: Combustion Engineering Reactor Protection

TERMINOLOGY

Channel segment—The portion of the Combustion Engineering reactor protection system that includes trip signal sensor/transmitters and associated trip units (bistables) and other components distributed throughout the plant that monitor the state of the plant and generate automatic trip signals. There are four channels in the channel segment.

Common-cause failure—A dependent failure in which two or more similar component fault states exist simultaneously, or within a short time interval, and are a direct result of a shared cause.

Common-cause failure model—A model for classifying and quantifying the probabilities of common-cause failures. The alpha factor model is used in this study.

Reactor protection system—The complex system comprising numerous electronic and mechanical components that provides the ability to produce an automatic or manual rapid shutdown of a nuclear reactor, given plant upset conditions that require a reactor trip.

Rod segment—The portion of the Combustion Engineering reactor protection system that includes the control rod drives and the control rods. There are generally 89 control rods and associated drives in Combustion Engineering plants.

Scram—Automatic or manual actuation of the reactor protection system, resulting in insertion of control rods into the core and shutdown of the nuclear reaction. A scram is also called a reactor trip.

Trip breaker/contactor segment—The portion of the Combustion Engineering reactor protection system that includes the reactor trip breakers or trip contactors. There are either four or eight trip breakers in the trip breaker segment. The trip breakers are arranged in two series/parallel paths. Both paths must be opened to complete a reactor trip. If the design has trip contactors (relays), there are four.

Trip matrix segment—The portion of the Combustion Engineering reactor protection system that includes the trip paths, logic matrices, matrix output relays, and the initiation relays (K or M relays) housed in cabinets in the control room. Each trip matrix receives signals from two of the four instrument channels. Each trip matrix energizes four of four initiation relays.

Unavailability—The probability that the reactor protection system will not actuate (and result in a reactor trip), given a demand for the system to actuate.

Unreliability—The probability that the reactor protection system will not fulfill its mission, given a demand for the system. Unreliability typically involves both failure to actuate and failure to continue to function for an appropriate mission time. However, the reactor protection system has no mission time. Therefore, for the reactor protection system, unreliability and unavailability are the same.

xix

Page 22: Reliability Study: Combustion Engineering Reactor Protection

xx

Page 23: Reliability Study: Combustion Engineering Reactor Protection

Reliability Study: Combustion Engineering Reactor Protection System, 1984–1998

1. INTRODUCTION

The U.S. Nuclear Regulatory Commission’s (NRC’s) Office of Nuclear Regulatory Research (RES) has, in cooperation with other NRC offices, undertaken to ensure that the NRC policy to expand the use of probabilistic risk assessment (PRA) within the agency is implemented consistently and predictably. As part of this effort, the Division of Risk Analysis and Applications has undertaken to monitor and report the functional reliability of risk-important systems in commercial nuclear power plants. The approach is to compare estimates and associated assumptions found in PRAs to actual operating experience. The first phase of the review involves identifying risk-important systems from a PRA perspective and the performance of reliability and trending analysis on these identified systems. As part of this review, a risk-related performance evaluation of the reactor protection system (RPS) in Combustion Engineering pressurized water reactors (PWRs) was performed.

An abbreviated U.S. history of regulatory issues relating to RPS and anticipated transient without scram (ATWS) begins with a 1969 concern1 from the Advisory Committee on Reactor Safeguards (ACRS) that RPS common mode failures might result in unavailabilities higher than previously thought. At that time, ATWS events were considered to have frequencies lower than 1E-6/y, based on the levels of redundancy in RPS designs. Therefore, such events were not included in the design basis for U.S. nuclear power plants. This concern was followed by issuance of WASH-12702 in 1973, in which the RPS unavailability was estimated to be 6.9E-5 (median value). Based on this information and the fact that increasing numbers of nuclear reactors were being built and operated in the United States, it was recommended that ATWS events be considered in the safety analysis of nuclear reactors. In 1978, NUREG-0460 1 was issued. In that report, the RPS unavailability was estimated to be in the range 1E-5 to 1E-4. An unavailability of 3E-5 was recommended, allowing for some improvements in design and performance. In addition, it was recommended that consideration be given to additional systems that would help to mitigate ATWS events, given failure of the RPS. Two events: the 1980 boiling water reactor (BWR) Browns Ferry Unit 3 event, in which 76 of 185 control rods failed to insert fully; and the 1983 PWR Salem Unit 1 low-power ATWS event (failure of the undervoltage coils to open the reactor trip breakers), led to NUREG-10003 and Generic Letter 83-28.4 These documents discussed actions to improve RPS reliability, including the requirement for functional testing of backup scram systems. Finally, 49FR260365 in 1984, Generic Letter 85-06 6 in 1985, and 10CFR50.627 in 1986 outlined requirements for diverse ATWS mitigation systems.

The risk-related performance evaluation in this study measures RPS unavailability using actual operating experience. To perform this evaluation, system unavailability was evaluated using two levels of detail: the entire system (without distinguishing components within the system) and the system broken down into components such as sensors, logic modules, and relays. The modeling of components in the RPS was necessary because the U.S. operating experience during the period 1984 through 1998 does not include any RPS system failures. Therefore, unavailability results for the RPS modeled at the system level provide limited information. Additional unavailability information is gained by working at the component level, at which actual failures have occurred. Failures and associated demands that occurred during tests of portions of the RPS are included in the component level evaluation of the RPS unavailability, although such demands do not model a complete system response for accident mitigation. This is in contrast to previous system studies, in which such partial system tests generally were not used.

1

Page 24: Reliability Study: Combustion Engineering Reactor Protection

Introduction

RPS unavailability in this evaluation is concerned with failure of the function of the system to shut down the reactor given a plant-upset condition requiring a reactor trip. Component or system failures causing spurious reactor trips or not affecting the shutdown function of the RPS are not considered as failures in this report. However, spurious trips are included as demands where applicable.

Note that the RPS boundary for this study does not include ATWS mitigation systems added or modified in the late 1980s. For Combustion Engineering nuclear reactors, these systems use diverse trip parameters and trip the RPS motor generator set input breakers. In addition, the base case of this study models the automatic actuation of the RPS. However, RPS unavailability was also determined assuming credit for operator action.

The RPS unavailability study is based on U.S. Combustion Engineering RPS operational experience data from the period 1984 through 1998, as reported in both the Nuclear Plant Reliability Data System (NPRDS) 8 and Licensee Event Reports (LERs) found in the Sequence Coding and Search System (SCSS).9

The objectives of the study were the following:

1. Estimate RPS unavailability based on operation data and compare the results with the assumptions, models, and data used in PRAs and Individual Plant Examinations (IPEs).

2. Conduct an engineering analysis of the factors affecting system unavailability and determine if trends and patterns are present in the RPS operational data.

The body of this report is in six sections. After this introduction, Section 2 describes the fault tree models used in the analysis, the data collection, characterization, and analysis. Section 3 presents the unavailability results from the operational data and compares them with PRA/IPE RPS results. Section 4 presents the results of the engineering analysis of the operational data. Section 5 summarizes and presents conclusions. Section 6 presents references.

There are also seven appendices in this report. Appendix A explains in detail the methods used for data collection, characterization, and analysis. Appendix B summarizes the operational data. Appendix C presents detailed statistical analyses. Appendix D presents the fault tree model. Appendix E presents common-cause failure modeling information. Appendix F presents the fault tree quantification results, cut sets, and importance rankings. Appendix G presents sensitivity analysis results.

2

Page 25: Reliability Study: Combustion Engineering Reactor Protection

2. SCOPE OF STUDY

This study documents an analysis of the operational experience of the Combustion Engineering RPS from 1984 through 1998. The analysis focused on the ability of the RPS to automatically shut down the reactor given a plant upset condition requiring a reactor trip while the plant is at full power. The term reactor trip refers to a rapid insertion of control rods into the reactor core to inhibit the nuclear reaction. RPS spurious reactor trips or component failures not affecting the automatic shutdown function were not considered as failures. The Combustion Engineering RPS is described, followed by a description of the RPS fault tree used in the study. The section concludes with a description of the data collection, characterization, and analysis.

2.1 System Description

2.1.1 System Configurations

Four generic RPS configurations represent all Combustion Engineering plants. Each plant’s RPS closely matches one of these four generic configurations. Among the individual plants, there are only minor variations of hardware and test practices. The most significant of these are noted in the applicable parts of the text. Table 2-1 shows which plants are grouped into the generic designs.

Table 2-1. Combustion Engineering RPS configuration table.

Plant Name RPS GroupPalisades 1Fort Calhoun 1Calvert Cliffs 1, 2 2Maine Yankee 2Millstone 2 2St. Lucie 1, 2 2Arkansas 2 3San Onofre 2, 3 3Waterford 3 3Palo Verde 1, 2, 3 4

The most important differences between these four RPS configurations are the use of analog or digital core protection calculators and the trip breaker configuration. Table 2-2 shows the four groups and the combinations that define these groups.

Table 2-2. Combustion Engineering RPS group descriptions.

RPS Group Core Protection Calculator Type Trip Breaker Configuration 1 Analog thermal margin/low pressure setpoint Calculator Four trip contactors (relays) 2 Analog thermal margin/low pressure setpoint Calculator Eight reactor trip breakers 3 Digital core protection calculator Eight reactor trip breakers 4 Digital core protection calculator Four reactor trip breakers

3

Page 26: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

2.1.2 System Segment Description

The Combustion Engineering RPS is a complex control system comprising numerous electronic and mechanical components that combine in the ability to produce an automatic or manual rapid shutdown of the nuclear reactor, known as a reactor trip or scram. In spite of its complexity, the Combustion Engineering RPS components can be roughly divided into four segments—channels, trip matrices, trip breakers/relays/contactors, and rods—as shown in Table 2-3.

Table 2-3. Segments of Combustion Engineering RPS.

RPS Segments RPS

Group Channel

Trip Matrices Trip Breakers/Relays/

Contactors

Rods 1 Four channels (A – D).

Each channel includes bistables and instrumentation to measure plant parameters. Thermal margin is calculated with an analog device.

Six trip matrices. Each trip matrix consists of contacts from two channel bistables and four output relays. Each output relay opens a contact in one of four initiation relays (M-1 to M-4). One out of six trip matrices is sufficient to trip the reactor trip switchgear.

Relays M-1 to M-4, also called trip contactors, open contacts in line with the CEDM power supplies.

Rod groups de-energized on successful RPS actuation.

2 Four channels (A – D). Each channel includes bistables and instrumentation to measure plant parameters. Thermal margin is calculated with an analog device.

Six trip matrices. Each trip matrix consists of contacts from two channel bistables and four output relays. Each output relay opens a contact in one of four initiation relays (K-1 to K-4). One out of six trip matrices is sufficient to trip the reactor trip switchgear.

Relays K-1 to K-4 open contacts in line with the eight trip circuit breakers.

Rod groups de-energized on successful RPS actuation.

3 Four channels (A – D). Each channel includes bistables and instrumentation to measure plant parameters. Thermal margin is calculated with a digital device.

Six trip matrices. Each trip matrix consists of contacts from two channel bistables and four output relays. Each output relay opens a contact in one of four initiation relays (K-1 to K-4). One out of six trip matrices is sufficient to trip the reactor trip switchgear.

Relays K-1 to K-4 open contacts in line with the eight trip circuit breakers.

Rod groups de-energized on successful RPS actuation.

4 Four channels (A – D). Each channel includes bistables and instrumentation to measure plant parameters. Thermal margin is calculated with a digital device.

Six trip matrices. Each trip matrix consists of contacts from two channel bistables and four output relays. Each output relay opens a contact in one of four initiation relays (K-1 to K-4). One out of six trip matrices is sufficient to trip the reactor trip switchgear.

Relays K-1 to K-4 open contacts in line with the four trip circuit breakers.

Rod groups de-energized on successful RPS actuation.

4

Page 27: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

There are typically 89 control element assemblies (CEAs) grouped for control and safety purposes into nine banks (five regulating banks, two shutdown banks, and two part-length banks). Typical rod banking is shown in Table 2-4. The trip breakers/ trip contactors interrupt power to the control element assembly drive mechanisms (CEDM). When power is removed, the roller nuts disengage from the lead screw, allowing gravity to insert the control rod assembly.

Table 2-4. Typical rod banking arrangement.

CEA Type Number of Control Element Assemblies Shutdown 12-element full length CEA Shutdown bank A – 16

Shutdown bank B – 20 12-element full length CEA 12 4-element full length CEA 28 4-element part length CEA (not held by the magnetic clutches)

13

Total 89 Total held by RPS 76

The shutdown banks A and B contain approximately 76 percent of the total rod worth and are sufficient to ensure shutdown at the beginning of life and at the end of life of the reactor core. SECY-83-293, Enclosure D, Appendix A. describes a rod failure criterion. In this reference, rod success is defined for all PWRs as the insertion of one-half or more of the control rods into the core in a roughly checkerboard pattern. For the purposes of this study, we will require 20 percent, 7 rods total, to fully insert to ensure shutdown. Appendix G presents a range of rod failure criteria and the effect on the overall RPS unavailability.

The shutdown banks A and B contain approximately 76 percent of the total rod worth and are sufficient to ensure shutdown at the beginning of life and at the end of life of the reactor core. Consistent with previous studies, the reported RPS unavailability is based on a rod success criterion of 20 percent. As noted in the statement of considerations (49FR26036)5 for the ATWS reduction rule (10CFR50.62)7, the insertion of 20 percent of the shutdown rods is needed to achieve hot, zero power provided that the inserted rods are suitably uniformly distributed. To demonstrate the effect of selecting a different rod success criterion, the overall RPS unavailability was computed for a range of rod failure percentages. The results of this sensitivity study are presented in Appendix G.

2.1.3 System Operation

The RPS system as shown in Figure 2-1 through Figure 2-3 consists of four identical protective channels. Each protective channel contains between ten and sixteen measurement channels, each capable of initiating protective actions by actuating a bistable. Each bistable includes three relays (included within the bistable component). The relay contacts are in three of the six logic matrices combined with relay contacts from one other channel in a two-out-of-two logic. When both channels trip, the logic matrix de-energizes removing power from the four matrix output relays. The four output relays open contacts supplying power to relays K-1, 2, 3, and 4 (M-1, 2, 3, and 4 in RPS Group 1). The trip parameters are shown in Table 2-5.

Figure 2-4 through Figure 2-8 show the logic of the four RPS-group designs.

5

Page 28: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

2.1.3.1 Group 1 Trip Contactor Logic

Relays M-1 and M-2 contain contacts that supply ac power to two CRD clutch power supplies on one side of the two clutch power busses. Similarly, relays M-3 and M-4 contain contacts that supply ac power to the CRD clutch power supplies on the opposite side of the two clutch power buses. When the dc power supplies to a clutch power bus on both sides and are de-energized, the magnetic clutch holding coils release the full-length CEAs.

Either relay M-1 or M-2 is sufficient to remove ac power from one side of the CRD clutch power buses. Similarly, either relay M-3 or M-4 is sufficient to remove ac power from the other side of the CRD clutch power buses. Power must be removed from both sides of the CRD clutch buses in order to de-energize the magnetic clutch holding coils and release the full-length rods.

A reactor trip is accomplished by de-energizing the CEDM coils, allowing the shutdown and regulating CEAs to drop into the core by gravity.

2.1.3.2 Groups 2 and 3 Trip Circuit Breaker Logic

Relays K-1 through K-4 contain contacts that provide actuation of the undervoltage and shunt trips of the eight trip circuit breakers. De-energizing any one trip breaker control relay (K-x) opens one trip path and opens the two breakers controlled by that trip path.

The CEDMs are separated into two groups. The CEDM power supplies in each group are supplied with parallel ac power. The loss of either set does not cause a release of the CEAs. Each power supply source is separated into two branches. Each side of each branch line passes through two trip circuit breakers (each actuated by a separate trip path) in series so that, although both sides of the branch lines must be de-energized to release the CEAs, there are two separate means of interrupting each side of the line.

A reactor trip is accomplished by de-energizing the CEDM coils, allowing the shutdown and regulating CEAs to drop into the core by gravity.

2.1.3.3 Group 4 Trip Circuit Breaker Logic

Relays K-1 through K-4 contain contacts that provide actuation of the undervoltage and shunt trips of the four trip circuit breakers. De-energizing of any one trip breaker control relay (K-x) opens one trip path and opens the breaker controlled by that trip path.

The CEDMs are separated into two groups, but are supplied ac power from the same parallel power arrangement. The loss of either set does not cause a release of the CEAs. Each side of the branch lines pass through two trip circuit breakers (each actuated by a separate trip path) in series so that, although both sides of the branch lines must be de-energized to release the CEAs, there are two separate means of interrupting each side of the line.

A reactor trip is accomplished by de-energizing the CEDM coils, allowing the shutdown and regulating CEAs to drop into the core by gravity.

6

Page 29: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Figure 2-1. Group 1 Combustion Engineering RPS simplified schematic.

7

Page 30: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Figure 2-2. Groups 2 and 3 Combustion Engineering RPS simplified schematic.

8

Page 31: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Figure 2-3. Group 4 Combustion Engineering RPS simplified schematic.

9

Page 32: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Logi

cM

atrix

AB

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

BC

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

BD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

AC

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

CD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

AD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

A B C D

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

M1

M2

M3

M4

CE1

-CTP

-FF-

HTA

CE1

-CTP

-FF-

CTA

CE1

-CPR

-FF-

PA

CE1

-CTP

-FF-

HTB

CE1

-CTP

-FF-

CTB

CE1

-CPR

-FF-

PB

CE1

-CTP

-FF-

HTC

CE1

-CTP

-FF-

CTC

CE1

-CPR

-FF-

PC

CE1

-CTP

-FF-

HTD

CE1

-CTP

-FF-

CTD

CE1

-CPR

-FF-

PD

CE1

-CPA

-FF-

TA

CE1

-CPA

-FF-

TB

CE1

-CPA

-FF-

TC

CE1

-CPA

-FF-

TD

CE1

-CB

I-FF

-TA

CE1

-CB

I-FF

-PA

CE1

-CB

I-FF

-TB

CE1

-CB

I-FF-

PB

CE1

-CB

I-FF

-TC

CE1

-CB

I-FF-

PC

CE1

-CB

I-FF-

TD

CE1

-CB

I-FF

-PD

CE1

-RY

L-FF

-LA

B1,

2,3,

4

CE1

-RY

L-FF

-LB

C1,

2,3,

4

CE1

-RY

L-FF

-LB

D1,

2,3,

4

CE1

-RY

L-FF

-LA

C1,

2,3,

4

CE1

-RY

L-FF

-LC

D1,

2,3,

4

CE1

-RY

L-FF

-LA

D1,

2,3,

4

10

Figu

re 2

-4.

Gro

up 1

Com

bust

ion

Engi

neer

ing

RPS

sim

plifi

ed d

iagr

am.

Page 33: Reliability Study: Combustion Engineering Reactor Protection

11

Scope of Study

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log/

Dig

ital)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Logi

cM

atrix

AB

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

BC

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

BD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

AC

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

CD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Logi

cM

atrix

AD

Mat

rix O

utpu

t Rel

ay 1

Mat

rix O

utpu

t Rel

ay 2

Mat

rix O

utpu

t Rel

ay 3

Mat

rix O

utpu

t Rel

ay 4

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log

/Dig

ital)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log

/Dig

ital)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Hot

Leg

Tem

pera

ture

Sens

or/T

rans

mitt

er

Col

d Le

g Te

mpe

ratu

reSe

nsor

/Tra

nsm

itter

Pres

suriz

er P

ress

ure

Sens

or/T

rans

mitt

er

Cor

e Pr

otec

tion

Cal

cula

tor

(Ana

log

/Dig

ital)

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

Bis

tabl

e Tr

ip U

nit

Trip

Pat

h 1

Trip

Pat

h 2

Trip

Pat

h 3

A B C D

K1

K2

K3

K4

K1

K2

K3

K4

K1

K2

K3

K4

K1

K2

K3

K4

K1

K2

K3

K4

K1

K2

K3

K4

CEx

-CTP

-FF-

HTA

CEx

-CTP

-FF-

CTA

CEx

-CPR

-FF-

PA

CEx

-CTP

-FF-

HTB

CEx

-CTP

-FF-

CTB

CEx

-CPR

-FF-

PB

CEx

-CTP

-FF-

HTC

CEx

-CTP

-FF-

CTC

CEx

-CPR

-FF-

PC

CEx

-CTP

-FF-

HTD

CEx

-CTP

-FF-

CTD

CEx

-CPR

-FF-

PD

CEx

-CPA

(D)-F

F-TA

CEx

-CPA

(D)-

FF-T

B

CEx

-CPA

(D)-

FF-T

C

CEx

-CPA

(D)-F

F-TD

CEx

-CB

I-FF

-TA

CEx

-CB

I-FF

-PA

CEx

-CB

I-FF

-TB

CEx

-CB

I-FF-

PB

CEx

-CB

I-FF

-TC

CEx

-CB

I-FF-

PC

CEx

-CB

I-FF-

TD

CEx

-CB

I-FF

-PD

CEx

-RY

L-FF

-LA

B1,

2,3,

4

CEx

-RY

L-FF

-LB

C1,

2,3,

4

CEx

-RY

L-FF

-LB

D1,

2,3,

4

CEx

-RY

L-FF

-LA

C1,

2,3,

4

CEx

-RY

L-FF

-LC

D1,

2,3,

4

CEx

-RY

L-FF

-LA

D1,

2,3,

4

Figu

re 2

-5.

Gro

ups 2

, 3, a

nd 4

Com

bust

ion

Engi

neer

ing

RPS

sim

plifi

ed d

iagr

am.

Page 34: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Initi

atio

n C

ircui

tM

1In

itiat

ion

Circ

uit

M3

Initi

atio

n C

ircui

tM

2

Man

ual T

rip 1

Man

ual T

rip 2

Initi

atio

n C

ircui

tM

4

CED

M C

lutc

h Po

wer

Sup

ply

1

CED

M C

lutc

h Po

wer

Sup

ply

2

CE1

-MSW

-FF-

MT1

CE1

-MSW

-FF-

MT2

CE1

-RY

T-FF

-IC

M1

CE1

-RY

T-FF

-IC

M2

CE1

-RY

T-FF

-ICM

3

CE1

-RY

T-FF

-IC

M4

12

Figu

re 2

-6.

Gro

up 1

Com

bust

ion

Engi

neer

ing

RPS

trip

con

tact

or a

nd c

ontro

l ele

men

t ass

embl

ies s

impl

ified

dia

gram

.

Page 35: Reliability Study: Combustion Engineering Reactor Protection

13

Scope of Study

Initi

atio

n C

ircui

tK

1

Initi

atio

n C

ircui

tK

2

Man

ual T

rip 1

Man

ual T

rip 2

Trip

Circ

uit

Bre

aker

TCB

-5

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-1

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-6

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-2

UV Trip

Shunt Trip

Initi

atio

n C

ircui

tK

3

Initi

atio

n C

ircui

tK

4

Man

ual T

rip 3

Man

ual T

rip 4

Trip

Circ

uit

Bre

aker

TCB

-7

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-3

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-8

UV Trip

Shunt Trip

Trip

Circ

uit

Bre

aker

TCB

-4

UV Trip

Shunt Trip

480V

ac

CED

MPo

wer

Supp

ly1

480V

ac

480V

ac

CED

MPo

wer

Supp

ly2

CE2

(3)-M

SW-F

F-M

T1

CE2

(3)-

RY

T-FF

-ICK

1

CE2

(3)-

MSW

-FF-

MT3

CE2

(3)-

RY

T-FF

-ICK

3

CE2

(3)-M

SW-F

F-M

T2

CE2

(3)-

RY

T-FF

-IC

K2

CE2

(3)-M

SW-F

F-M

T4

CE2

(3)-

RY

T-FF

-ICK

4

CE2

(3)-B

ME-

FO-T

B1

CE2

(3)-B

SN-F

O-T

B1

CE2

(3)-B

UV

-FO

-TB

1

CE2

(3)-B

ME-

FO-T

B5

CE2

(3)-B

SN-F

O-T

B5

CE2

(3)-

BU

V-F

O-T

B5

CE2

(3)-B

ME-

FO-T

B2

CE2

(3)-B

SN-F

O-T

B2

CE2

(3)-

BU

V-F

O-T

B2

CE2

(3)-

BM

E-FO

-TB

3

CE2

(3)-

BSN

-FO

-TB

3

CE2

(3)-

BU

V-F

O-T

B3

CE2

(3)-

BM

E-FO

-TB

6

CE2

(3)-

BSN

-FO

-TB

6

CE2

(3)-B

UV

-FO

-TB

6

CE2

(3)-

BM

E-FO

-TB

7

CE2

(3)-B

SN-F

O-T

B7

CE2

(3)-

BU

V-F

O-T

B7

CE2

(3)-B

ME-

FO-T

B4

CE2

(3)-B

SN-F

O-T

B4

CE2

(3)-B

UV

-FO

-TB

4

CE2

(3)-

BM

E-FO

-TB

8

CE2

(3)-

BSN

-FO

-TB

8

CE2

(3)-

BU

V-F

O-T

B8

480V

ac

Figu

re 2

-7.

Gro

up 2

& 3

Com

bust

ion

Engi

neer

ing

RPS

trip

circ

uit b

reak

er a

nd c

ontro

l ele

men

t ass

embl

ies s

impl

ified

dia

gram

.

Page 36: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Initi

atio

n C

ircui

tK

2

Trip

Circ

uit

Bre

aker

TCB

-2

Initi

atio

n C

ircui

tK

4

Trip

Circ

uit

Bre

aker

TCB

-4

UV Trip

Shunt Trip

Man

ual T

rip 2

Man

ual T

rip 4

CED

MS

CEA

S

UV Trip

Shunt Trip

480V

acIniti

atio

n C

ircui

tK

1

Trip

Circ

uit

Bre

aker

TCB

-1

Initi

atio

n C

ircui

tK

3

Trip

Circ

uit

Bre

aker

TCB

-3

UV Trip

Shunt Trip

Man

ual T

rip 1

Man

ual T

rip 3

UV Trip

Shunt Trip

480V

acCE4

-MSW

-FF-

MT1

CE4

-RY

T-FF

-IC

K1

CE4

-BM

E-FO

-TB

3

CE4

-BSN

-FO

-TB

3

CE4

-BU

V-F

O-T

B3

CE4

-BM

E-FO

-TB

1

CE4

-BSN

-FO

-TB

1

CE4

-BU

V-F

O-T

B1

CE4

-BM

E-FO

-TB

2

CE4

-BSN

-FO

-TB

2

CE4

-BU

V-F

O-T

B2

CE4

-BM

E-FO

-TB

4

CE4

-BSN

-FO

-TB

4

CE4

-BU

V-F

O-T

B4

CE4

-MSW

-FF-

MT3

CE4

-RY

T-FF

-IC

K3

CE4

-MSW

-FF-

MT2

CE4

-RY

T-FF

-IC

K2

CE4

-MSW

-FF-

MT4

CE4

-RY

T-FF

-IC

K4

14

Figu

re 2

-8.

Gro

up 4

Com

bust

ion

Engi

neer

ing

RPS

trip

circ

uit b

reak

er a

nd c

ontro

l ele

men

t ass

embl

ies s

impl

ified

dia

gram

.

Page 37: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Table 2-5. Generic Combustion Engineering RPS trip signals.

Trip Signal Trip Logic Purpose of Trip 1. High linear power 2-out-of-4 Coincident Trip the reactor in the event of a reactivity

excursion too rapid to be mitigated by the high-pressure trip without damage.

2. High thermal margin/low pressure a

2-out-of-4 Coincident Two purposes: the thermal margin portion of the trip, in conjunction with the low reactor coolant flow trip, prevents violation of the safety limit on DNB during anticipated transients. The low-pressure portion of the trip functions to trip the reactor in case of a LOCA.

3. High local power density

2-out-of-4 Coincident Prevent peak local power density in the fuel from exceeding limits.

4. High pressurizer pressure a

2-out-of-4 Coincident Prevent excessive blowdown of the RCS by relief action through the pressurizer safety valves.

5. Low steam generator level

2-out-of-4 Coincident Protect the reactor coolant system in case of a loss of feedwater and resultant loss in heat sink.

6. Low steam generator pressure

2-out-of-4 Coincident Protect the RCS from the excessive rate of heat extraction from a steam line break.

7. Low reactor coolant flow

2-out-of-4 Coincident Protect the core against exceeding departure from nucleate boiling (DNB).

8. High containment pressure

2-out-of-4 Coincident Assure the trip of the reactor is concurrent with safety injection actuation.

9. Loss of load 2-out-of-4 Coincident Minimize primary system upset on turbine trip.

a. These two signals are modeled in the RPS fault tree used for this study. 2.1.4 System Testing

Table 2-6 shows the components in the RPS system that are considered in the PRA model and indicates when these components are counted as being demanded based on reactor trips, testing, and operational demands.

Several different types of tests are performed periodically on the Combustion Engineering RPS. Channel checks are performed to detect variances between instruments. These checks ensure that redundant parameter indications, such as reactor pressure or temperature, agree within certain limits. These channel checks identify gross failures in the channel sensor/transmitters. When channel checks are performed, the channel is placed in a bypass mode.

15

Page 38: Reliability Study: Combustion Engineering Reactor Protection

Tab

le 2

-6.

Com

bust

ion

Engi

neer

ing

RPS

com

pone

nts u

sed

in th

e pr

obab

ilist

ic ri

sk a

sses

smen

t.

Scope of Study

16

Com

p.

code

C

ompo

nent

Te

stin

g F

requ

ency

a O

pera

ting

b

Dem

ande

d in

eac

h re

acto

r trip

C

ount

bas

is

Cha

nnel

C

PR

Pres

sure

sens

or/tr

ansm

itter

C

yclic

and

qu

arte

rly c

Yes

N

o O

ne fo

r the

pre

ssur

izer

& a

t lea

st o

ne p

er st

eam

ge

nera

tor,

per c

hann

el. T

he d

igita

l pla

nts h

ave

two

per

SG/ c

hann

el.

See

Not

e d.

C

TP

Tem

pera

ture

sens

or/tr

ansm

itter

C

yclic

&

quar

terly

c Y

es

No

2/lo

op/c

hann

el, e

xcep

t Mai

ne Y

anke

e w

ith

1/lo

op/c

hann

el.

CPA

A

nalo

g co

re p

rote

ctio

n ca

lcul

ator

Qua

rterly

Y

es

No

1 pe

r cha

nnel

(Mod

el G

roup

s 1, 2

) C

PD

Dig

ital c

ore

prot

ectio

n ca

lcul

ator

Qua

rterly

Y

es

No

1 pe

r cha

nnel

(Mod

el G

roup

s 3, 4

) C

BI

Bis

tabl

e Q

uarte

rly

No

No

12 to

16

per c

hann

el

Trai

ns

RY

L

Logi

c re

lay

Qua

rterly

N

o N

o dc

. 24

(fro

m 6

logi

c m

atric

es a

nd 4

cha

nnel

s)

RY

TTr

ip re

lay

Qua

rterly

f N

o N

o 4

K re

lays

; exc

ept,

at G

roup

1 p

lant

s, 4

M re

lays

. M

SWM

anua

l scr

am sw

itch

Qua

rterly

No

Yes

e 4,

exc

ept 2

at M

odel

Gro

up 1

pla

nts.

Trip

bre

aker

s and

rods

B

ME

Bre

aker

mec

hani

cal

Qua

rterly

&m

onth

ly f

No

Yes

8

for p

lant

s in

Mod

el G

roup

s 2 a

nd 3

. 4

for G

roup

4.

BSN

B

reak

er sh

unt d

evic

e Q

uarte

rly f

No

No

g 1

per b

reak

er

BU

V

Bre

aker

und

ervo

ltage

coi

l M

onth

ly h

No

No

g 1

per b

reak

er

RM

A

Con

trol e

lem

ent a

ssem

bly

& ro

d C

yclic

N

o Y

es

Plan

t-spe

cific

. N

PRD

S da

ta n

ot c

olle

cted

afte

r 3/1

5/94

. a.

In

form

atio

n is

from

CEN

-327

-A.

A C

ombu

stio

n En

gine

erin

g ow

ners

gro

up su

bmitt

al in

May

198

6, a

rgue

d fo

r qua

rterly

rath

er th

an m

onth

ly te

stin

g of

cha

nnel

s. H

owev

er,

it is

not

kno

wn

whe

n pa

rticu

lar p

lant

s sw

itche

d to

qua

rterly

test

ing.

Thi

s stu

dy a

ssum

es q

uarte

rly te

stin

g fo

r the

ent

ire st

udy

perio

d (1

984-

1995

). b.

O

pera

ting

com

pone

nts a

re th

ose

com

pone

nts w

hose

safe

ty fu

nctio

n fa

ilure

s can

be

dete

cted

in ti

me.

Rat

es a

s wel

l as p

roba

bilit

ies o

f fai

lure

on

dem

and

are

estim

ated

for

oper

atin

g co

mpo

nent

s. T

he in

stru

men

ts a

re v

isua

lly c

heck

ed in

eac

h sh

ift, a

nd th

e co

re p

rote

ctio

n ca

lcul

ator

s per

form

con

tinuo

us in

tern

al c

heck

ing

for c

erta

in ty

pes o

f fa

ilure

s. c.

In

the

quar

terly

cha

nnel

test

s, re

spon

sive

ness

of t

he se

nsor

/tran

smitt

er si

gnal

con

ditio

ning

is v

erifi

ed.

d.

Plan

t Mod

el G

roup

s 1 a

nd 2

are

ana

log,

whi

le G

roup

s 3 a

nd 4

are

dig

ital.

See

Tab

le 3

. Th

ere

are

two

loop

s/pl

ant,

exce

pt fo

r Mai

ne Y

anke

e, w

hich

has

thre

e.

e.

Dem

ande

d in

man

ual t

rips,

not a

utom

atic

trip

s. f.

Each

qua

rterly

test

incl

udes

6 d

eman

ds, o

ne a

ssoc

iate

d w

ith e

ach

logi

c m

atrix

. g.

B

SN o

r BU

V fa

ilure

s tha

t occ

ur d

urin

g a

trip

gene

rally

can

not b

e de

tect

ed.

Bot

h B

SN a

nd B

UV

mus

t fai

l in

orde

r for

the

failu

re to

be

dete

cted

.

h.

Qua

rterly

test

s not

incl

uded

for B

UV

bec

ause

the

brea

ker a

ctua

tion

test

s do

not t

est U

V a

nd sh

unt m

echa

nism

s sep

arat

ely.

Page 39: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

2.1.5 System Boundary

The RPS boundary for this study includes the four segments indicated in Table 2-3. Also included is the control room operator who pushes the manual reactor trip buttons. The supplementary protection system (SPS, an ATWS system) is not included in the analysis.

2.2 System Fault Tree

This section briefly describes the Combustion Engineering RPS fault trees developed for this study. Appendix D presents the actual fault trees. The analysis of the Combustion Engineering RPS is based on representative designs based on Groups 1, 2, 3, and 4, as defined in Table 2-2. Note that the RPS fault tree development represents a moderate level of detail, reflecting the purpose of this project—to collect actual RPS performance data and assemble the data into overall RPS unavailability estimates. The level of detail in the fault trees reflects the level of detail available from the component failure information in the NPRDS and the LERs.

The top event in the RPS fault tree is Reactor Protection System (RPS) Fails. RPS failure at this top level is defined as an insufficient number of shutdown rods inserting into the core to inhibit the nuclear reaction. Various plant upset conditions can result in differing requirements for the minimum number of shutdown rods to be inserted into the core, and the positions of the shutdown rods within the core can also be important. The shutdown rod failure criterion was chosen to be 20 percent (or more) of the shutdown rods fail to insert.

The level of detail in the RPS fault tree includes sensor/transmitters, bistable trip units, relays, trip contactors/trip circuit breakers with the undervoltage and shunt trip devices modeled separately, control rod drives, and control rods. The Loss of Main Feedwater event is the most severe event with respect to the Severe Condition 3 reactor coolant pressure limit. This event is modeled as high pressurizer pressure and high thermal margin/low pressure (see Table 2-5). These are two parameters that would detect several types of plant upset conditions while the plant is at power.

Common-cause failures (CCFs) across similar components were explicitly modeled in the RPS fault tree. Examples of such components include the sensor/transmitters, bistable trip units, relays, trip breakers with the undervoltage and shunt trip devices modeled separately, and CRD/rods. In general, the common-cause modeling in the RPS fault tree is limited to the events that fail enough components to fail that portion of the RPS. Lower-order CCF events are not modeled in the fault tree. Such events would have to be combined with independent failures to fail the portion of the RPS being modeled. Such combinations of events (not modeled in the fault tree) were reviewed to ensure that they would not have contributed significantly to the overall RPS unavailability.

Test and maintenance outages and associated RPS configurations are modeled for channel outages. For channel outages, the fault tree was developed based on the assumption that a channel out for testing or maintenance is placed into the bypass mode rather than a tripped mode. All channel test and maintenance outages are modeled in Channel A. There are no test and maintenance outages modeled for the trip modules or breakers, since these components are placed in a tripped state during testing and have no effect on the failure to insert rods.

2.3 Operational Data Collection, Characterization, and Analysis

The RPS data collection, characterization, and analysis process is shown in Figure 2-9. The major tasks include failure data collection and characterization, demand data collection, and data analysis. Each

17

Page 40: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

of these major tasks is discussed below. Also discussed is the engineering analysis of the data. Appendix A presents a more detailed explanation of the process.

2.3.1 Inoperability Data Collection and Characterization

The RPS is a system required by technical specifications to be operable when the reactor vessel pressure is above 150 psig (some plants have a 90-psig requirement); therefore, all occurrences that result in the system not being operable are required by 10 CFR 50.73(a)(2)(i)(B) to be reported in LERs. In addition, 10 CFR 50.73(a)(2)(vii) requires the licensee to report all common-cause failures resulting in a loss of capability for safe shutdown. Therefore, the SCSS LER database should include all occurrences when the RPS was not operable and all common-cause failures of the RPS. However, the LERs will not normally report RPS component independent failures. Therefore, the LER search was supplemented by an NPRDS data search. NPRDS data were downloaded for all RPS and control rod drive system records for the years 1984 through 1995. The SCSS database was searched for all RPS failures for the period 1984 through 1998. In addition, the NRC’s Performance Indicator Database and the 1987–1998 database used for the initiating events study [NUREG/CR-5750] were compared to obtain a list of unplanned RPS demands (reactor trips).

The NPRDS reportable scope for RPS and control rod drive systems includes the components modeled in the fault tree described in Section 2.2 and presented in Appendix D. Therefore, the NPRDS data search should identify all RPS component failures through the end of 1995. Failures for control rods, however, are only reported in the NPRDS through March 15, 1994.

In this report, the term inoperability is used to describe any RPS event reported by NPRDS or the LERs. The inoperabilities are classified as fail-safe (FS) or non-fail-safe (NFS) for the purposes of this study. The term NFS is used to identify the subset of inoperabilities for which the safety function of the RPS component was impacted. An example of an NFS event is a failure of the channel trip unit to open given a valid signal to open. The term FS is used to describe the subset of inoperabilities for which the safety function of the RPS component was not impacted. Using the trip unit as an example, a spurious opening of the trip unit is an FS event for the purposes of this study. For some events, it was not clear whether the inoperability is FS or NFS. In such cases, the event was coded as unknown (UKN).

Inoperability events were further classified with respect to the degree of failure. An event that resulted in complete failure of a component was classified as a Complete Failure (CF). The failure of a trip unit to open given a valid signal to open is a CF (and NFS) event. Events that indicated some degradation of the component, but with the component still able to function, were classified as No Failure (NF). An example of an NF event is a trip unit with its trip setting slightly out of specification, but which is still able to open (but late) when demanded. For some events, it was not clear, whether the inoperability was CF or NF. In such cases, the event was coded as Unknown Completeness (UC).

Table 2-7 summarizes the data classification scheme. In the table, the data can be placed into nine bins. These nine bins represent combinations of the three types of safety function impact (NFS, UKN, or FS) and the three degrees of failure completeness (CF, UC, or NF). As indicated by the shaded area in Table 2-7, the data classification results in one bin containing non-fail-safe complete failures (NFS/CF) and three bins (NFS/UC, UKN/CF, and UKN/UC) that contain events that are potentially NFS/CF. For these three bins, a lack of information in the data event reports did not allow the data analyst to determine whether the events were NFS/CF. These three bins are called collectively, “Uncertain Failures.” The other five bins do not contain potential NFS/CF events, and generally were not used in the data analysis.

18

Page 41: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

No

Yes

Data Collection• LERs• NPRDSData Classification• Component affected• Safety function lost or

unknown• Complete failure, or

unknown• Nature of demand

Demand Events• Unplanned demands,

from reactor trips atpower

• Planned testing• Estimate count from

number of componentsand test frequency

• Power operations orshutdown

Compute maximum likelihood point estimates(MLEs) and confidence intervals. Also seekmaximum likelihood distributions to represent thedata for each component.Analyze cases, including all uncertain failures andcases including no uncertain failures

Test hypotheses and evaluate distributions toselect data subset to use for industry for eachcomponent, based on

• Test or reactor trip demand• Plant operational status• Time period (early vs. late)• Between-plant variation• Between-year variation

For each component, arethere faults with

unknown completenessor safety impact?

Combine distributions fromsimulations that include randomcombinations of the uncertainfailures

Final component unavailabilityestimates and uncertaintydistributions

• Nuclear steam system supplier (NSSS)

Figure 2-9. Data collection, characterization, and analysis process.

19

Page 42: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

Table 2-7. Data classification scheme.

Safety Function Impact NFS/CF (safety function impact, complete failure)

UKN/CF (unknown safety function impact, complete failure; potential NFS/CF)

FS/CF (no safety function impact, complete failure)

NFS/UC (safety function impact, unknown completeness; potential NFS/CF)

UKN/UC (unknown safety function impact, unknown completeness; potential NFS/CF)

FS/UC (no safety function impact, unknown completeness)

Failure Completeness

NFS/NF (safety function impact, no failure)

UKN/NF (unknown safety function impact, no failure)

FS/NF (no safety function impact, no failure)

The data characterization followed a three-step process: an initial review and classification by personnel with operator level nuclear plant experience, a consistency check by the same personnel (reviewing work performed by others), and a final, focused review by instrumentation and control and RPS experts. This effort involved approximately 2400 NPRDS and LER records.

2.3.2 Demand Data Collection and Characterization

Demand counts for the RPS include both unplanned system demands or unplanned reactor trips while the plant is at power, and tests of RPS components. These demands meet two necessary criteria: (1) the demands must be identifiable, countable, and associated with specific RPS components, and (2) the demands must reasonably approximate the conditions being considered in this study. Unplanned reactor trips meet these criteria for the following RPS components: breakers, manual switches (for manual trips), and the CRD/RODS. However, the reactor trips do not meet the first criterion for channel components, because it is not clear what reactor trip signals existed for each unplanned reactor trip. For example, not all unplanned reactor trips might have resulted from a reactor vessel high pressure.

The RPS component tests clearly meet the first criterion, though uncertainty exists in the association of RPS component failures with particular types of testing. For this report, any failures discovered in testing were assumed to be associated with the specific periodic testing described in Section 2.1.4. Because of the types of tests, the test demands also meet the second criterion, i.e., the tests are believed to adequately approximate conditions associated with unplanned reactor trips.

For unplanned demands, the LER Performance Indicator data describe all unplanned reactor trips while plants are critical. The reactor trip LERs were screened to determine whether the reactor trips were automatic or manual, since each type exercises different portions of the RPS. For RPS component tests, demands were counted based on component populations and the testing schedule described in Section 2.1.4. More details on the counting of demands are presented in Appendix A.

2.3.3 Data Analysis

In Figure 2-9, the data analysis steps shown cover the risk-based analysis of the operational data leading to the quantification of RPS unavailability. Not shown in Figure 2-9 is the engineering analysis of the operational data. The risk-based analysis involves analysis of the data to determine the appropriate subset of data for each component unavailability calculation. Then simulations can be performed to characterize the uncertainty associated with each component unavailability.

20

Page 43: Reliability Study: Combustion Engineering Reactor Protection

Scope of Study

The risk-based analysis of the operational data (Section 3) and engineering analysis of the operational data (Sections 4.1 and 4.2) are largely based on two different data sets. The Venn diagram in Figure 2-10 illustrates the relationship between these data sets. Data set A represents all of the LER and NPRDS events that identified an RPS inoperability. Data set B represents the inoperabilities that resulted in a complete loss of the safety function of the RPS component, or the NFS/CF events (and some fraction of the NFS/UC, UKN/CF, and UKN/UC events). Finally, data set C represents the NFS/CF events (and some fraction of the NFS/UC, UKN/CF, and UKN/UC events) for which the corresponding demands could be counted. Data set C (or a subset of C) is used for the failure upon demand risk-based analysis of the RPS components. Data set C contains all NFS/CF events (and some fraction of the NFS/UC, UKN/CF, and UKN/UC events) that occurred during either an unplanned reactor trip while the plant was critical or a periodic surveillance test.

Since the instrumentation is continuously operating, it may experience failures that are detected and repaired on an ongoing basis. The failure modes for such failures differ from the failure modes that may be detected on demands or tests. Instrumentation failures in Set B that are not in Set C were used to estimate failure rates for the unavailability analysis for these components.

A

C

B

RPS inoperabilities identified in NPRDS orLERs

RPS inoperabilities that are complete and NFS*

RPS complete NFS events whose demand countcould be estimated*

A

B

C

* Includes some fraction of the NFS/UC, UKN/CF,and UKN/UC events.

Figure 2-10. RPS data sets.

The purpose of the engineering analysis is to provide qualitative insights into RPS performance. The engineering analysis focused on data set B in Figure 2-10, which includes data set C as a subset. Data set A was not used for the engineering analysis because the additional FS events in that data set were not judged to be informative with respect to RPS failure to trip, which is the focus of this report.

In contrast to the risk-based analysis of operational data to obtain component failures upon demand, which used data set C, the CCF analysis used the entire data set B. This is appropriate because the CCF analysis is concerned with what fraction of all NFS events involved more than one component. Such an analysis does not require that the failures be matched to demands. The engineering analysis of CCF events, in Section 4, also used data set B.

21

Page 44: Reliability Study: Combustion Engineering Reactor Protection

3. RISK-BASED ANALYSIS OF OPERATIONAL DATA

3.1 Unavailability Estimates Based on System Operational Data

If the Combustion Engineering RPS evaluated at the system level, with no consideration of plant-to-plant variations in RPS designs, then a system failure probability should be able to be estimated based on the total system failures and total system demands. For the period 1984 through 1998, there were no RPS system failures in 612 demands (unplanned reactor trips). This data is too sparse to accurately estimate a system unavailability using a Jeffreys noninformative prior and applying a Bayesian update technique. Therefore, in order to obtain a realistic RPS unavailability estimate, an RPS fault tree was developed, as discussed in the following section. That approach permits the use of RPS component failure data.

3.2 Unavailability Estimates Based on Component Operational Data

3.2.1 Fault Tree Unavailability Results

The Combustion Engineering RPS fault trees presented in Appendix D and discussed in Section 2.2 were quantified using the SAPHIRE computer code.10 Fault tree basic event probabilities are presented in the following tables. The basic events are divided into three groups: component independent failure events (Table 3-1), CCF events (Table 3-2), and other types of events, such as test and maintenance outages and operator errors (Table 3-3). Failure probabilities for the component independent failures were obtained from the Combustion Engineering RPS data and other PWR vendors as necessary. Failure data are discussed in Section 2.3. Details of the methodology are discussed in Appendix A, a summary of the data is presented in Appendix B, and the results of the analyses are presented in Appendix C. All of the component independent failure probabilities listed in Table 3-1 are based on component failure events during the period 1984 through 1998. Data collection is shown in Table C-1 in Appendix C.

The CCF event probabilities in Table 3-2 are based on the Combustion Engineering RPS CCF data during the period 1984 through 1998. However, the CCF event probabilities are also influenced by the prior used in the Bayesian updating of the common-cause α parameters. The prior for this study was developed from the overall PWR RPS CCF database. A summary of the Combustion Engineering CCF data is presented in Appendix B, while the actual details of the CCF calculations are in described in Appendix E. In general, the CCF events reflect multipliers (from the alpha equations) of 0.01 to 0.0002 on the total component failure probabilities in Table 3-2.

The other types of fault tree basic events in Table 3-3 involve test and maintenance outages and operator error. No credit was taken for operator action to manually actuate the RPS in the base case quantification, so the operator action has a failure probability of 1.0. However, the RPS was also quantified assuming an operator action failure probability of 1.0E-2, which is a typical value used in individual plant examinations (IPEs).

22

Page 45: Reliability Study: Combustion Engineering Reactor Protection

Tab

le 3

-1.

Com

bust

ion

Engi

neer

ing

RPS

faul

t tre

e in

depe

nden

t fai

lure

bas

ic e

vent

s.

23

Risk-Based Analysis of the Operationa

Tab

le 3

-1.

(Con

tinue

d)

Com

p-o

nent

C

ode

Com

pone

nt

Type

Fa

ult T

ree

Bas

ic E

vent

Num

ber

of

Failu

res

a

Num

ber

of

Dem

ands

Mod

eled

V

aria

tion

b D

istri

butio

n

Bay

es

5%,

Mea

n,

95%

B

asic

Eve

nt D

escr

iptio

n B

MEc

Bre

aker

m

echa

nica

l C

E2-B

ME-

FO-T

B-

1,2,

3,4,

5,6,

7,8

CE3

-BM

E-FO

-TB

-1,

2,3,

4,5,

6,7,

8 C

E4-B

ME-

FO-T

B-1

,2,3

,4

1 (1

.0)

83,8

13

Sam

plin

g Lo

gnor

mal

4.

3E-6

1.

8E-5

4.

5E-5

Trip

bre

aker

loca

l har

dwar

e fa

ults

BSN

Shun

t trip

devi

ce

CE2

-BSN

-FF-

TB-1

,2,3

,4,5

,6,7

,8

CE3

-BSN

-FF-

TB-1

,2,3

,4,5

,6,7

,8

CE4

-BSN

-FF-

TB-1

,2,3

,4

3 (3

.5)

25,2

70

Yea

r Lo

gnor

mal

6.

3E-6

1.

5E-4

5.

5E-4

Shun

t trip

dev

ice

loca

l fau

lts

BU

VU

nder

volta

ge

devi

ce

CE2

-BU

V-F

F-TB

-1,

2,3,

4,5,

6,7,

8 C

E3-B

UV

-FF-

TB-

1,2,

3,4,

5,6,

7,8

CE4

-BU

V-F

F-TB

-1,2

,3,4

10

(13.

6)

12,6

35Pl

ant

Logn

orm

al1.

4E-4

1.1E

-3

3.5E

-3

Und

ervo

ltage

coi

l dev

ice

loca

l fau

lts

CB

ITr

ip u

nit

(bis

tabl

e)

CE1

-CB

I-FF

-PA

,B,C

,D

CE1

-CB

I-FF

-TA

,B,C

,D

CE2

-CB

I-FF

-PA

,B,C

,D

CE2

-CB

I-FF

-TA

,B,C

,D

CE3

-CB

I-FF

-PA

,B,C

,D

CE3

-CB

I-FF

-TA

,B,C

,D

CE4

-CB

I-FF

-PA

,B,C

,D

CE4

-CB

I-FF

-TA

,B,C

,D

5 (7

.0)

15,2

62

Plan

t Lo

gnor

mal

3.

4E-5

5.

0E-4

1.

8E-3

Cha

nnel

trip

uni

t (bi

stab

le)

fails

to tr

ip a

t its

setp

oint

CPA

Ana

log

core

prot

ectio

n ca

lcul

ator

CE1

-CPA

-FF-

TA,B

,C,D

C

E2-C

PA-F

F-TA

,B,C

,D

3(8.

2)10

82Pl

ant

Logn

orm

al1.

6E-3

7.6E

-3

2.0E

-2

Cha

nnel

ana

log

core

pr

otec

tion

calc

ulat

or fa

ils to

se

nd a

sign

al to

the

trip

unit

al c

ore

CPD

Dig

ital c

ore

CE3

-CPD

-FF-

TA,B

,C,D

1(

1.0)

548

Sam

plin

gLo

gnor

mal

6.5E

-4C

hann

el d

igit

l Data

prot

ectio

n ca

lcul

ator

C

E4-C

PD-F

F-TA

,B,C

,D

2.7E

-3

6.8E

-3

prot

ectio

n ca

lcul

ator

fails

to

send

a si

gnal

to th

e tri

p un

it

Page 46: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operatio

Tab

le 3

-1.

(Con

tinue

d)

Com

p-o

nent

C

ompo

nent

Num

ber

of

Failu

res

a

Num

ber

of

Mod

eled

V

aria

tion

b

Bay

es

5%,

Mea

n,

nal Data

24

Cod

e Ty

pe

Faul

t Tre

e B

asic

Eve

nt

Dem

ands

D

istri

butio

n 95

%

Bas

ic E

vent

Des

crip

tion

CPR

Pres

sure

sens

or/

trans

mitt

er

CE1

-CPR

-FF-

PA,B

,C,D

C

E2-C

PR-F

F-PA

,B,C

,D

CE3

-CPR

-FF-

PA,B

,C,D

C

E4-C

PR-F

F-PA

,B,C

,D

0 (0

.0)

4,67

8 Pl

ant

Logn

orm

al

1.1E

-5

1.1E

-4

3.5E

-4

Cha

nnel

reac

tor v

esse

l pr

essu

re se

nsor

/ tra

nsm

itter

fa

ils to

det

ect a

hig

h pr

essu

re

and

send

s a si

gnal

to th

e tri

p un

it C

TP

Tem

pera

tur

e se

nsor

/ tra

nsm

itter

CE1

-CTP

-FF-

C(H

)TA

,B,C

,D

CE2

-CTP

-FF-

C(H

)TA

,B,C

,D

CE3

-CTP

-FF-

C(H

)TA

,B,C

,D

CE4

-CTP

-FF-

C(H

)TA

,B,C

,D

2 (4

.2)

12,5

30

Sam

plin

g Lo

gnor

mal

4.

2E-4

8.

4E-4

1.

5E-3

Cha

nnel

reac

tor v

esse

l te

mpe

ratu

re/ t

rans

mitt

er (c

old

or h

ot le

g) fa

ils to

det

ect a

lo

w le

vel a

nd se

nds a

sign

al

to th

e tri

p un

it M

SWc

Man

ual

scra

m

switc

h

CE1

-MSW

-FF-

MT1

,2

CE2

-MSW

-FF-

MT1

,2,3

,4

CE3

-MSW

-FF-

MT1

,2,3

,4

CE4

-MSW

-FF-

MT1

,2,3

,4

2 (2

.0)

19,7

89

Sam

plin

g Lo

gnor

mal

4.

1E-5

1.

3E-4

2.

8E-4

Man

ual s

cram

switc

h fa

ils to

op

erat

e up

on d

eman

d

RM

Ac

(RO

D

and

CR

D)

Con

trol r

od

and

asso

ciat

ed

cont

rol r

od

driv

e

Non

e (s

uppo

rts R

OD

CC

F ev

ent

in fa

ult t

ree)

1

(2.9

) 18

9,53

6 Pl

ant

Logn

orm

al

3.4E

-7

1.7E

-5

6.4E

-5

Con

trol r

od (o

r ass

ocia

ted

cont

rol r

od d

rive)

fails

to

inse

rt fu

lly in

to c

ore

upon

de

man

d

RY

LLo

gic

Rel

ay

CE1

-RY

L-FF

-LA

,B,C

,D –

1,2,

3,4

CE2

-RY

L-FF

-LA

,B,C

,D –

1,2,

3,4

CE3

-RY

L-FF

-LA

,B,C

,D –

1,2,

3,4

CE4

-RY

L-FF

-LA

,B,C

,D –

1,2,

3,4

2 (4

.2)

16,1

60

Plan

t Lo

gnor

mal

2.

2E-5

2.

6E-4

8.

8E-4

Cha

nnel

logi

c re

lay

fails

to

de-e

nerg

ize

upon

dem

and

Page 47: Reliability Study: Combustion Engineering Reactor Protection

Tab

le 3

-1.

(Con

tinue

d)

Com

p-o

nent

25

Cod

e C

ompo

nent

Ty

pe

Faul

t Tre

e B

asic

Eve

nt

Num

ber

of

Failu

res

a

Num

ber

of

Dem

ands

Mod

eled

V

aria

tion

b D

istri

butio

n

Bay

es

5%,

Mea

n,

95%

B

asic

Eve

nt D

escr

iptio

n R

YT

Trip

Rel

ayC

E1-R

YT-

FF-I

CM

1,2,

3,4

CE2

-RY

T-FF

-IC

K1,

2,3,

4 C

E3-R

YT-

FF-I

CK

1,2,

3,4

CE4

-RY

T-FF

-IC

K1,

2,3,

4

1 (1

.5)

16,1

60

Sam

plin

g Lo

gnor

mal

3.

3E-5

1.

2E-4

3.

0E-4

Trip

syst

em tr

ip re

lay

fails

to

de-e

nerg

ize

upon

dem

and

a. In

clud

es u

ncer

tain

eve

nts a

nd C

CF

even

ts.

The

num

ber i

n pa

rent

hese

s is t

he w

eigh

ted

aver

age

num

ber o

f fai

lure

s, re

sulti

ng fr

om th

e in

clus

ion

of u

ncer

tain

eve

nts f

rom

dat

a bi

ns N

FS/U

C, U

KN

/CF,

and

UK

N/U

C (e

xpla

ined

in S

ectio

n 2.

3.1)

. b.

Mod

eled

var

iatio

n in

dica

tes t

he ty

pe o

f dat

a gr

oupi

ng u

sed

to d

eter

min

e th

e un

certa

inty

ban

ds.

For e

xam

ple,

for t

he p

lant

-to-p

lant

var

iatio

n, d

ata

wer

e or

gani

zed

by p

lant

to o

btai

n co

mpo

nent

fa

ilure

pro

babi

litie

s per

pla

nt.

Then

, the

pla

nt fa

ilure

pro

babi

litie

s wer

e co

mbi

ned

to o

btai

n th

e m

ean

and

varia

nce

for t

he c

ompo

nent

unc

erta

inty

dis

tribu

tion.

See

App

endi

x A

for m

ore

deta

ils.

c. T

he fa

ilure

dat

a an

d de

man

d co

unts

for t

his c

ompo

nent

are

bas

ed o

n po

olin

g of

two

or m

ore

plan

t ven

dor d

esig

ns.

See

App

endi

x C

Tab

le C

-9 fo

r mor

e de

tail

on w

hich

ven

dors

wer

e po

oled

. T

able

3-2

. C

ombu

stio

n En

gine

erin

g R

PS fa

ult t

ree

CC

F ba

sic

even

ts.

Risk-Based Analysis of the Operational Data

Tab

le 3

-2.

(Con

tinue

d)

Com

pone

nt

Cod

e C

ompo

nent

Ty

pe

Bas

ic E

vent

(s)

Num

ber

of C

CF

Even

ts

Dis

tribu

tion

Bay

es

5%,

Mea

n,

95%

Bas

ic E

vent

Des

crip

tion

BM

E a

Bre

aker

m

echa

nica

l C

E2-B

ME-

CF-

TB2O

F8

CE3

-BM

E-C

F-TB

2OF8

3

Logn

orm

al

1.

9E-7

1.0E

-6

2.7E

-6

CC

F 2

of 8

trip

bre

aker

loca

l har

dwar

e fa

ults

CE4

-BM

E-C

F-TB

2OF4

3 Lo

gnor

mal

8.

0E-8

C

CF

2 of

4 tr

ip b

reak

er lo

cal h

ardw

are

faul

ts

7.1E

-7

2.2E

-6

BSN

Sh

unt t

rip

devi

ce

CE2

-BSN

-CF-

TB2O

F8

CE3

-BSN

-CF-

TB2O

F8

2Lo

gnor

mal

3.9E

-71.

1E-6

4.

.0E-

5

CC

F 2

of 8

shun

t trip

dev

ice

loca

l fau

lts

Page 48: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operatio

Tab

le 3

-2.

(Con

tinue

d)

Com

pone

nt

Com

pone

nt

Num

ber

of C

CF

Bay

es

5%,

Mea

n,

nal Data

26

Cod

e Ty

pe

Bas

ic E

vent

(s)

Even

ts

Dis

tribu

tion

95%

B

asic

Eve

nt D

escr

iptio

n

CE4

-BSN

-CF-

TB2O

F42

Logn

orm

al

2.5E

-7

CC

F 2

of 4

shun

t trip

dev

ice

loca

l fau

lts

8.7E

-6

3.3E

-5

BU

V

Und

ervo

ltage

devi

ce

CE2

-BU

V-C

F-TB

2OF8

C

E3-B

UV

-CF-

TB2O

F8

2Lo

gnor

mal

5.1E

-65.

4E-5

1.

8E-4

CC

F 2

of 8

und

ervo

ltage

coi

l dev

ice

loca

l fa

ults

CE4

-BU

V-C

F-TB

2OF4

2 Lo

gnor

mal

2.

3E-6

C

CF

2 of

4 u

nder

volta

ge c

oil d

evic

e lo

cal

faul

ts

3.7E

-5

1.3E

-4

CB

ITr

ip u

nit

(bis

tabl

e)

CE1

-CB

I-C

F-P(

T)2O

F3TM

C

E2-C

BI-

CF-

P(T)

2OF3

TM

CE3

-CB

I-C

F-P(

T)2O

F3TM

C

E4-C

BI-

CF-

P(T)

2OF3

TM

27Lo

gnor

mal

1.1E

-62.

6E-5

9.

5E-5

CC

F sp

ecifi

c 2

of 3

bis

tabl

es a

ssoc

iate

d w

ith

eith

er a

pre

ssur

e (P

) or t

empe

ratu

re (T

) si

gnal

(T&

M)

CE1

-CB

I-C

F-P(

T)3O

F4C

E2-C

BI-

CF-

P(T)

3OF4

C

E3-C

BI-

CF-

P(T)

3OF4

C

E4-C

BI-

CF-

P(T)

3OF4

27Lo

gnor

mal

1.4E

-77.

2E-6

2.

8E-5

CC

F sp

ecifi

c 3

of 4

bis

tabl

es a

ssoc

iate

d w

ith

eith

er a

pre

ssur

e (P

) or t

empe

ratu

re (T

) si

gnal

CE1

-CB

I-C

F-4O

F6TM

CE2

-CB

I-C

F-4O

F6TM

C

E3-C

BI-

CF-

4OF6

TM

CE4

-CB

I-C

F-4O

F6TM

27Lo

gnor

mal

3.7E

-81.

7E-6

6.

6E-6

CC

F sp

ecifi

c 4

of 6

bis

tabl

es (T

&M

)

CE1

-CB

I-C

F-6O

F8C

E2-C

BI-

CF-

6OF8

C

E3-C

BI-

CF-

6OF8

C

E4-C

BI-

CF-

6OF8

27Lo

gnor

mal

7.1E

-97.

7E-7

2.

9E-6

CC

F sp

ecifi

c 6

of 8

bis

tabl

es

CPA

Ana

log

core

prot

ectio

n ca

lcul

ator

CE1

-CPA

-CF-

T2O

F3TM

C

E2-C

PA-C

F-T2

OF3

TM

7Lo

gnor

mal

4.9E

-53.

8E-4

1.

2E-3

CC

F 2

of 3

ana

log

core

pro

tect

ion

calc

ulat

ors (

T&M

)

Page 49: Reliability Study: Combustion Engineering Reactor Protection

Tab

le 3

-2.

(Con

tinue

d)

Com

pone

nt

Com

pone

nt

Num

ber

of C

CF

Bay

es

5%,

Mea

n,

27

Risk-Based Analysis of the Operational Data

Cod

e Ty

pe

Bas

ic E

vent

(s)

Even

ts

Dis

tribu

tion

95%

B

asic

Eve

nt D

escr

iptio

n

C

E1-C

PA-C

F-T3

OF4

CE2

-CPA

-CF-

T3O

F4

7Lo

gnor

mal

1.3E

-51.

7E-4

5.

6E-4

CC

F 3

of 4

ana

log

core

pro

tect

ion

calc

ulat

ors

CPD

Dig

ital c

ore

prot

ectio

n ca

lcul

ator

CE3

-CPD

-CF-

T2O

F3TM

C

E4-C

PD-C

F-T2

OF3

TM

9Lo

gnor

mal

2.3E

-51.

4E-4

3.

8E-4

CC

F 2

of 3

dig

ital c

ore

prot

ectio

n ca

lcul

ator

s (T&

M)

CE3

-CPD

-CF-

T3O

F4

CE4

-CPD

-CF-

T3O

F4

9Lo

gnor

mal

6.3E

-65.

7E-5

1.

8E-4

CC

F 3

of 4

dig

ital c

ore

prot

ectio

n ca

lcul

ator

s

CPR

Pres

sure

sens

or/

trans

mitt

er

C

E1-C

PR-C

F-P2

OF3

TM

CE2

-CPR

-CF-

P2O

F3TM

C

E3-C

PR-C

F-P2

OF3

TM

CE4

-CPR

-CF-

P2O

F3TM

6Lo

gnor

mal

3.0E

-75.

0E-6

1.

8E-5

CC

F 2

of 3

pre

ssur

e se

nsor

/ tra

nsm

itter

s (T

&M

)

CE1

-CPR

-CF-

P3O

F4C

E2-C

PR-C

F-P3

OF4

C

E3-C

PR-C

F-P3

OF4

C

E4-C

PR-C

F-P3

OF4

6Lo

gnor

mal

4.0E

-81.

5E-6

5.

8E-6

CC

F 3

of 4

pre

ssur

e se

nsor

/ tra

nsm

itter

s

CTP

Tem

pera

ture

sens

or/

trans

mitt

er

CE1

-CTP

-CF-

C(H

)T2O

F3TM

C

E2-C

TP-C

F-C

(H)T

2OF3

TM

CE3

-CTP

-CF-

C(H

)T2O

F3TM

C

E4-C

TP-C

F-C

(H)T

2OF3

TM

10Lo

gnor

mal

8.0E

-63.

7E-5

9.

8E-5

CC

F 2

of 3

tem

pera

ture

sens

or/ t

rans

mitt

ers

(T&

M)

CE1

-CTP

-CF-

C(H

)T3O

F4C

E2-C

TP-C

F-C

(H)T

3OF4

C

E3-C

TP-C

F-C

(H)T

3OF4

C

E4-C

TP-C

F-C

(H)T

3OF4

10Lo

gnor

mal

7.5E

-71.

0E-5

3.

5E-5

CC

F 3

of 4

tem

pera

ture

sens

or/ t

rans

mitt

ers

MSW

a

Man

ual T

rip

Switc

h C

E2-M

SW-C

F-2O

F4

CE3

-MSW

-CF-

2OF4

C

E4-M

SW-C

F-2O

F4

0Lo

gnor

mal

7.4E

-75.

0E-6

1.

5E-5

CC

F sp

ecifi

c 2

of 4

man

ual t

rip sw

itche

s

Page 50: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operatio

Tab

le 3

-2.

(Con

tinue

d)

Com

pone

nt

Com

pone

nt

Num

ber

of C

CF

Bay

es

5%,

Mea

n,

nal Data

28

Cod

e Ty

pe

Bas

ic E

vent

(s)

Even

ts

Dis

tribu

tion

95%

B

asic

Eve

nt D

escr

iptio

n PW

R

dc

pow

erC

E2-P

WR

-CF-

TB2O

F4C

E3-P

WR

-CF-

TB2O

F4

CE4

-PW

R-C

F-TB

2OF4

N/A

Logn

orm

al2.

3E-7

2.5E

-6

8.3E

-6

CC

F sp

ecifi

c 2

of 4

trip

bre

aker

shun

t trip

de

vice

pow

er

RM

A

(RO

D a

nd

CR

D) a

Con

trol r

od a

nd

asso

ciat

ed

cont

rol r

od

driv

e

CE1

-RO

D-C

F-R

OD

S C

E2-R

OD

-CF-

RO

DS

CE3

-RO

D-C

F-R

OD

S C

E4-R

OD

-CF-

RO

DS

2

Logn

orm

al7.

5E-

10

3.6E

-8

1.4E

-7

CC

F 50

% (1

8 of

36)

or m

ore

CR

D/ro

ds fa

il to

inse

rt

RY

L Lo

gic

Rel

ay

CE1

-RY

L-C

F-LM

6OF1

2TM

C

E2-R

YL-

CF-

LM6O

F12T

M

CE3

-RY

L-C

F-LM

6OF1

2TM

C

E4-R

YL-

CF-

LM6O

F12T

M

0Lo

gnor

mal

4.8E

-91.

6E-7

6.

0E-7

CC

F sp

ecifi

c 6

of 1

2 lo

gic

rela

ys (T

&M

)

CE1

-RY

L-C

F-LM

12O

F24

CE2

-RY

L-C

F-LM

12O

F24

CE3

-RY

L-C

F-LM

12O

F24

CE4

-RY

L-C

F-LM

12O

F24

0Lo

gnor

mal

5.3E

-10

4.

3E-8

1.

7E-7

CC

F sp

ecifi

c 12

of 2

4 lo

gic

rela

ys

CE1

-RY

L-C

F-1,

2,3,

4LM

3OF3

TM

CE2

-RY

L-C

F-1,

2,3,

4LM

3OF3

TM

CE3

-RY

L-C

F-1,

2,3,

4LM

3OF3

TM

CE4

-RY

L-C

F-1,

2,3,

4LM

3OF3

TM

0Lo

gnor

mal

4.8E

-94.

7E-7

1.

8E-6

CC

F 3

of 3

logi

c re

lays

(T&

M)

CE1

-RY

L-C

F-1,

2,3,

4LM

6OF6

0

CE2

-RY

L-C

F-1,

2,3,

4LM

6OF6

C

E3-R

YL-

CF-

1,2,

3,4L

M6O

F6

CE4

-RY

L-C

F-1,

2,3,

4LM

6OF6

Logn

orm

al8.

2E-

10

2.0E

-7

7.2E

-7

CC

F 6

of 6

logi

c re

lays

Page 51: Reliability Study: Combustion Engineering Reactor Protection

Tab

le 3

-2.

(Con

tinue

d)

Com

pone

nt

Com

pone

nt

Num

ber

of C

CF

Bay

es

5%,

Mea

n,

29

Risk-Based Analysis of the Operational Data

Cod

e Ty

pe

Bas

ic E

vent

(s)

Even

ts

Dis

tribu

tion

95%

B

asic

Eve

nt D

escr

iptio

n R

YT

Tr

ip R

elay

CE1

-RY

T-C

F-TR

2OF4

CE2

-RY

T-C

F-TR

2OF4

C

E3-R

YT-

CF-

TR2O

F4

CE4

-RY

T-C

F-TR

2OF4

0Lo

gnor

mal

5.7E

-74.

8E-6

1.

5E-5

CC

F 2

of 4

trip

rela

ys

a. T

hese

CC

F ev

ents

wer

e po

oled

with

the

sam

e ve

ndor

s and

com

pone

nts a

s the

inde

pend

ent e

vent

s. S

ee T

able

3-1

.

Page 52: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operatio

Tab

le 3

-3.

Com

bust

ion

Engi

neer

ing

RPS

faul

t tre

e ot

her b

asic

eve

nts.

nal Data

30

Bas

ic E

vent

D

istri

butio

n

Low

er B

ound

, M

ean,

U

pper

Bou

nd

Bas

ic E

vent

Des

crip

tion

Not

es

CE1

-RPS

-TM

-CH

A

CE2

-RPS

-TM

-CH

A

CE3

-RPS

-TM

-CH

A

CE4

-RPS

-TM

-CH

A

Uni

form

0.

01.

6E-2

3.

2E-2

C

hann

el A

thro

ugh

D b

ypas

sed

beca

use

of

test

ing

or m

aint

enan

ce

Ass

umes

3 h

ours

per

mon

thly

test

(o

utag

es fo

r eac

h of

the

four

cha

nnel

s co

mbi

ned

into

cha

nnel

A).

The

upp

er

boun

d as

sum

es 6

hou

rs.

CE1

-XH

E-X

E-SC

RA

M

CE2

-XH

E-X

E-SC

RA

M

CE3

-XH

E-X

E-SC

RA

M

CE4

-XH

E-X

E-SC

RA

M

Non

e 1.

0 or

1.0

E-2

Ope

rato

r fai

ls to

man

ually

act

uate

RPS

N

o cr

edit

is g

iven

for o

pera

tor a

ctio

n fo

r the

bas

e ca

se q

uant

ifica

tion.

CE2

,3-P

WR

-FF-

TB15

C

E2,3

-PW

R-F

F-TB

26

CE2

,3-P

WR

-FF-

TB37

C

E2,3

-PW

R-F

F-TB

48

Logn

orm

al

2.3E

-66.

0E-5

2.

3E-4

TCB

-1, T

CB

-5 S

hunt

Trip

Dev

ice

DC

Pow

er

Fails

TC

B-2

, TC

B-6

Shu

nt T

rip D

evic

e D

C P

ower

Fa

ils

TCB

-3, T

CB

-7 S

hunt

Trip

Dev

ice

DC

Pow

er

Fails

TC

B-4

, TC

B-8

Shu

nt T

rip D

evic

e D

C P

ower

Fa

ils

125

Vdc

pow

er to

the

shun

t trip

fails

(1

.0E-

5/h

* 6h

repa

ir tim

e)a

CE4

-PW

R-F

F-TB

1 C

E4-P

WR

-FF-

TB2

CE4

-PW

R-F

F-TB

3 C

E4-P

WR

-FF-

TB4

Logn

orm

al2.

3E-6

6.0E

-5

2.3E

-4

TCB

-1 S

hunt

Trip

Dev

ice

DC

Pow

er F

ails

TC

B-2

Shu

nt T

rip D

evic

e D

C P

ower

Fai

ls

TCB

-3 S

hunt

Trip

Dev

ice

DC

Pow

er F

ails

TC

B-4

Shu

nt T

rip D

evic

e D

C P

ower

Fai

ls

125

Vdc

pow

er to

the

shun

t trip

fails

(1

.0E-

5/h

* 6h

repa

ir tim

e)a

a. P

ower

failu

re d

ata

wer

e no

t ana

lyze

d as

par

t of t

his s

tudy

. Th

e fa

ilure

rate

per

hou

r was

obt

aine

d fr

om R

efer

ence

11

(Tab

le 4

, p. 2

3).

The

six-

hour

repa

ir tim

e w

as e

stim

ated

from

the

reac

tor t

rip

brea

ker m

aint

enan

ce d

urat

ion

in R

efer

ence

12.

Page 53: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

Using the RPS basic event mean probabilities presented in Table 3-1 through Table 3-3, the Combustion Engineering RPS mean unavailability (failure probability upon demand) is shown as the Total Group RPS in Table 3-4 with and without operator action to manually trip. The cut sets from the RPS fault tree quantification performed using SAPHIRE are presented in Appendix F. Basic event importance rankings are also presented in Appendix F. The dominant failures for the Combustion Engineering RPS design involve CCFs of the trip relays (K-1 through K-4, Groups 2, 3, and 4 or M-1 through M-4 Group 1) and the mechanical portion of the breaker (except Group 1). The rods, channel, and trip module segments each have a small, but measurable contribution. The RPS fault tree was also quantified, allowing credit for manual trip by the operator (with a failure probability of 0.01). If the model takes credit for manual trip by the operator, then the contribution of the channel trip unit CCFs are significantly reduced. Operator action reduces the RPS unavailability by approximately 13 percent (Group 1), to 75 percent (Groups 2 and 3), to 78 percent (Group 4).

Table 3-4. Combustion Engineering RPS segment contribution.

RPS Segment Percent Unavailability Percent Unavailability

Channel 12.0% 7.8E-07 0.1% 7.8E-09Trip Modules 0.7% 4.5E-08 0.0% 4.2E-10Trip Contactors 74.4% 4.8E-06 85.1% 4.8E-06Rods 12.9% 8.4E-07 14.8% 8.4E-07Total Group 1 RPS 100.0% 6.5E-06 100.0% 5.7E-06

Channel 10.4% 7.8E-07 0.4% 7.5E-09Trip Modules 0.6% 4.5E-08 0.2% 2.9E-09Trip Breakers/Trip Relays 77.9% 5.8E-06 55.2% 1.0E-06Rods 11.2% 8.4E-07 44.2% 8.4E-07Total Group 2 RPS 100.0% 7.5E-06 100.0% 1.9E-06

Channel 10.4% 7.8E-07 0.4% 7.5E-09Trip Modules 0.6% 4.5E-08 0.2% 2.9E-09Trip Breakers/Trip Relays 77.9% 5.8E-06 55.2% 1.0E-06Rods 11.2% 8.4E-07 44.2% 8.4E-07Total Group 3 RPS 100.0% 7.5E-06 100.0% 1.9E-06

Channel 10.8% 7.8E-07 0.5% 7.5E-09Trip Modules 0.6% 4.2E-08 0.0% 4.2E-10Trip Breakers/Trip Relays 77.0% 5.6E-06 47.2% 7.6E-07Rods 11.6% 8.4E-07 52.3% 8.4E-07Total Group 4 RPS 100.0% 7.2E-06 100.0% 1.6E-06

Group 3 RPS Model

Group 4 RPS Model

Unavailability (Point Estimate) with No Credit for Manual Scram by Operator

Unavailability (Point Estimate) with Credit for Manual Scram by Operator

Group 1 RPS Model

Group 2 RPS Model

The small reduction in unavailability by operator action for Group 1 is because of the point at which the manual trip enters the logic. In Group 1, the manual trip removes coil power to the M relays (see Figure 2-4). This leaves the trip contactor (M relays) event at the top of the cutset listing. In Groups 2, 3, and 4, the manual trip bypasses the K relays and directly initiates the trip breakers (see Figure 2-5).

31

Page 54: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

Table 3-4 summarizes the RPS segment (channel, trip module, trip breaker/trip contactors, and rods) contributions to the overall demand unavailability. The trip breakers and trip contactors are the dominant segments in all models.

To quantify the exact difference between the two breaker configurations, a sensitivity study was performed. The results of this study are shown in Appendix G, Section G-3. The four-trip-breaker configuration is about 41 percent (7.1E-7 versus 1.0E-6) more reliable than the eight-trip-breaker configuration based on an analysis of the fault trees. This is due to the presence of more valid combinations of trip breaker failures in the eight-trip-breaker configuration that will not de-energize the control rod clutches.

Another way to segment the Combustion Engineering RPS unavailability is to identify the percentage of the total unavailability contributed by independent failures versus CCF events. Such a breakdown is not exact, because RPS cut sets can include combinations of independent failures and CCF events. However, if one splits cut sets with CCF events and independent events, then the breakdown can show the contribution of independent events to the overall unavailability. The results are presented in Table 3-5. The CCF contribution is between 99.5 and 99.6 percent for the case with no operator action and between 99.5 and greater than 99.9 percent when operator action is included.

Table 3-5. Combustion Engineering RPS failure contributions (CCF and independent failures).

RPS SegmentContribution from

CCF Events

Contribution from Independent

FailuresContribution from

CCF Events

Contribution from Independent

Failures

Channel 12.0% <0.1% 0.1% <0.1%Trip Modules 0.7% <0.1% 0.0% <0.1%Trip Contactors 74.0% 0.4% 84.6% 0.5%Rods 12.9% <0.1% 14.8% <0.1%Total Group 1 99.6% 0.4% 99.5% 0.5%

Channel 10.4% <0.1% 0.4% <0.1%Trip Modules 0.6% <0.1% 0.2% <0.1%Trip Breakers/Trip Relays 77.2% 0.6% 55.2% 0.1%Rods 11.2% <0.1% 44.2% <0.1%Total Group 2 99.4% 0.6% 99.9% 0.1%

Channel 10.4% <0.1% 0.4% <0.1%Trip Modules 0.6% <0.1% 0.2% <0.1%Trip Breakers/Trip Relays 77.2% 0.6% 55.2% 0.1%Rods 11.2% <0.1% 44.2% <0.1%Total Group 3 99.4% 0.6% 99.9% 0.1%

Channel 10.8% <0.1% 0.5% <0.1%Trip Modules 0.6% <0.1% 0.0% <0.1%Trip Breakers/Trip Relays 76.4% 0.6% 47.2% <0.1%Rods 11.6% <0.1% 52.3% <0.1%Total Group 4 99.4% 0.6% >99.9% <0.1%

Group 3 RPS Model

Group 4 RPS Model

No Credit for Manual Scram by Operator Credit for Manual Scram by Operator

Group 1 RPS Model

Group 2 RPS Model

32

Page 55: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

Sensitivity analyses were performed on the RPS fault tree quantification results. These sensitivity analyses are discussed in Appendix G of this report.

3.2.2 Fault Tree Uncertainty Analysis

An uncertainty analysis was performed on the Combustion Engineering RPS fault tree cut sets listed in Appendix F using the SAPHIRE code. To perform the analysis, uncertainty distributions for each of the fault tree basic events are required. The uncertainty distributions for the basic events involving independent failures of RPS components were obtained from the data statistical analysis presented in Appendix C. The component demand failure probabilities were modeled by lognormal distributions.

Uncertainty distributions for the CCF basic events required additional calculations. Each CCF basic event is represented by an equation involving the component total failure probability, QT, and the CCF α 's and their coefficients. See Appendix E for details. The uncertainty distributions for QT were obtained from the statistical analysis results in Appendix C. Uncertainty distributions for the component-specific α 's were obtained from the methodology discussed in Appendix E. Each of the α's was assumed to have a beta distribution. The uncertainty distributions for each CCF basic event equation were then evaluated and fit to lognormal distributions. This information was then input to the SAPHIRE calculations. The results of the uncertainty analysis of the Combustion Engineering RPS fault tree model are shown in Table 3-6.

Table 3-6. Combustion Engineering fault tree model results with uncertainty.

5% Median Mean 95% Group 1 RPS Model

No credit for manual trip by operator

1.2E-6 4.4E-6 6.5E-6 1.8E-5

Credit for manual trip by operator 8.8E-7 3.7E-6 5.7E-6 1.7E-5 Group 2 RPS Model

No credit for manual trip by operator

1.9E-6 5.5E-6 7.5E-6 1.9E-5

Credit for manual trip by operator 3.9E-7 1.3E-6 1.9E-6 5.1E-6 Group 3 RPS Model

No credit for manual trip by operator

1.9E-6 5.5E-6 7.5E-6 1.9E-5

Credit for manual trip by operator 3.9E-7 1.3E-6 1.9E-6 5.1E-6 Group 4 RPS Model

No credit for manual trip by operator

1.6E-6 5.1E-6 7.2E-6 1.9E-5

Credit for manual trip by operator 2.4E-7 9.5E-7 1.6E-6 4.7E-6 Note: These results were obtained using a Latin Hypercube simulation with 10,000 samples.

3.3 Comparison with PRAs and Other Sources

Similar to the approaches used in this study, RPS unavailability has been estimated previously from overall system data or from data for individual components within the system. The component approach requires a logic model such as a fault tree to relate component performance to overall system

33

Page 56: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

performance. This section summarizes early RPS unavailability estimates using both methods and more recent PWR (Combustion Engineering) IPE estimates.

WASH-1270, published in 1973, estimated the RPS unavailability to be 6.9E-5 (median), based on two RPS failures (N-Reactor and German Kahl reactor events) in 1627 reactor-years of operation. Of this combined experience, approximately 1000 reactor years were from naval reactors. The Electric Power Research Institute (EPRI) ATWS study in 1976 estimated the RPS unavailability to be 7.0E-7 (median), based on no failures in 110,000 reactor trips (75,000 of these were naval reactor trips).13 Finally, NUREG-04601 in 1978 estimated the RPS unavailability to be 1.1E-4 (median), based on one failure (German Kahl reactor event) in approximately 700 reactor-years. However, that document recommended a value of 3E-5 to account for expected improvements in design and operation, with 1E-5 from the mechanical (rod) portion of the RPS and 2E-5 from the electrical (signal) portion of the RPS. Therefore, early RPS unavailabilities based on system level data ranged from 7.0E-7 (median) to 1.1E-4 (median), depending upon the types of nuclear reactor experience included and the inclusion or exclusion of RPS failure events.

An early RPS unavailability estimate using component data and fault tree logic models is contained in WASH-1400. WASH-1400 estimated the RPS unavailability to be 1.3E-5 (median). The dominant contributors were rod failures (three or more control rods failing to insert was considered a RPS failure) and channel switch failures. The RPS model used in this report assumed 7 or more of 36 safety group shutdown rods must fail to insert in order to fail to achieve a hot shutdown state, which is a less conservative failure criterion. This is one reason why the RPS unavailability presented in this report is much lower than the WASH-1400 result.

Also, Combustion Engineering in 1986 analyzed the channel and trip system portion of the RPS (excluding the CRD and control rod portions) and obtained RPS mean unavailabilities from 1.3E-7 to 3.3E-6.14 A summary of the results based on the 30-day testing period is shown in Table 3-7. These results do not include an operator action event to trip the reactor.

Table 3-7. Combustion Engineering calculated unavailabilities from CEN-327-A.14

Group Single Trip Parameter Unavailability (TM/LP or DNBR 30-day test interval)

1 1.3E-7 2 3.3E-6 3 3.3E-6 4 2.6E-6

The Combustion Engineering study14 did not include the CRD and control rod portions of the RPS, which contribute 11.2 to 12.9 percent to the RPS unavailability in the present study.

Finally, RPS unavailability estimates from the PWR IPEs are presented in Table 3-8. The RPS unavailability estimates range from 1.0E-5 (mean) to 3.7E-6 (mean). Details concerning modeling and quantification of RPS unreliability in these IPEs are generally limited. Figure 3-1 shows the Combustion Engineering RPS unavailability distributions obtained in this study compared to the IPE results. This studies’ RPS unavailability estimates, with no operator action, lie below the reported Combustion Engineering IPE unavailability estimates except for the Calvert Cliffs IPE estimate. The estimates with operator action are lower than the IPEs for Combustion Engineering RPS Groups 2, 3, and 4 and lie within the IPEs range of values for Combustion Engineering RPS Group 1. It is not clear whether the

34

Page 57: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

Combustion Engineering IPE estimates include an operator action to trip the reactor, except for Arkansas Unit 2, which has an operator error value of 0.5.

When comparing the IPE results to the results presented in this study, several items should be considered. The IPE models are not as detailed as the model in this study. CCF is insufficiently treated in each of the IPEs. When CCF is considered, it is not based on observed failure data. The rod failure criteria is conservatively estimated or not defined. Despite these differences, the reported values are within an order of magnitude of this study’s result.

Table 3-8. Summary of plant review for Combustion Engineering RPS unavailability values.

able 3-8. (Continued)

T

PLANT IPE/PRA RPS Unavailability

Notes

Arkansas 215 1.0E-5 (mechanical) 1.0E-6 (electrical)

A RPS fault tree is not provided in the IPE. The RPS unavailability has been separated into two categories; electrical and mechanical. The RPS electrical failure unavailability used in the IPE is 1.0E-6. This estimate is based on a predicted electrical failure probability of 2.0E-6 times 0.5 for operator recovery. The mechanical failure to scram in the IPE is defined as the inability of the control rods to physically drop into the core due to sticking. Based on other PRA studies, the probability of mechanical failure is estimated to be 1.0E-5.

Calvert Cliffs Units 1 & 216 3.66E-6 RPS is represented in the model as split fractions. A RPS description is provided in the IPE, but a detailed model of the RPS is not provided.

Fort Calhoun Unit 117 1.0E-5 (mechanical) 1.04E-6 (signal) 1.3E-6 (fail to remove relay jumpers prior to power escalation)

The IPE does describe the RPS and provides a simplified RPS fault tree. The top gate is Failure to Scram Reactor with basically three inputs: mechanical failure, RPS signal failure, and a failure to remove RPS interposing relay jumpers prior to power operation. Mechanical failure is the failure of two or more control element assemblies to drop.

Maine Yankee18 1.0E-5 The IPE does describe the RPS system, which states that “Several previous PRAs throughout the industry have shown that RPS failures are not significant contributors to plant risks nor significant contributors to failure to trip the reactor.” The IPE also states that “The Maine Yankee RPS is a fairly typical Combustion Engineering two-out-of-four, ‘fail safe’ system. Plant history does not reveal any unique problems. For these reasons, the PRA will not model the RPS; it is assumed to be insignificant to risk.” However, the ATWS sequences state the scram failure probability to be 1.0E-5.

Millstone Unit 219 1.0E-5 The IPE has a reactor trip (RT) event in the event tree and the value used for the RT event is 1.0E-5. The IPE does not describe in detail the RT event or the RPS.

Palisades20 NA The IPE does not describe the RPS, but an electrical reactor trip failure (RXE) and a mechanical reactor trip failure (RXM) are discussed for the ATWS sequences. However, the IPE does not provide values for these two top events.

Palo Verde Unit 1, 2, & 321 NA Although the RPS discusses the IPE, a system fault tree or RPS unavailability was not provided in the IPE.

San Onofre Units 2 & 322 1.0E-5 (mechanical) The IPE provides a description and figure for the RPS, but an RPS fault tree or results are not provided. However, a basic event importance measure report is provided, and a basic event for a mechanical failure of the RPS to scram is listed. The value of the basic event is 1.0E-5.

35

Page 58: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

Table 3-8. (Continued)

PLANT IPE/PRA RPS Unavailability

Notes

St. Lucie Units 1 & 223 NA The IPE does not describe the RPS, but the function of the RPS is discussed and a partial fault tree is provided for the top event “Failure of making Reactor Subcritical Using Rods.” Mechanical and electrical failures are represented, but the top event unavailability or basic event values are not given in the IPE.

Waterford 324 NA The IPE does not describe the RPS, and a RPS unavailability is not given.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

Arka

nsas

2Ca

lvert C

liffs 1

& 2

Fort C

alhou

n 1

Maine Y

anke

e

Millst

one 2

San O

nofre

2 & 3

Grou

p 1 D

esign

(no o

p. ac

tion)

Grou

p 2 D

esign

(no o

p. ac

tion)

Grou

p 3 D

esign

(no o

p. ac

tion)

Grou

p 4 D

esign

(no o

p. ac

tion)

Grou

p 1 D

esign

(op.

actio

n)Gr

oup 2

Des

ign (o

p. ac

tion)

Grou

p 3 D

esign

(op.

actio

n)Gr

oup 4

Des

ign (o

p. ac

tion)

RPS

Una

vaila

bilit

y

Figure 3-1. Combustion Engineering IPE and RPS Study RPS unavailabilities.1

3.4 Regulatory Implications

The regulatory history of the RPS can be divided into two distinct areas: general ATWS concerns, and RPS component or segment issues. The general ATWS concerns are covered in NUREG-0460, SECY-83-293, 25 and 10 CFR 50.62. NUREG-0460 outlined the U.S. NRC’s concerns about the potential for ATWS events at U.S. commercial nuclear power plants. That document proposed several alternatives for commercial plants to implement in order to reduce the frequency and consequences of ATWS events. SECY-83-293 included the proposed final ATWS rule, while 10 CFR 50.62 is the final ATWS rule. In those three documents, the assumed Combustion Engineering RPS unavailabilities ranged from 1.5E-5 to 6.0E-5. The Combustion Engineering RPS unavailabilities obtained in this report ranged from 6.5E-6 to 7.5E-6, with no credit for manual trip by the operator. These values are slightly lower than the values

1 The range shown is the 5th and 95th percentiles. All other data points are mean values.

36

Page 59: Reliability Study: Combustion Engineering Reactor Protection

Risk-Based Analysis of the Operational Data

used in the development of the ATWS rule. Because this study did not analyze RPS data from the late 1970s and early 1980s, it is not known what RPS unavailability estimate would have been obtained by this type of study for the ATWS rulemaking period.

With respect to RPS components or segments, issues were identified from the document review discussed previously: reactor trip breaker unavailability and channel test intervals. The reactor trip breaker unavailability issue arose from the Salem low-power ATWS events in 1983. The issue is discussed in detail in NUREG-1000. Recommendations resulting from this issue included better breaker testing and maintenance programs, and automatic actuation of the shunt trip coil. (The Salem ATWS events would not have occurred if the shunt trip coils had automatically actuated from the reactor trip signals.) Using Westinghouse reactor trip breaker (DB-50 and DS-416 designs) data through 1982, the breaker unavailability was determined to be 4E-3. In addition, SECY-83-293 indicated a CCF (two reactor trip breakers) unavailability of 2E-4 without automatic actuation of the shunt trip coils and 5E-5 with automatic actuation. The corresponding unavailabilities based on the component failure probabilities used in this study are 1.8E-5 for a reactor trip breaker (undervoltage coil and shunt trip failure, or mechanical failure) and 1.2E-6 for CCF of two of four breakers (undervoltage coil and shunt trip failure, or mechanical failure). Both of the study results are significantly lower than the 1983 document values. Therefore, the observed reactor trip breaker performance has improved considerably since 1983.

In 1989, Combustion Engineering obtained approval to change RPS channel testing procedures.26

The approval recommended a change of the channel test interval from one month to six months (using a staggered testing scheme). In addition, during testing the channel could be placed in the bypass mode, rather than the tripped mode. Both of these changes have the potential to increase the unavailability of the RPS. The base case (no operator action) RPS results, obtained with only two trip signals modeled, indicate that the channels contributed between 10.4 and 12.0 percent to the overall RPS unavailability. In addition, a sensitivity analysis presented in Appendix G indicates that if three trip signals had been modeled, the channel contribution would have dropped to between 4.3 and 5.0 percent. Because at least three trip signals are expected for almost all plant upset conditions requiring a reactor trip, the 4.3 to 5.0 percent contributions from channels is considered more appropriate.

37

Page 60: Reliability Study: Combustion Engineering Reactor Protection

4. ENGINEERING ANALYSIS OF THE OPERATIONAL DATA

This section presents an analysis of trends based on overall system performance, total component performance, and CCF component performance. Section A-3 presents the methodology for evaluating the trends.

4.1 System Evaluation

At a system level, the change in RPS performance over time can be roughly characterized by examining the trends with time of component failures and CCFs. A review of the component independent failure counts in Table B-1 of Appendix B indicates a drop in RPS component failures, from a high of 44 failures in 1988 to a low of 11 in 1994. In addition, a review of CCF counts in Table B-2 of Appendix B indicates a high of 16 CCF events in 1985 to a low of one CCF event in 1988, 1991, and 1994. Detailed analyses of trends with time for component failure probabilities and CCFs, presented in Sections 4.2 and 4.3, respectively, indicate decreasing trends in events that dominate the RPS unavailability.

As indicated in Section 3.1, there were no RPS failures during 1984 through 1995. This also implies that there were no complete failures of the RPS trip system.

No complete channel failures during unplanned reactor trips were identified during the review of the RPS data. However, because of the complexity and diversity of RPS channels and the uncertainty in determining associated trip signals, it is difficult to determine whether an entire channel failed during an unplanned reactor trip. Therefore, it is possible that some complete channel failures have occurred and were not identified as such in the data review.

Since unplanned reactor trips are reported in LERs, data from the full study period are available for the study of demands on the RPS system. The data were examined for a trend over the time frame spanned by this study. However, the reactor trip count among CE plants for 1984 was unusually high (approximately 25 scrams per plant), so 1984 data were omitted from this analysis. Data for the remaining years are shown in Figure 4-1. A single trend line does not fully represent these data, particularly before and after 1988, and the data could be analyzed in two or three groupings on the time axis. However, the purpose of the current assessment is just to see whether a decreasing trend exists, and the plot shows this clearly. The rate of demands among Combustion Engineering plants has decreased since the middle 1980s, even with the exclusion of 1984 data. This trend is similar to the trend among Westinghouse, Babcock & Wilcox, and General Electric plants.

4.2 Component Evaluation

Over 1600 LER and NPRDS records were reviewed for the Combustion Engineering RPS study. Data analysts classified these events into the nine bins shown in Table 2-7 in Section 2. The highlighted NFS/CF bin contains events involving complete failure of the component’s safety function of concern. The other three highlighted bins contain events that may be NFS/CF, but insufficient information prevented the data analysts from classifying the events as NFS/CF. (In the quantification of RPS unavailability discussed in Section 3, a fraction of the events in the three bins was considered to be NFS/CF and was added to the events already in the NFS/CF bin.) Combustion Engineering RPS component failure data used in this study are summarized in Table B-1 in Appendix B (independent failures only) and Table C-1 in Appendix C (independent and CCF events).

38

Page 61: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996 1998

Year

0

2

4

6

8

Unp

lann

ed re

acto

r trip

freq

uenc

y pe

r rea

ctor

-cal

enda

r yea

r

Combustion Engineering unplanned reactor tripsBased on 1985-1995 operating experience (1984 data omitted)

CE unplanned reactor trip frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value<=0.00005.

Figure 4-1. Trend analysis for Combustion Engineering unplanned reactor trips, per plant operating year, from 1985 to 1998.

Evaluations were performed for the overall frequency of component failure for each of the components used in the unavailability analysis and modeled from the failure data. The evaluations considered failures without regard to the method of detection. Two primary cases were analyzed for each component, one using all complete losses of a component’s RPS safety function, and one that included the upper bound case of counting partial failures (with an assessed 0.5 probability of being complete) and counting failures that might have involved loss of a component’s RPS safety function:

Failure data from tests on each component that did not involve a loss of a train or channel are not in general reportable for LERs but are seen in NPRDS data. However, the NPRDS data system stopped at the end of 1996, and the completeness of plant reporting during 1996 is not known. Therefore, an adequate new test data set for 1996-1998 was not available for this study. The trend analysis for these Combustion Engineering components was therefore restricted to 1984–1995.

Figure 4-2 shows the total Combustion Engineering failure count for this period, normalized by the number of reactor-calendar years in the period. An overall decreasing trend in these failures was evident in the data, with a statistically significant2 p-value3 (less than 0.00005). A decreasing trend remains significant; even when the uncertain failures are omitted (p-value less than 0.00005).

The individual component failure frequencies, computed from the failure counts and the number of components in the Combustion Engineering plants in each year from 1984 to 1995, were also evaluated for trends. Significant trends were seen for digital core protection calculators (p-value 0.0003), bistables (p-value 0.0003), logic relays (p-value 0.003), temperature sensor/transmitters (p-value 0.003), breaker 2 The term “statistically significant” means that the data are too closely correlated to be attributed to chances and

consequently have a systematic relationship. 3 A p-value is a probability, with a value between zero and one, that is a measure of statistical significance. The

smaller the p-value, the greater the significance. A p-value of less than 0.05 is generally considered to be statistically significant.

39

Page 62: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

undervoltage devices (p-value 0.046), and the pressure sensor/transmitters (p-value 0.046) (see Figure 4-3 through Figure 4-8). All trends were significant both with and without the uncertain failures.

A final Combustion Engineering failure frequency evaluation was performed that considered the entire study period (1984–1998). Since only LER data were available during the 1996–1998 period, this entire study was restricted to events for which an LER number was available. As Figure 4-9 shows, the overall failure frequencies were too sparse to observe trends in this data set (p-value 0.31). For the twelve Combustion Engineering components evaluated for the unavailability analysis, just five complete losses of the components’ safety-function and eight uncertain failures were reported in the LERs. The component-specific LER-reported failure frequencies were even sparser and showed no trends.

1984 1986 1988 1990 1992 1994 1996

Year

0

1

2

3

4

5

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering failures, including uncertain eventsBased on 1984-1995 operating experience for components in the fault tree

CE failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value<=0.00005.

Figure 4-2. Trend analysis for frequency of Combustion Engineering failures of components in unavailability analysis, per plant year, including uncertain failures.

40

Page 63: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering digital core protection calculator failuresBased on 1984-1995 operating experience

CE CPD failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.0003.

Figure 4-3. Trend analysis for frequency of Combustion Engineering digital core protection calculator failures, including uncertain failures.

1984 1986 1988 1990 1992 1994 1996

Year

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering bistable failuresBased on 1984-1995 operating experience

CE CBI failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.0003.

Figure 4-4. Trend analysis for the Combustion Engineering bistable failure frequency.

41

Page 64: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering logic relay failures, including uncertain eventsBased on 1984-1995 operating experience

CE RYL failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.003.

Figure 4-5. Trend analysis for the Combustion Engineering logic relay failure frequency.

1984 1986 1988 1990 1992 1994 1996

Year

0.00

0.01

0.02

0.03

0.04

0.05

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering temperature sensor/transmitter failuresBased on 1984-1995 operating experience

CE CTP failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.003.

Figure 4-6. Trend analysis for the Combustion Engineering temperature sensor/transmitter failure frequency.

42

Page 65: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering breaker undervoltage coil failuresBased on 1984-1995 operating experience

CE BUV failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.046.

Figure 4-7. Trend analysis for the Combustion Engineering breaker undervoltage coil failure frequency.

1984 1986 1988 1990 1992 1994 1996

Year

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering pressure sensor/transmitter failuresBased on 1984-1995 operating experience

CE CPR failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.046.

Figure 4-8. Trend analysis for the Combustion Engineering pressure sensor/transmitter failure frequency.

43

Page 66: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996 1998

Year

0.00

0.20

0.40

0.60

LER

-repo

rted

failu

re fr

eque

ncy

per r

eact

or-c

alen

dar y

ear

Combustion Engineering LER-reported failures, including uncertain eventsBased on 1984-1998 operating experience for components in fault tree

CE LER-reported failure frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.31.

Figure 4-9. Trend analysis for frequency of LER-reported failures of Combustion Engineering components in the data analysis, per plant year, including uncertain failures.

4.3 Common-Cause Failure Evaluation

The Combustion Engineering RPS CCF data involve CCF and potential CCF events. A complete CCF event involves failure (degradation factor of 1.0) of each of the components in the common-cause component group, with additional factors such as shared cause and timing assigned values of 1.0. (See Appendices B and E for additional discussions of the CCF model and failure degradation and other factors.) Other CCF events involve failure of several (but not all) of the components in the common-cause component group. Finally, potential CCFs involve events in which one or more of the degradation or other factors has a value of less than 1.0.

Combustion Engineering RPS CCF data are summarized in Tables B-2 and B-3 in Appendix B. There were no observed complete CCF failures of the RPS components modeled in this study. Sixty-five potential CCF events were identified for the period 1984 through 1998.

The following is a list of the more interesting CCF events found at Combustion Engineering plants:

• Incomplete restoration from a test left the shunt trip leads removed from half of the RTBs.

• Four times over a 5-year period, the coils of bistable trip unit dual coil relays shorted together, causing current to be added to the measurement loop. The first time it occurred, three of the bistables were affected. The second time, eleven bistables were affected. The third and fourth time, two bistables were affected. These appeared to be caused by a breakdown of properties associated with normal degradation related to hours of service.

44

Page 67: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

• Over a 3-day period, three of four core protection calculator/control element assembly controller channels had memory parity errors, caused by faulty memory boards. One of the failure records indicated that the memory board had been installed just 2 days prior.

Following are comments on the general findings over all the RPS studies. The vast majority (80 percent) of RPS CCF events can be attributed to either normal wear or out-of-specification failure reports. These events fall into the potential CCF event category and do not appreciably contribute to the calculated CCF basic event probabilities. Design and manufacturing causes led to the next highest category (7 percent) and human errors (operations, maintenance, and procedures) were the next highest category (6 percent). Environmental problems and the state of other components (e.g., power supplies) led to the remaining RPS CCF events. No evidence was found that these proportions are changing over time.

The detection of failures of components in this study either was by testing or by observation with a small majority detected by testing. Very few failures were detected by trip demands. No change in the overall distribution of detection is apparent.

The most subtle CCF mechanisms are the design modifications and the procedures. These two mechanisms have the highest potential to completely fail all components in the common-cause component group (e.g., modification to all four containment pressure transmitters that prevented a high containment pressure trip, or a calibration procedure that gives an incorrect calibration parameter). While neither of these events occurred at a Combustion Engineering plant, the mechanisms are generic enough to apply to all vendor designs.

4.3.1 CCF Event Trends

Figure 4-10 shows the Combustion Engineering CCF event frequency plotted based on the year when each event occurred. A decreasing trend was observed for the 65 events (p-value less than 0.00005). As shown in Figure 4-11 through Figure 4-13, the trend was also seen in CCF events for temperature transmitter/sensors (p-value 0.008), digital core protection calculators (p-value 0.005), and bistables (p-value 0.0008).

To form a starting point for assessing the Combustion Engineering operational data, the CCF evaluation in this study used the pattern of CCF failures shown by the set of all PWR CCF events that occurred in the component types in the Combustion Engineering model. Figure 4-14 shows the significant decreasing trend in the overall PWR CCF event frequency (p-value less than 0.00005).

45

Page 68: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.5

1.0

1.5

2.0

CC

F ev

ent f

requ

ency

per

reac

tor-c

alen

dar y

ear

Combustion Engineering CCF eventsBased on 1984-1995 operating experience

CE CCF event frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value<=0.00005.

Figure 4-10. Trend analysis for Combustion Engineering CCF events per plant calendar year.

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CC

F ev

ent f

requ

ency

per

reac

tor-c

alen

dar y

ear

Combustion Engineering temperature sensor/transmitter CCF eventsBased on 1984-1995 operating experience

CE CTP CCF event frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.008.

Figure 4-11. Trend analysis for Combustion Engineering temperature sensor/transmitter CCF events.

46

Page 69: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CC

F ev

ent f

requ

ency

per

reac

tor-c

alen

dar y

ear

Combustion Engineering digital core protection calculator CCF eventsBased on 1984-1995 operating experience

CE CPD CCF event frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.005.

Figure 4-12. Trend analysis for Combustion Engineering digital core protection calculator CCF events.

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CC

F ev

ent f

requ

ency

per

reac

tor-c

alen

dar y

ear

Combustion Engineering bistable CCF eventsBased on 1984-1995 operating experience

CE CBI CCF event frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.0008.

Figure 4-13. Trend analysis for Combustion Engineering CCF bistable events.

47

Page 70: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CC

F ev

ent f

requ

ency

per

reac

tor-c

alen

dar y

ear

PWR CCF eventsBased on 1984-1995 operating experience

PWR CCF event frequency and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value<=0.00005.

Figure 4-14. Trend analysis for PWR CCF events among the components in the Combustion Engineering data analysis, per reactor calendar year.

4.3.2 Total Failure Probability Trends

In estimating the probability of CCF events, factors representing the level of loss of redundant components were multiplied by overall total failure probability estimates. Possible trends were evaluated for the data going into these total failure estimates. For the two sensor/transmitter and two core protection calculator components in the fault tree models, the unavailability from failures detected during routine operation and the unavailability from failure modes detected during testing were estimated separately. The routine operation unavailability was estimated from the data by assuming a specified downtime and computing a failure rate.

The resulting four rate estimates and the 12 probability estimates computed for the Combustion Engineering RPS unavailability assessment were each evaluated for trends. The evaluations were repeated with and without the inclusion of uncertain failures. In some cases, observations from one or both other PWR vendors were included in addition to the Combustion Engineering data. Conversely, in some cases the shutdown data are excluded. In both of these determinations, the selected data set corresponds to the data set used for input in computing the unavailability estimate (QT).

Four of the estimates showed decreasing trends. As shown in Figure 4-15 through Figure 4-19, the decreasing trends were observed for pressure sensor/ transmitter rates with the plant operating (p-value 0.022), for digital core protection calculator rates (p-value 0.032), for bistable failure probabilities with the plant operating (p-value 0.0004), for temperature sensor/transmitter rates (p-value 0.008), and for breaker undervoltage coil probabilities (p-value 0.038). Each of these was estimated using data from Combustion Engineering plants only. For all of these components, the trends remained significant, even with uncertain failures excluded.

48

Page 71: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Failu

res

per c

ompo

nent

yea

r (no

t dem

and-

rela

ted)

CE pressure sensor/transmitters, including uncertain eventsBased on 1984-1995 plant operations

CPR failure rate and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.022.

Figure 4-15. Trend analysis for Combustion Engineering pressure sensor/transmitter total failure rate, including uncertain failures, while the plants were operating.

1984 1986 1988 1990 1992 1994 1996

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Failu

res

per c

ompo

nent

yea

r (no

t dem

and-

rela

ted)

CE digital core protection calculator failures, including uncertain eventsBased on 1984-1995 plant operations

CPD failure rate and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.032.

The 1990-1995 data were used in the unavailability analysis.

Figure 4-16. Trend analysis for Combustion Engineering digital core protection calculator total failure rate, including uncertain failures.

49

Page 72: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Failu

re p

roba

bilit

y, p

er d

eman

d

CE bistable failuresBased on 1984-1995 experience from testing during plant operations

CBI failure probability and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.0004.

The 1990-1995 data were used in the unavailability analysis

Figure 4-17. Trend analysis for Combustion Engineering bistable total failure probability, based on failures detected in testing during plant operations (including uncertain failures).

1984 1986 1988 1990 1992 1994 1996

Year

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Failu

res

per c

ompo

nent

yea

r (no

t dem

and-

rela

ted)

CE temperature sensor/transmitters, including uncertain eventsBased on 1984-1995 plant experience

CTP failure rate and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.008.

Figure 4-18. Trend analysis for Combustion Engineering temperature sensors/transmitter failures that are not demand-related, including uncertain failures.

50

Page 73: Reliability Study: Combustion Engineering Reactor Protection

Engineering Analysis of the Operational Data

1984 1986 1988 1990 1992 1994 1996

Year

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

Failu

re p

roba

bilit

y, p

er d

eman

d

CE breaker undervoltage coil failures, including uncertain eventsBased on 1984-1995 experience from testing

BUV failure probability and 90% confidence boundsFitted mean90% confidence band on mean

Log model P-value=0.038.

Figure 4-19. Trend analysis for Combustion Engineering breaker undervoltage coil total failure probability, including uncertain failures.

Since other statistical tests showed a difference between the data for the 1980s and the 1990s, only the 1990–1995 data were used in the unavailability analysis for the digital core protection calculator failure rate and for the bistable failure probability. For pressure sensor/transmitters, logic relays, temperature sensor/transmitters, and breaker undervoltage coils the entire period was used in the estimates because the performance without the uncertain failures showed no significant difference between the 1984–1989 and 1990–1995 periods.

51

Page 74: Reliability Study: Combustion Engineering Reactor Protection

5. SUMMARY AND CONCLUSIONS

Fault trees for each of the four designs of the CE RPS were developed and quantified using U.S. CE commercial nuclear reactor data from the period 1984 through 1998. All CE plants use the same channel through trip module design, except later plants use a digital core protection calculator. The Group 1 design uses trip contactors without any form of circuit breaker. The other three groups use either an eight-breaker design (Groups 2 and 3) or a four-breaker design (Group 4). Table 5-1 summarizes the results of this study.

Table 5-1. Summary of Combustion Engineering RPS model results. 5% Mean 95%

Group 1 RPS Model No credit for manual trip by operator 1.2E-6 6.5E-6 1.8E-5 Credit for manual trip by operator 8.8E-7 5.7E-6 1.7E-5

Group 2 RPS Model No credit for manual trip by operator 1.9E-6 7.5E-6 1.9E-5 Credit for manual trip by operator 3.9E-7 1.9E-6 5.1E-6

Group 3 RPS Model No credit for manual trip by operator 1.9E-6 7.5E-6 1.9E-5 Credit for manual trip by operator 3.9E-7 1.9E-6 5.1E-6

Group 4 RPS Model No credit for manual trip by operator 1.6E-6 7.2E-6 1.9E-5 Credit for manual trip by operator 2.4E-7 1.6E-6 4.7E-6

The computed mean unavailabilities for the various CE design groups ranged from 6.5E-6 to 7.5E-

6 (with no credit for manual trips). These are comparable to the values CE IPEs, which ranged from 3.7E-6 to 1.0E-5, and other reports. Common-cause failures contribute approximately 99 percent to the overall unavailability of the various designs. The individual component failure probabilities are generally comparable to failure probability estimates listed in previous reports.

The RPS fault tree was also quantified for manual trip by the operator (assuming an operator failure probability of 0.01). The mean unavailabilities improved 13 percent (Group 1) to 78 percent (Group 4), with a range of 1.6E-6 to 5.7E-6.

The study revealed several general insights:

• The dominant failure contribution to the Combustion Engineering RPS designs involve CCFs of the trip relays (K-1 through K-4, Groups 2, 3, and 4 or M-1 through M-4 Group 1) and the CCF of the mechanical portion of the trip breakers (except Group 1).

• Issues from the early 1980s that affected the performance of the reactor trip breakers (e.g., dirt, wear, lack of lubrication, and component failure) are not currently evident. Improved maintenance has resulted in improved performance of these components.

• Overall, the trends in unplanned trips, component failures, and CCF events decreased significantly over the time span of this study.

• The calculated unavailability of plants that have analog rather than digital core protection calculators shows no sensitivity to this design difference.

52

Page 75: Reliability Study: Combustion Engineering Reactor Protection

Summary and Conclusions

• The causes of the CE CCF events are similar to those of the rest of the industry. That is, over all RPS designs for all vendors for the components used in this study, the vast majority (80 percent) of RPS common-cause failure events can be attributed to either normal wear or out-of-specification conditions. These events, are typically degraded states, rather than complete failures. Design and manufacturing causes led to the next highest category (7 percent) and human errors (operations, maintenance, and procedures) were the next highest category (6 percent). Environmental problems and the state of other components (e.g., power supplies) led to the remaining RPS common-cause failure events. No evidence was found that these proportions are changing over time.

• The principle method of detection of failures of components in this study was either by testing or by observation during routine plant tours. Only two failures were detected by actual trip demands, neither of which was a CCF. No change over time in the overall distribution of detection method is apparent.

53

Page 76: Reliability Study: Combustion Engineering Reactor Protection

6. REFERENCES

1. U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Anticipated

Transients Without Scram for Light Water Reactors, NUREG-0460, Vol. 1, April 1978.

2. U.S. Atomic Energy Commission, Technical Report on Anticipated Transients without Scram for Water-Cooled Power Reactors, WASH-1270, September 1973.

3. U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Generic Implications of ATWS Events at the Salem Nuclear Power Plant, NUREG-1000, Vol. 1, April 1983.

4. Generic Letter 83-28, Required Actions Based on Generic Implications of Salem ATWS Events, U.S. Nuclear Regulatory Commission, July 8, 1983.

5. 49 FR 124, Considerations Regarding Systems and Equipment Criteria, Federal Register, U.S. Nuclear Regulatory Commission, June 26, 1984, p. 26036.

6. Generic Letter 85-06, Quality Assurance Guidance for ATWS Equipment That Is Not Safety-Related, U.S. Nuclear Regulatory Commission, April 16, 1985.

7. 10 CFR 50.62, Reduction of Risk from Anticipated Transients Without Scram (ATWS) Events for Light-Water-Cooled Nuclear Power Plants, February 25, 1986.

8. The Institute of Nuclear Power Operations, NPRDS Reportable System and Component Scope Manual, Combustion Engineering Pressurized Water Reactors, INPO 83-020G, Rev. 5, November 1994.

9. Oak Ridge National Laboratory, Nuclear Operations Analysis Center, Sequence Coding and Search System for Licensee Event Reports, NUREG/CR-3905, Vol. 1-4, April 1985.

10. K. D. Russell et al., Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 5.0, NUREG/CR-6116, Vol. 1, December 1993.

11. S. A. Eide et al., Generic Component Failure Data Base for Light Water and Liquid Sodium Reactor PRAs, EGG-SSRE-8875, February 1990.

12. Westinghouse Electric Corporation, Energy Systems Division, Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection Instrumentation System, WCAP-10271-P-A, May 1986.

13. R. R. Fullwood et al., ATWS: A Reappraisal Part I: An Examination and Analysis of WASH-1270, Technical Report on ATWS for Water-Cooled Power Reactors, EPRI NP-251, August 1976.

14. RPS/ESFAS Extended Test Interval Evaluation, prepared for the C-E Owners Group, CEN-327-A Topical Report, May 1986.

15 . Arkansas Nuclear One Unit 2 Probabilistic Risk Assessment Individual Plant Examination, Entergy Operations, Inc., August 1992.

54

Page 77: Reliability Study: Combustion Engineering Reactor Protection

References

16. Calvert Cliffs Nuclear Power Plant Probabilistic Risk Assessment Individual Plant

Examination Summary Report, Baltimore Gas and Electric, December 1993.

17. Fort Calhoun Station Individual Plant Examination Submittal, Omaha Public Power District, December 1993.

18. Maine Yankee Probabilistic Risk Assessment Individual Plant Examination, Yankee Atomic Electric Company, August 1992.

19. Millstone Unit 2 Individual Plant Examination for Severe Accident Vulnerabilities, Northeast Utilities Service Co., December 1993.

20. Palisades Nuclear Plant Individual Plant Examination, Consumers Power, January 1993.

21. Palo Verde Nuclear Generating Station Units 1, 2, & 3 Individual Plant Examination, Palo Verde Nuclear Generating Station, April 1992.

22. Individual Plant Examination Report for San Onofre Nuclear Generating Station Units 2 and 3, Southern California Edison, April 1993.

23. St. Lucie Units 1 and 2 Individual Plant Examination Submittal, Florida Power and Light Company, December 1993.

24. Waterford Generating Station Unit 3 Probabilistic Risk Assessment Individual Plant Examination, Entergy Operations, Inc., August 1992.

25. U.S. Nuclear Regulatory Commission, Amendments to 10 CFR 50 Related to Anticipated Transients Without Scram (ATWS) Events, SECY-83-293, July 19, 1983.

26. Thadani, A.C., NRC Evaluation of CEOG Topical Report CEN-327, RPS/ESFAS Extended Test Interval Evaluation, included in the latest issue of CEN-327-A Topical Report, November 6 1989.

55

Page 78: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

RPS Data Collection and Analysis Methods

Page 79: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

Page 80: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

RPS Data Collection and Analysis Methods To characterize reactor protection system (RPS) performance, operational data pertaining to

the RPS from U.S. commercial nuclear power plants from 1984 through 1998 were collected and reviewed. In this study of the RPS, the fifteen Combustion Engineering (CE) pressurized water reactor (PWR) plants were considered. Reported inoperabilities and unplanned actuations were characterized and studied for these plants from the perspective of overall trends and the existence of patterns in the system performance. Unlike other operational data-based system studies sponsored by the Nuclear Regulatory Commission (NRC) at the Idaho National Engineering and Environmental Laboratory (INEEL), the inoperabilities were component failures. Redundancy in the RPS and interconnections between the RPS channels and the trip logic and breakers that deenergize and release the control rods requires a more detailed analysis than just viewing the RPS, even at a train level.

Descriptions of the methods for the basic data characterization and the estimation of

unavailability are presented below. In addition to discussing the methods, the descriptions summarize the quality assurance measures used and the reasoning behind the choice of methods. Appendix E explains the probabilities coming from the common-cause data analysis.

A-1 DATA COLLECTION AND CHARACTERIZATION

The subsections below describe the methods for acquiring the basic operational data used in

this study. The data are inoperabilities and the associated demands and exposure time during which the events may occur.

A-1.1 Inoperabilities

Because RPS is a multiple-train system, most failures in RPS components are not required by 10 CFR 50.73 to be reported in Licensee Event Reports (LERs). Accordingly, the primary data source for RPS inoperabilities is the Nuclear Plant Reliability Data System (NPRDS). NPRDS failure data were downloaded for components in the RPS and control rod drive systems. Immediate/catastrophic and degraded events were included; incipient events were omitted.

For this study, events prior to 1984 were excluded for two reasons. First, nuclear power plant

(NPP) industry changes related to the RPS occurred in response to the 1983 Salem Unit 1 low-power ATWS event. Second, the failure reporting system changed significantly with the January 1, 1984 institution of the LER Rule (10 CFR 50.73). The LER rule shifted the emphasis in LER reporting away from single component failures to focus on significant events, leaving NPRDS to cover component failures. Failure reporting to NPRDS has been voluntary. As manager of the NPRDS, the Institute for Nuclear Power Operations (INPO) has taken many measures to encourage complete failure reporting to the system during the period from 1984 through 1996. The NPP

A-1

Page 81: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

industry has relied on the NPRDS for the routine reporting of single component failures during that period.

In 1997 and 1998, an industry-sponsored initiative to report failure data to a system called

“EPIX” has been underway. Because development for the EPIX database continues, the EPIX RPS data were not available for this study. Furthermore, the NPRDS data for 1996 are possibly not complete, since the NPRDS was known to be ending at that point. Therefore, no source for reliable reporting of failures discovered in system testing (with many redundant components) was available for the 1996–1998 period for this study.

To ensure that the failure data set is as complete as possible, the Sequence Coding and Search

System (SCSS) LER database was searched for any RPS inoperabilities reported in LERs from 1984 through 1998. Particularly, any inoperabilities discovered during unplanned reactor scrams should be reported. The 1996–1998 LER data have been reviewed for CE plants and for Babcock & Wilcox (B&W) plants, but not for Westinghouse (W) or General Electric (GE) plants. Table A-1 summarizes the availability of various types of data for the CE RPS analysis.

Table A-1. Availability of RPS reliability data for this study.

Type of component Reporting in LERs Reporting in NPRDS Component demanded in every reactor trip, other than rods

Failures during unplanned trips should be reported. 1984–1998 data. Data from testing and routine observation would not be reported due to system redundancy. Westinghouse LER data from 1996-–1998 has not been reviewed for this study.

Failures occurring during trips, tests, and routine operations should be reported. For this study, data from 1984 through 1995.

Component used in some but not all reactor trips

LER trip data cannot be used because there is no way to estimate the number of demands.

Same as above.

Rods and control rod drives a

LERs provide reactor trip data, as above. Rod failures were not reported after 3/15/1994.

a. Treated as one unit in this study.

The NPRDS and SCSS data searches were used to identify events for screening. The major

areas of evaluation to support the analysis in this report were as follows:

What part of the RPS, if any, was affected? Some events pertained to the ATWS Mitigation System Actuation Circuitry (AMSAC), or to support systems that are not within the scope of the RPS. Other RPS events were in parts of the system not directly critical to the performance of its safety function, such as failures in indicators and recording devices. Such events were marked as nonfailures and were not considered further.

For events within the scope of RPS, the specific component affected by the event was indicated. For CE plants, the following distinctions were made (codes for the associated components are in parentheses): − Channels (instrumentation rack): sensors and transmitters [power (CPN), source (CSR),

and intermediate range (CIR) neutron detectors, temperature sensor/transmitters (CTP), pressure sensor/transmitters (CPR) flow (CPF) and level (CPL) sensor/transmitters, pump monitors (CPM), and pressure (CPS) switches], analog or digital core protection calculators (CPC and CPD, respectively), power supplies (CPW), and bistables (BIS).

A-2

Page 82: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

− Trains (logic cabinet): logic relays (RYT), trip relays(RYL), and the manual scram switch (MSW).

− Trip breakers: ac breakers (mechanical/electrical) (BME) and the associated RTB undervoltage coil (BUV) and shunt trip (BSN) devices.

− Rods: rod control cluster assemblies/control rod drive mechanisms (ROD and CRD).

• Whether the event contributed to a possible loss of the RPS design safety function of shutting down the reactor. This distinction classifies each inoperability as either a failure, or just a fault. Faults are occurrences that might lead to spurious RPS actuation such as high-pressure set points that have drifted low. Failures, on the other hand, are losses at a component level that would contribute to loss of the safety function of RPS; i.e., that would prevent the deenergizing and insertion of the control rods. For the RPS, another way of stating this distinction is that faults are inoperabilities that are fail-safe, while failures are those that are not fail-safe. The RPS events were flagged as fail-safe (FS), not fail-safe (NFS), or unknown (UNK). The latter designation applies, for example, when a failure report does not distinguish whether a failed transmitter monitors for high pressure or for low pressure.

• Whether the event was a common-cause failure (CCF). In this case, several other fields were encoded from the event record: CCF Number, CCF shock type, time delay factor, coupling strength, and a brief event description. These assessments are described further in Appendixes B and E.

• Whether the failure was complete. Completeness is an issue, particularly for failed timing tests and cases where components are out of tolerance but might still perform their safety function if called upon. Completeness is also an issue when component boundary definitions differ and NPRDS reports the complete failure of a component that is a piece part with regard to the RPS fault tree model. The probability of the modeled RPS component functioning given the degradation reported in the LER or NRPDS was assessed as either 1.0, 0.5, 0.1, or 0.01. In the basic failure analysis, the 0.5-assessed events were treated as unknown completeness, while the 0.1- and 0.01-assessed events were treated as nonfailures. These assessments were also used in developing impact vectors for the common-cause assessment, as discussed in Appendix E.

• The method of discovery of the event [unplanned demand (i.e., reactor trip), surveillance test, other]. For the NPRDS data, “other” includes annunciated events. For surveillance tests, the test frequency was determined if it was clear from the event narrative. Failures discovered during reactor trips were identified from the LERs and from matching the reactor trip LERs (described in the next section) with the NPRDS failures. Narratives from the few matching records were reviewed. If the failure caused the reactor trip, it was flagged as a fail-safe fault discovered during operations. If it did not cause the reactor trip but was observed during the course of the reactor trip event, it was flagged as being discovered by the reactor trip.

• Plant operational state (“mode”): up or down. RPS actuation, after the control rods have already been inserted, is not required to be reportedA-18 since 1992. Thus, for reported events, the plant is defined as up. The test events may occur while the plant is up or while it is down. An issue is whether the failure occurrence probabilities (failures per demand) are the same for both situations, and which scenario is the most realistic for the unavailability analysis if they differ. The assessment of plant state for failures during testing and operation was based on the NPRDS and LER narratives, if possible. The data were then compared with the outage information used in the NRC Performance Indicator Program to resolve plant state issues in

A-3

Page 83: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

some cases. When the plant state was unknown, it was treated as operating since the plants spend more time in an operating state than shut down.

• The plant and event date for each failure, as presented in the source databases, were preserved and used in the data analysis.

Other attributes were also considered, such as the event cause and failure mode. Some of these fields are described in Appendix B. The screening associated with the common-cause analysis is described further in Appendix E.

The RPS inoperability evaluation differs from previous NRC system operational unreliability studies (References A-1 through A-6) in several aspects. A greater emphasis on common-cause failure analysis applies due to the many redundant aspects of the system. The system redundancy also leads to the use of NPRDS data, since few unplanned reactor trips reveal problems within the RPS itself. That is, unlike the auxiliary feedwater system, the RPS does not have a sufficient failure data set for analysis from just the LERs from unplanned reactor trips. Given the use of NPRDS data and the focus on components rather than trains or segments, the completeness issue is more dynamic for the RPS. The inability to distinguish whether a failure is fail-safe adds additional uncertainty to the data evaluation. Unlike previous NRC system operational unreliability studies, the failure events were not screened to determine if the events were recoverable, since the RPS performs its mission on demand and has no extended mission time. The lack of a mission time means also that there is no need to evaluate the components based on different failure modes, such as starting and running.

The treatment of maintenance unavailability is also different for the RPS than for the

previous system studies. Although the SCSS data search included timing codes such as “actual preexisting” and “potential,” both previously detected and not previously detected, incidents of a channel of the RPS being out-of-service for maintenance or testing when demanded during an unplanned reactor trip are not routinely reported. The primary instances found in the data for such preexisting maintenance were when the maintenance contributed to causing a spurious reactor trip and was thus fail-safe. Since neither the NPRDS nor the LER data provide the needed information on planned maintenance unavailabilities, the maintenance unavailabilities in the fault tree were estimated using the maintenance times specified in the operating procedures.

The data characterization for the events was based on reading the associated NPRDS event narratives and LER abstracts. Engineers with commercial nuclear power plant experience classified the data and reviewed each other’s work for consistency. A final, focused review was performed by instrumentation and control and RPS experts on a subset of the approximately 20000 NPRDS and LER records.

Several additional checks and filters were applied to the RPS failure event data:

• For each plant, the data were constrained to lie between the plant’s commercial operation date and its decommission date (if applicable; 8/6/1997 for Maine Yankee). NPRDS data reporting for a plant begins with its commercial operation date.

A-4

Page 84: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

• Events and operating time/demands during NRC-enforced regulatory outages, as defined in the NRC Performance Indicator (PI) Program, were excluded as being atypical. Among CE plants, this restriction removed Palisades during the last half of 1986 and the first third of 1987, and Millstone 2 from the middle of 1996 onward.

• A date check ensured that no control rod demands or events from testing were counted after March 15, 1994, the date on which the NPRDS reporting scope changed to omit these components (among others) from the NPRDS.

• NPRDS and LER data were matched by plant, event date, and component, and checked to ensure that no event was counted twice.

Further details of the inoperability characterization and database structure are included in Appendix B.

A-1.2 Demands and Exposure Times For the reliability estimation process, two models are typically used to estimate

unavailability. The first is based simply on failures and demands. The probability of failure on demand is estimated simply as the number of failures divided by the number of demands. The resulting estimate is useful if the demands are complete and unbiased, and the counts of demands and failures are complete. This is the primary model used for the components in the RPS.

For the channel neutron monitors, pressure sensor/transmitters, and temperature sensor/

transmitters, however, failures occur other than the ones routinely monitored by testing. These failures are detected either by annunciators or during periodic walkthroughs by plant operators, and thus are not present during the quarterly and cyclic surveillance tests. The method of discovery thus distinguishes these failures from the others. The downtime for discovering these failures and repairing them is small, typically 8 hours or less. To ensure that this contribution to the unavailability is not overlooked, the nontesting failure rate in time is estimated for the subset of these components that appear in the fault tree. For each of these components, a gamma uncertainty distribution for the rate is combined with an 8-hour downtime to obtain an unavailability. If this unavailability is much greater than the unavailability from the demand events, it is used in the fault model quantification. If, on the other hand, it is much smaller, the unavailability estimated from the failures on demand is used. If the two unavailabilities are comparable, they are summed for the fault model quantification.

In the engineering analysis portion of this study, general failure occurrence frequencies in

time are estimated for the assessment of trends. These frequencies are based on all the failures and the associated calendar time for the components.

Estimation of both demands and operating times requires knowledge of the number of each

type of RPS component at each plant. The next three sections discuss estimates of component counts, demands, and operating times.

A-5

Page 85: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-1.2.1 Component Counts

For each plant, the number of each type of RPS component listed in the second bullet in Section A-1.1 was estimated. These component counts are the exposed population of RPS system components installed at each plant that could fail. The “Count Basis” column of Table A-2 contains the results for the components used in the fault trees. Note that these counts are estimates; exact information on each plant was not available. Plant-specific engineering records in the NPRDS are intended to provide a profile of the number of components for which failures are to be reported to the NPRDS system. These records were studied to identify component counts, but they were not directly useful because the component boundary definitions used for this study are different.

A-6

Page 86: Reliability Study: Combustion Engineering Reactor Protection

Tab

le A

-2.

CE

RPS

com

pone

nts u

sed

in th

e PR

A.

A-7

Com

p.

code

Com

pone

ntTe

stin

g F

requ

ency

aO

pera

ting

b

Dem

ande

d in

eac

h re

acto

r trip

C

ount

bas

is

Cha

nnel

s C

PR

Pres

sure

sens

or/tr

ansm

itter

C

yclic

&

quar

terly

c Y

es

No

One

for t

he p

ress

uriz

er a

nd a

t lea

st o

ne p

er st

eam

gen

erat

or,

per c

h. D

igita

l pla

nts h

ave

two

per S

G/c

h. S

ee N

ote

d.

CTP

Te

mpe

ratu

re se

nsor

/tran

smitt

er

Cyc

lic &

qtrl

y. c

Yes

N

o 2/

loop

/cha

nnel

, exc

ept M

aine

Yan

kee

with

1/lo

op/c

hann

el.

CPA

A

nalo

g co

re p

rote

ctio

n ca

lcul

ator

Q

uarte

rly

Yes

N

o 1

per c

hann

el (M

odel

Gro

ups 1

, 2)

CPD

D

igita

l cor

e pr

otec

tion

calc

ulat

or

Qua

rterly

Y

es

No

1 pe

r cha

nnel

(Mod

el G

roup

s 3, 4

) C

BI

Bis

tabl

e Q

uarte

rly

No

No

12 to

16

per c

hann

el

Trai

ns

RY

L Lo

gic

rela

y Q

uarte

rly

No

No

dc.

24 (f

rom

6 lo

gic

mat

rices

and

4 c

hann

els)

R

YT

Trip

rela

yQ

uarte

rlyf

No

No

4-K

rela

ys; e

xcep

t, at

Gro

up 1

pla

nts,

4-M

rela

ys.

MSW

M

anua

l scr

am sw

itch

Qua

rterly

N

o Y

es e

4, e

xcep

t 2 a

t Mod

el G

roup

1 p

lant

s. Tr

ip b

reak

ers a

nd ro

ds

BM

E B

reak

er m

echa

nica

l Q

trly.

& m

onth

ly f

No

Yes

8

for p

lant

s in

Mod

el G

roup

s 2 a

nd 3

. 4

for G

roup

4.

BSN

B

reak

er sh

unt d

evic

e Q

uarte

rly f

N

oN

o 1

per b

reak

er

g B

UV

B

reak

er u

nder

volta

ge c

oil

Mon

thly

hN

oN

o 1

per b

reak

er

g R

MA

C

ontro

l ele

men

t ass

embl

y &

rod

Cyc

lic

No

Yes

Pl

ant-s

peci

fic.

NPR

DS

data

not

col

lect

ed a

fter 3

/15/

94.

a.

Info

rmat

ion

from

CEN

-327

-A.

A C

E O

wne

rs G

roup

subm

ittal

in M

ay, 1

986,

arg

ued

for q

uarte

rly ra

ther

than

mon

thly

test

ing

of c

hann

els.

How

ever

, it i

s not

kno

wn

whe

n pa

rticu

lar p

lant

s sw

itche

d to

qua

rterly

test

ing.

Thi

s stu

dy a

ssum

es q

uarte

rly te

stin

g fo

r the

ent

ire st

udy

perio

d (1

984-

1995

). b.

O

pera

ting

com

pone

nts a

re th

ose

com

pone

nts w

hose

safe

ty fu

nctio

n fa

ilure

s can

be

dete

cted

in ti

me.

Rat

es a

s wel

l as p

roba

bilit

ies o

f fai

lure

on

dem

and

are

estim

ated

for

oper

atin

g co

mpo

nent

s. T

he in

stru

men

ts a

re v

isua

lly c

heck

ed in

eac

h sh

ift, a

nd th

e co

re p

rote

ctio

n ca

lcul

ator

s per

form

con

tinuo

us in

tern

al c

heck

ing

for c

erta

in ty

pes o

f fa

ilure

s. c.

In

the

quar

terly

cha

nnel

test

s, re

spon

sive

ness

of t

he se

nsor

/tran

smitt

er si

gnal

con

ditio

ning

is v

erifi

ed.

d.

Plan

t Mod

el G

roup

s 1 a

nd 2

are

ana

log,

whi

le G

roup

s 3 a

nd 4

are

dig

ital.

See

Tab

le 3

. Th

ere

are

two

loop

s/pl

ant,

exce

pt M

aine

Yan

kee

with

thre

e.

e.

Dem

ande

d in

man

ual t

rips,

not a

utom

atic

trip

s. f.

Each

qua

rterly

test

incl

udes

six

dem

ands

, one

ass

ocia

ted

with

eac

h lo

gic

mat

rix.

g.

BSN

or B

UV

failu

res t

hat o

ccur

dur

ing

a tri

p ge

nera

lly c

anno

t be

dete

cted

. B

oth

BSN

and

BU

V m

ust f

ail i

n or

der f

or th

e fa

ilure

to b

e de

tect

ed.

h.

Qua

rterly

test

s are

not

incl

uded

for B

UV

bec

ause

the

brea

ker a

ctua

tion

test

s do

not t

est U

V a

nd sh

unt m

echa

nism

s sep

arat

ely.

Page 87: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-1.2.2 Demands For RPS, the demand count assessment for unavailability estimates based on failures per

demand is more uncertain than in previous NRC system studies. In previous NRC system studies, possible sets of demands were considered, such as demands from unplanned actuations of the system and demands from various types of periodic surveillance tests (monthly, quarterly, or cyclic). Demands at plant startup or shutdown might also be considered. The selection of the sets of events with particular system demands determines the set of failures to be considered in the reliability estimation (namely, the failures occurring during those demands).

In evaluating the possible sets of demands, the following criteria are sought:

1. An ability to count, or at least estimate, the number of demands

2. An ability to estimate the number of failures. Completeness is sought in the failures, so that they will not be underestimated. Conversely, the failures are to be matched with the demands, so that failures only on the type of demand being considered are counted. Then the number of successes on the type of demand being considered will not be underestimated.

3. The demands need to be complete and rigorous, like an unplanned demand on the system, so that all the relevant failure modes will be tested.

For RPS, the requirement that the demand event set be countable is not always met.

Although a fairly accurate count of unplanned reactor trips is available from the LERs since 1984, the reactor trips themselves do not exercise the complete RPS. Particularly for the channel components, different reactor trips come from different out-of-bound parameters. For example, the number of unplanned reactor trips for which the pressurizer low pressure setpoint was exceeded is unknown. Unplanned reactor trip demand data are not used in this report for channel data since these demands are not countable. For the same reason, unplanned demands are also not used for the logic and trip relays. Unplanned reactor trip demands are not used for the RTB shunt trip and undervoltage coils because these events demand at least one of these two components but not necessarily both.

Most of the estimates in this report are therefore based on test data. For CE plants, quarterly

tests apply for train (trip logic) components and breakers, and channel components. In addition, the channel instruments are tested and calibrated during refueling outages and cyclic tests. The breakers have monthly tests in addition to the quarterly tests. The control rod assemblies and control rod drives are tested during cyclic tests associated with refueling. Based on calendar time and the number of installed components of each type in each plant, estimates for these demands are calculated in this report. The estimates are calculated also based on the fact that, in some of the tests, a component is demanded more than once. Table A-2 and its footnotes show the testing assumptions that were made for each component used in the fault tree.

The completeness of the failure count for the RPS testing data depends on two attributes.

First, the failures need to be reported, either through the LERs or NPRDS. In the August 7, 1991 NRC Policy Issue, SECY-91-244, the NRC staff estimated overall NPRDS completeness at 65 to 70%, based on a comparison of 1990 NPRDS failure data and component failures reported in LERs. As mentioned, the LERs themselves are not expected to be complete for RPS failures since

A-8

Page 88: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

single failures on testing are not required to be reported through the LER system. Thus, the failures may be undercounted.

The second attribute probably leads to an overcounting of the RPS testing failures. This

attribute concerns the ability to distinguish whether a failure is detected during testing, or, more specifically, during the type of testing being considered. In this regard, the brief NPRDS failure narratives usually are insufficient to distinguish periodic surveillance tests from postmaintenance tests or other types of testing. Since the testing frequency often is not mentioned, no attempt is made in this study to restrict the set of testing failures to a particular type of test. An example of the influence of this uncertainty in the data is that all failures on testing for temperature sensor/transmitters are used in the unavailability analysis, though the quarterly testing occurs only four times per year, and the calibration testing occurs on average only once every eighteen months. No attempt has been made in this study to associate the failure times with the plant refueling outage times. This source of uncertainty is not currently quantified.

The completeness of the periodic surveillance testing for RPS components is believed to be

statistically adequate, realistically mimicking the demand that an unplanned reactor trip using this portion of the RPS would place on the system. The demands are believed to be rigorous enough that successes as well as failures provide meaningful system performance information. However, in some of the demand data, differences have been noted between tests that are conducted while the plant is operating and tests conducted during shutdown. The failure probability in some cases is observed to be higher during shutdown. This phenomenon is attributed to the additional complications introduced by maintenance during shutdowns rather than to an inadequacy in the quarterly and monthly testing that occurs at power.

The remaining subsections of this section outline additional details of the methods for

estimating the various types of demand counts.

A-1.2.2.1 Unplanned Demands. The NRC Performance Indicator (PI) databases maintained at the INEEL were used as the source for a list of unplanned actuations of the RPS. Unplanned reactor trips have been a reporting requirement for LERs since the 1984 LER rule. The PI databases have been maintained since 1985 and are a reliable source of LER reactor trip data. The databases include manual as well as automatic reactor trips, though only the latter are currently a performance indicator.

Reactor trip data for 1984 were obtained from the Sequence Coding and Search System. Nine LER number lists with associated event dates for 1984 were obtained. Seven corresponded to each combination of three attributes: required versus spurious reactor trips, automatic versus manual reactor trips, and during operation versus during startup (there were no LERs for the combination of manual spurious reactor trips during startup). The other two files described automatic, spurious reactor trips. The eighth file was for LERs reporting reactor trips at a different unit at the site than the unit reporting the LER. The ninth was for LERs reporting multiple reactor trips. These lists were consolidated, and records for a second unit’s reactor trip were added for LERs reporting multiple reactor trips, including reactor trips at another unit. The plant identifier field was adjusted to the unit with the reactor trip for LERs with single reactor trips at different units. Finally, records with multiple reactor trips at single units were examined. If multiple records

A-9

Page 89: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

were already present (e.g., reflecting a manual reactor trip and an automatic reactor trip on the same date), no changes were made. If no multiple records were present, the demand field (for number of reactor trips) was changed to two. Since the SCSS did not provide a simple list of reactor trip dates and counts for each unit, uncertainties are associated with this process; but the process is believed to be quite accurate.

The unplanned demands were used for three components in the fault tree: reactor trip

breakers, the manual scram switch (manual scrams only), and the control rod assemblies/control rod drives. In each of these cases, for each plant and year, the number of relevant reactor trips was multiplied by the assumed number of components to get the number of component demands. Unlike other recent NRC system studies (References A-1 through A-6), there was no concern that failures of particular components would preclude demands on other components. The changes in demand counts that the few failures discovered in the unplanned demands might make on the few other RPS components considered in the unplanned demands is negligible compared with the total number of demands.

A-1.2.2.2 Surveillance Tests. Quarterly test counts were estimated at a plant-year level by assuming 4 tests per full plant year. On the year of the plant’s commercial service date, and the year of the plant’s decommission date (if any), the demands were reduced in proportion to the plant’s in-service time.

Cyclic surveillance test demands at a plant level were counted using the NRC's OUTINFO database. This database is based on plant Monthly Operations Reports, and is maintained for the NRC PI program. It lists the starting and ending dates of all periods when the main generator is off-line for a period spanning at least two calendar days. Plausible test dates were estimated based on the ending dates for refueling outages. If the period from the startup after a refueling outage to the beginning of the next refueling outage exceeds 550 days (approximately 18 months), then a plausible date for a mid-cycle test is assigned. The resulting dates are summed by plant and year. For the 1984–1985 period for which the refueling outage information is not available, plausible testing dates are projected back in time from known refuelings.

For each type of periodic surveillance test, the estimated plant counts were prorated between

plant operation time and plant shutdown time. For each plant and year, the outage time represented in the OUTINFO database was summed, including the days on which outages started and ended. The down time was summed separately and excluded for regulatory-imposed outages (as observed above, Palisades for a selected period in the early years of the study and Millstone 2 for the ending part of the study period). The remaining time between a plant’s low power license date and its decommission date or the study end date was treated as operational (up) time. The demands were then prorated on a plant and year-specific basis. For example, the operational demands were taken to be the total demand times the fraction of the year the plant was up, divided by the sum of the up fraction and the shutdown fraction.

For the current study, the period covers 1984–1998. Outage data for the period prior to 1986,

however, are not readily available. The OUTINFO database has gaps for periods before 1986. For periods during 1984 and 1985 between a plant’s low-power license date and the start of OUTINFO

A-10

Page 90: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

data on the plant, the outage and operational data split was estimated by summing the plant’s operational and shutdown time from 1986–1995 and prorating the 1984 and 1985 time to reflect the same percentages.

The plant-year demands were multiplied by the number of components to obtain estimates of

component demands. After this multiplication, the estimates for demands during shutdown and demands during operations were rounded up to whole numbers. There was no concern that failures of particular components would preclude demands on other components, because the tests are conducted on the components individually and are staggered across channels and breakers.

A-1.2.3 Operating Time

For failure rate assessments, outage and operational time were estimated in fractions of calendar years for each plant and year, as discussed in the previous section. These fractions were multiplied by the estimated number of components for which failure data has been reported for each plant and year to obtain exposure times in years for operating and shutdown periods for each component type. As needed, these times were converted to hours.

A-2. ESTIMATION OF UNAVAILABILITY The subsections below describe the statistical analysis for each separate component, then

address the combining of failure modes to characterize the total system unavailability and its uncertainty.

A-2.1 Estimates for Each Failure Mode The RPS unavailability assessment is based on a fault tree with three general types of basic

events: independent failures, common-cause failures (CCF), and miscellaneous maintenance/operator action events.

The CCF modes tend to contribute the most to the unavailability, because they affect multiple

redundant components. With staggered testing, the estimation of each CCF probability is a product of a total failure event probability (QT) and one or more factors derived from the analysis of the failure events, as explained in Appendix E.

Since every RPS component involved in the unavailability analysis is in a train whose

function is also provided by at least one more train, every component occurs in the CCF events. Therefore, the focus in the individual component analysis for this report was on total failure probabilities rather than probabilities just for independent events. Separate independent estimates with the common-cause events removed were not evaluated, nor were independent probabilities estimated as α1*QT. The fault tree results were reviewed, and the use of QT in place of α1*QT for the independent events introduces less than 3% error.

This section addresses the estimation of the total failure probability and its uncertainty for

virtually all of the RPS components appearing in the fault tree. For the RPS basic failure data analysis for the unavailability assessment, 12 failure modes were identified, one for each of the 12 component types listed in Table A-2. Each is based on the nonfail-safe failures of a particular type of component. Component failure data from the NPRDS and LERs were not available for just one

A-11

Page 91: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

component, namely the 125-Vdc power supply to the shunt trip coils (DCP). The power supply failures in the databases were fail-safe, tending to cause rather than prevent RPS actuation. Generic data were used for DCP failure estimates for the fault tree. The failure data also do not address the RPS maintenance unavailabilities.

The contribution of the operator is another aspect of the system operation that tends currently

to fall outside the scope of the operational data analysis. At the system level, manual reactor trips are a form of recovery from failure of the automatic reactor trip function. However, no credit was assumed in this study for operator recovery in the base case.

Table A-2 shows the components for which estimates were obtained. It also indicates which

data sets might be applicable for each component. For the components marked in the table as operating, both a probability on demand and a rate were estimated. The demand probability was based on the number of tests and the failures discovered during testing, while the rate was based on the remaining failures in calendar time.

The subsections below describe the processes of selecting particular data sets and estimating

probability distributions that reflect uncertainty and variation in the data. Finally, a simulation method is described for quantifying the uncertainty concerning whether particular failures were complete losses of the component’s safety function.

A-2.1.1. Data-Based Choice of Data Sets

To determine the most representative set of data for estimating each total failure probability or rate, statistical tests were performed to evaluate differences in the following attributes (as applicable):

• Differences between PWR vendors

• Differences in reactor trip data and testing data

• Differences in test results during operations and during shutdown periods (plant mode differences)

• Differences across time. In particular, the initial 12-year frame of the study was separated into two periods, from 1984 through 1989 and from 1990 through 1995, and differences were evaluated.

To determine which data to use in particular cases, each component failure probability and

the associated 90% confidence interval were computed separately in each data set. For failures and demands, the confidence intervals assume binomial distributions for the number of failures observed in a fixed number of demands, with independent trials and a constant probability of failure in each data set. For failures and run times, the confidence intervals assume Poisson distributions for the number of failures observed in a fixed length of time, with a constant failure occurrence rate in each data set. In evaluating the differences, statistical tests were used that do not require large sample sizes.

A premise for the statistical tests is that variation between subgroups in the data be less than

the sampling variation, so that the data can be treated as having constant probabilities of failure

A-12

Page 92: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

across the subgroups. When statistical evidence of differences across a grouping is identified, this hypothesis is not satisfied. For such data sets, confidence intervals based on overall pooled data are too narrow, not reflecting all the variability in the data. However, the additional between-subgroup variation is likely to inflate the likelihood of rejecting the hypothesis of no significant systematic variation between data sets, rather than to mask existing differences.

A further indication of differences among the data sets was whether empirical Bayes

distributions were fitted for variation between the testing and unplanned demands or between the two plant modes or the two times frames. This topic is discussed further in Section A-2.1.2.

These evaluations were not performed in the common-cause analysis. The CCF analysis

addresses the probability of multiple failures occurring, given a failure, rather than the actual occurrence rate of multiple failures. The occurrence of multiple failures among failures may be less sensitive to the type of demand, plant operational state, and time than the incidence of failure itself. In any case, the CCF data are too sparse for such distinctions.

The four attributes used to determine the data sets for the total failure probabilities for the

unreliability analysis are discussed further in the paragraphs below.

Pooling across Vendors. The consideration of pooling across vendors for CE and B&W differs from the RPS system studies for W and GE plants. Differences are likely in the operating environment and testing/maintenance routines for similar components in plants from different vendor’s designs. CE and B&W plants represent less operating experience. As the experience decreases, the uncertainty in the estimation of the probability of rare events increases. With homogeneous data, over 30 demands, and two failures, the upper confidence bound on the probability of failure is approximately 3.15 times the maximum likelihood estimate (number of failures divided by the number of demands). When there are fewer failures, the ratio of the upper bound to the point estimate becomes much larger. Therefore, the possibility of including data from more than one vendor is considered for the CE analysis.

The pooling across vendor was considered only under the following three conditions. First,

there had to be less than three failures in the CE data for the estimate, so that pooling to refine the estimate might be worthwhile. Second, the pooling had to be feasible from an engineering viewpoint. That is, the components had to be physically similar for the different vendors, and with a similar operating environment. Finally, the pooling had to be feasible from a statistical viewpoint. Pooling was not considered if the statistical test for homogeneity across vendors rejected the hypothesis of homogeneity. However, when differences were found among the three PWR vendors, pairwise comparisons were made to see if one vendor differed from the other three, so that perhaps data from two vendors could be combined.

The pooling of vendors was the first consideration in the data-based choice of data sets.

Further subsetting of the data was considered, as described below, to identify the most appropriate data for the unreliability analysis. In pooling the vendor data, only PWR data were considered. In computing the number of testing demands, the type of testing assessed for each separate vendor was applied to the data for that vendor. Thus, the quarterly and monthly testing of Table A-2 was used for the CE trip breaker data, but bimonthly testing was used for the W breakers, and monthly

A-13

Page 93: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

testing was used for B&W breakers. Furthermore, the pooling decision was made separately for each quantity to be estimated. Thus, pooling might be used for a rate estimate and not used for the probability of failure on demand for the same instrument, because each of these estimates represents a different failure mode for the component. The statistical decision about pooling across vendors was made using exact statistical tests that did not assume a large population size.

Subsetting Based on Reactor Trip Data or Testing Data. Restricting the data for an

estimate to trip data only, or testing data only, was applicable only for the few components known to be demanded in each reactor trip. Since few failures were detected during reactor trips, the data were generally insufficient to reveal differences in performance for the unplanned system demand and the testing data sets. Where unplanned demands were listed in Table A-2 for a component, they were used, since they were genuine demands on the RPS. When differences were observed, the testing data were generally used likewise, due to concerns about the adequacy of reporting the failures that might have been revealed in the reactor trips. That is, differences between the unplanned and testing data sets were noted, but the data were pooled in spite of such differences.

Subsetting Based on Plant Modes. The plant operational mode during testing was

considered because the duration of RPS maintenance outages during plant operations is limited by plant technical specifications. During plant outages, the technical specifications are much less restrictive, and the tests might be more detailed. Conversely, failure modes, if any, that can only occur during operations might be revealed in the tests conducted during operations.

All unplanned demands occurred when the reactor was at power. Reactor trip signals passing

through the system when the plant is not at power have not been reportable as LERs since mid-1993, and were never performance indicators. Thus, no analysis with regard to plant operating mode was performed for the unplanned demand data set.

Where differences were seen between the operational and shutdown testing data sets, and

both were potentially applicable for the component, the operational data set was used. This is the set that corresponds to the goal of the unavailability analysis, which is to quantify RPS unavailability during operations.

Subsetting Based on Differences in Time. As in the W and GE RPS system studies, data

for the period from 1984 through 1989 were compared with more recent data, and the more recent data were used to estimate the failure probability or rate when significant differences were seen. In this evaluation, the added set of data from 1996 through 1998 was included in the new period if applicable. However, it rarely applied. The newest data apply only to unplanned demands, not to the testing data nor to the occurrences in time, since no NPRDS data were assessed for this period. The Westinghouse unplanned demand data for 1996 through1998 were not available, since these LERs have not yet been reviewed. Therefore, extending the study to 1998 did not shift the January 1, 1990 boundary between old and new data for the assessment.

Summary. The following guidelines were used to select the data set for the unavailability

analysis:

1. When no significant differences occurred between vendors and less than three CE failures, data from different PWR vendors was pooled.

A-14

Page 94: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

2. Where unplanned demands were listed in Table A-2 for a component, they were used, since they were genuine demands on the RPS. Applicable testing data were also used, due to concerns about the adequacy of reporting the failures that might have been revealed in the reactor trips. Thus, differences between the unplanned and testing data sets were noted, but the data were pooled in spite of such differences.

3. Where differences were seen between the operational and shutdown testing data sets, and both were potentially applicable for the component, the operational data set was used.

4. When differences were found between the older and more recent data, the more recent data set was selected.

5. When the data were restricted to plant operations or to the newer time period, and data from more than one vendor was in an assessment, a test for differences in vendors was performed for the subset to ensure that the vendor data could still be pooled.

The final selections were also checked using a statistical model that simultaneously considers the effect of vendor, operational state, and the two times. The model was log linear for rates. For probabilities, the ratio of the probability of failure to the probability of success was taken to be log linear (this is called a logit model). SAS procedure GENMOD was used to estimate parameters and evaluate their significance. The models confirmed the consistency of the subset selections. A-2.1.2. Estimation of Distributions Showing Variation in the Data

To further characterize the failure probability or rate estimates and their uncertainties, probabilities or rates and confidence bounds were computed in each data set for each year and each plant unit. The hypothesis of no differences across each of these groupings was tested in each data set, using the Pearson chi-square test. Often, the expected cell counts were small enough that the asymptotic chi-square distribution was not a good approximation for the distribution of the test statistic; therefore, the computed p-values were only rough approximations for the likelihood of observing as large a chi-square test statistic when no between-group differences exist. The tests are useful for screening, however. Variation in the rates or probabilities from plant to plant or from year to year is identified in order to describe the resulting variation in the unavailability estimates. Identifying the impact of particular plants or years on the estimates is useful in determining whether the results of the unavailability analysis are influenced by possible outliers. The existence of plant outliers is addressed in this report, though the identity of the plants is not, since the NPRDS data are proprietary.

Three methods of modeling the failure/demand or failure in time data for the unavailability

calculations were employed. They all use Bayesian tools, with the unknown probability or rate of failure for each failure mode represented by a probability distribution. An updated probability distribution, or posterior distribution, is formed by using the observed data to update an assumed prior distribution. One important reason for using Bayesian tools is that the resulting distributions for individual failure modes can be propagated easily, yielding an uncertainty distribution for the overall unavailability.

In all three methods, Bayes Theorem provides the mechanics for this process. Details are

highlighted for probabilities and for rates in the next two subsections.

A-15

Page 95: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-2.1.2.1. Estimation of Failure Probability Distributions Using Demands. The prior distribution describing failure probabilities is taken to be a beta distribution. The beta family of distributions provides a variety of distributions for quantities lying between 0 and 1, ranging from bell-shape distributions to J- and U-shaped distributions. Given a probability (p) sampled from this distribution, the number of failures in a fixed number of demands is taken to be binomially distributed. Use of the beta family of distributions for the prior on p is convenient because, with binomial data, the resulting output distribution is also beta. More specifically, if a and b are the parameters of a prior beta distribution, a plus the number of failures and b plus the number of successes are the parameters of the resulting posterior beta distribution. The posterior distribution thus combines the prior distribution and the observed data, both of which are viewed as relevant for the observed performance.

The three methods differ primarily in the selection of a prior distribution, as described below.

After describing the basic methods, a summary section describes additional refinements that are applied in conjunction with these methods.

Simple Bayes Method. Where no significant differences were found between groups

(such as plants), the data were pooled, and modeled as arising from a binomial distribution with a failure probability p. The assumed prior distribution was taken to be the Jeffreys noninformative prior distribution.A-7 More specifically, in accordance with the processing of binomially distributed data, the prior distribution was a beta distribution with parameters, a=0.5 and b=0.5. This distribution is diffuse, and has a mean of 0.5. Results from the use of noninformative priors are very similar to traditional confidence bounds. See AtwoodA-8 for further discussion.

In the simple Bayes method, the data were pooled, not because there were no differences

between groups (such as years), but because the sampling variability within each group was so much larger than the variability between groups that the between-group variability could not be estimated. The dominant variability was the sampling variability, and this was quantified by the posterior distribution from the pooled data. Therefore, the simple Bayes method used a single posterior distribution for the failure probability. It was used both for any single group and as a generic distribution for industry results.

Empirical Bayes Method. When between-group variability could be estimated, the

empirical Bayes method was employed.A-9 Here, the prior beta (a, b) distribution is estimated directly from the data for a failure mode, and it models between-group variation. The model assumes that each group has its own probability of failure, p, drawn from this distribution, and that the number of failures from that group has a binomial distribution governed by the group's p. The likelihood function for the data is based on the observed number of failures and successes in each group and the assumed beta-binomial model. This function of a and b was maximized through an iterative search of the parameter space, using a SAS routine.A-8 In order to avoid fitting a degenerate, spike-like distribution whose variance is less than the variance of the observed failure counts, the parameter space in this search was restricted to cases where the sum, a plus b, was less than the total number of observed demands. The a and b corresponding to the maximum likelihood were taken as estimates of the generic beta distribution parameters representing the observed data for the failure mode.

A-16

Page 96: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

The empirical Bayes method uses the empirically estimated distribution for generic results, but it also can yield group-specific results. For this, the generic empirical distribution is used as a prior, which is updated by group-specific data to produce a group-specific posterior distribution. In this process, the generic distribution itself applies for modes and groups, if any, for which no demands occurred (such as plants with no unplanned demands).

A chi-square test was one method used to determine if there were significant differences

between the groups. But because of concerns about the appropriateness and power of the chi-square test, discomfort at drawing a fixed line between significant and nonsignificant, and an engineering belief that there were real differences between the groups, an attempt was made for each failure mode to estimate an empirical Bayes prior distribution over years and plants. The fitting of a nondegenerate empirical Bayes distribution was used as the index of whether between-group variability could be estimated. The simple Bayes method was used only if no empirical Bayes distribution could be fitted, or if the empirical Bayes distribution was nearly degenerate, with smaller dispersion than the simple Bayes posterior distribution. Sometimes, an empirical Bayes distribution could be fitted even though the chi-square test did not find a between-group variation that was even close to statistically significant. In such a case, the empirical Bayes method was used, but the numerical results were almost the same as from the simple Bayes method.

If more than one empirical Bayes prior distribution was fitted for a failure mode, such as a

distribution describing variation across plants and another one describing variation across years, the general principle was to select the distribution with the largest variability (highest 95th percentile). Exceptions to this rule were based on engineering judgment regarding the most logical and important sources of variation, or the needs of the application.

Alternate Method for Some Group-Specific Investigations. The data for each

component were modeled by year to see if trends due to time existed. The above methods tend to mask any such trend. The simple Bayes method pools all the data, and thus yields a single generic posterior distribution. The empirical Bayes method typically does not apply to all of the failure modes, and so masks part of the variation. When empirical Bayes distributions are fitted, and year-specific updated distributions are obtained, the Bayes distribution may smooth the group-specific results and pull them toward the generic fitted distribution, thus masking trends.

It is natural, therefore, to update a prior distribution using only the data from the one group.

The Jeffreys noninformative prior is suitably diffuse to allow the data to drive the posterior distribution toward any probability range between 0 and 1, if sufficient data exist. However, when the full data set is split into many groups, the groups often have sparse data and few demands. Any Bayesian update method pulls the posterior distribution toward the mean of the prior distribution. More specifically, with beta distributions and binomial data, the estimated posterior mean is (a+f)/(a+b+d). The Jeffreys prior, with a = b = 0.5, thus pulls every failure probability toward 0.5. When the data are sparse, the pull toward 0.5 can be quite strong, and can result in every group having a larger estimated unavailability than the population as a whole. In the worst case of a group and failure mode having no demands, the posterior distribution mean is the same as that of the prior, 0.5, even though the overall industry experience may show that the probability for the particular failure mode is, for example, less than 0.1. Since industry experience is relevant for the performance of a particular group, a more practical prior distribution choice is a diffuse prior

A-17

Page 97: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

whose mean equals the estimated industry mean. Keeping the prior diffuse, and therefore somewhat noninformative, allows the data to strongly affect the posterior distribution; and using the industry mean avoids the bias introduced by the Jeffreys prior distribution when the data are sparse.

To do this, a generalization of the Jeffreys prior called the constrained noninformative prior

was used. The constrained noninformative prior is defined in Reference A-10 and summarized here. The Jeffreys prior is defined by transforming the binomial data model so that the parameter p is transformed, approximately, to a location parameter, φ. The uniform distribution for φ is noninformative. The corresponding distribution for p is the Jeffreys noninformative prior. This process is generalized using the maximum entropy distributionA-11 for φ, constrained so that the corresponding mean of p is the industry mean from the pooled data, (f+0.5)/(d+1). The maximum entropy distribution for φ is, in a precise sense, as flat as possible, subject to the constraint. Therefore, it is quite diffuse. The corresponding distribution for p is found. It does not have a convenient form, so the beta distribution for p having the same mean and variance is found. This beta distribution is referred to here as the constrained noninformative prior. It corresponds to an assumed mean for p but to no other prior information. For various assumed means of p, the noninformative prior beta distributions are tabulated in Reference A-10.

For each failure mode of interest, every group-specific failure probability was found by a

Bayesian update of the constrained noninformative prior with the group-specific data. The resulting posterior distributions were pulled toward the industry mean instead of toward 0.5, but they were sensitive to the group-specific data because the prior distribution was so diffuse.

Additional Refinements in the Application of Group-Specific Bayesian

Methods. For both the empirical Bayes distribution and the constrained noninformative prior distribution using pooled data, beta distribution parameters are estimated from the data. A minor adjustmentA-12 was made in the posterior beta distribution parameters for particular years to account for the fact that the prior parameters a and b are only estimated, not known. This adjustment increases the group-specific posterior variances somewhat.

Both group-specific failure probability distribution methods use a model, namely, that the

failure probability p varies between groups according to a beta distribution. In a second refinement, lack of fit to this model was investigated. Data from the most extreme groups (plants or years) were examined to see if the observed failure counts were consistent with the assumed model, or if they were so far in the tail of the beta-binomial distribution that the assumed model was hard to believe. The test consisted of computing the probability that as many or more than the observed number of failures for the group would occur given the beta posterior distribution and binomial sampling. If this probability was low, the results were flagged for further evaluation of whether the model adequately fitted the data. This test was most important with the empirical Bayes method, since the empirical Bayes prior distribution might not be diffuse. See AtwoodA-8 for more details about this test.

Group-specific updates were not evaluated with the simple Bayes approach because this

method is based on the hypothesis that significant differences in the groups do not exist.

A-18

Page 98: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

Note that, for the RPS study, Combustion Engineering generic distributions were sought rather than distributions updated with plant-specific data. Plant-specific evaluations are not within the scope of this study.

A-2.1.2.2. Estimation of Failure Probability Distributions Using Operating

Time. Failure rates were estimated for the three operating components using the failures that occurred in time, excluding those detected in testing. Chi-square test statistics were computed and Bayesian methods similar to those described above for probabilities were used to characterize the variation in the rates. The analyses for rates are based on event counts from Poisson distributions, with gamma distributions that reflect the variation in the occurrence rate across subgroups of interest or across the industry. The simple Bayes procedure for rates results in a gamma distribution with shape parameter equal to 0.5+f, where f is the number of failures, and scale parameter 1/T, where T is the total pooled running time. An empirical Bayes method also exists. Here, gamma distribution shape and scale parameters are estimated by identifying the values that maximize the likelihood of the observed data. Finally, the constrained noninformative prior method was applied in a manner similar to the other failure modes but again resulting in a gamma distribution for rates. These methods are described further in References A-13 and A-10.

From the rates, failure probability distributions are estimated in the fault tree software. In addition to the gamma distribution for a rate, the software uses an estimate of the average downtime when a failure occurs. For the RPS components, this time is short, since the failures are quickly detected and most corrective actions involve simple replacements and adjustments.

A-2.1.2.3. Estimation of Lognormal Failure Probability Distributions. For

simplicity, the uncertainty distributions used in the fault tree analysis were lognormal distributions. These distributions produced more stable results in the fault tree simulations, since the lognormal densities are never J- or U-shaped. For both probabilities and rates, lognormal distributions were identified that had the same means and variances as the original uncertainty distributions.

A-2.1.3. Treatment of Uncertain Failures

In the statistical analysis of Section A-1.2.2, uncertainty is modeled by specifying probability distributions for each input failure probability or rate. These distributions account for known variations. For example, a simple event probability calculated from an observed number of events in an observed number of demands will vary as a result of the random nature of the events. The effect of this sampling variation on the system unavailability is modeled in the simple Bayes method.

For the RPS data, however, the number of events itself was difficult to determine from the

often vague NPRDS failure reports. Uncertain information for two particular aspects of the event records has been flagged. The first is whether the safety function was lost. Many of the failure reports for components such as calculators and sensors do not describe their exact usage. The reports often state how the component failed but not whether the nature of the failure would cause a reactor trip or delay a reactor trip. For example, failing high could have either impact, depending on the particular process being monitored. In the failure data, the records were marked as safety function lost, not lost, or unknown.

A-19

Page 99: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

The second source of uncertainty that has had a significant effect on the data for the RPS is whether the failure represents a total loss of function for the component. In the common-cause methodology, the data analyst assesses his or her confidence in whether a failure represents a total loss. The resulting completeness value represents the probability that, among similar events, the component’s function would be completely lost. Assessed values of 1.0, 0.5, 0.1, and 0.01 were used in this field. For the uncertainty analysis, records with 1.0 were treated as complete; those with 0.5 were treated as unknown completeness, and those with lesser values were treated as not complete.

Since they were flagged in the data, these two sources of uncertainty in the RPS failure data

were explicitly modeled in the RPS study. This section provides further details on the treatment of these uncertainties.

In the RPS modeling, each assessed common-cause fraction (alpha) was multiplied by the

corresponding total failure probability for the component. This probability was based on the total number of failures (both independent and common-cause) that represent complete losses of the safety function of the component. For each component, potentially nine sub-sets of failures could be identified:

1. Complete, safety function lost, failures

2. Complete failures that were fail-safe (safety function not lost)

3. Complete failures for which the impact on the safety function (plant shutdown) is unknown

4. Incomplete failures that would result in the safety function being lost, if they were more severe

5. Incomplete failures that would be fail-safe if they were more severe

6. Incomplete failures with unknown impact on the safety function

7. Failures with unknown completeness that tend to prevent a trip (safety function lost)

8. Failures with unknown completeness that were fail-safe (safety function not lost)

9. Failures with unknown completeness and unknown impact on the safety function.

Failures in Categories 3, 7, and 9 were, potentially, complete failures with the safety function lost. In past NRC system studies, uncertainties in data classification or the number of failures or demands have been modeled by explicitly assigning a probability for every possible scenario in the uncertain data. The data set for each scenario was analyzed, and the resulting output distributions were combined as a mixture distribution, weighted according to the assigned probabilities. This process was used to account for uncertain demands for system restart in the High Pressure Core Injection Study (Reference A-1), and to account for whether certain failures to run occurred in the early, middle, or late period in the Emergency Diesel Generator Study (Reference A-2). This method has also been described in the literature (see References A-14 through A-16). For each component in the RPS study, too many possible combinations of outcomes exist to separately enumerate each one. There are three types of uncertain data, and in some cases over 100 uncertain events for a component. Therefore, the well-known Monte Carlo simulation method was used to assess the impact of the uncertain failures. Probabilities were assigned for whether to treat

A-20

Page 100: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

each set of uncertain failures as complete failures with the safety function lost. After sampling from probability distributions based on the assigned probabilities, the failure probability or failure rate of the RPS component being studied was characterized as described in Section A-2.1.2. This process was repeated 1000 times, and the variation in the output was used to assess the overall uncertainty for the failure probability or failure rate. As with the previous NRC system uncertainty models, the resulting output distributions were combined as a mixture distribution. Since these distributions arise from simulations, they were equally weighted in forming the final output distribution. More details on the selection of the probabilities, the nature of the simulations, and the combining of the output distributions are presented in the subsections below.

A-2.1.3.1. Selection of Uncertainty Distributions. Three uncertainties were consi-dered, corresponding to Categories 3, 7, and 9 in the list above. Probabilities for these events were developed using engineering judgment, as follows. The average or best estimate of the probability that the safety function was lost was estimated from the data in each data set. Among complete failures, the ratio of the number of events with known safety function lost to events with safety function either known to be lost or known to be fail-safe was used for the probability of counting a complete event with uncertain safety function loss. Similarly, among failures with uncertain completeness, a probability of the safety function actually being lost in questionable cases was estimated by the ratio of the number of events with known safety function lost to events with safety function either known to be lost or known to be fail-safe, among events with uncertain completeness. For the probability that an event with uncertain completeness would be a complete loss of the safety function of the component, 0.5 was the selected mean value. This choice corresponds to the assessments of the engineers reviewing the failure data. For the uncertain events under considera-tion, the assessment was that the probability of complete function loss among similar events is closer to 0.5 than to 1.0 or to a value less than or equal to 0.1.

In the simulations, beta distributions were used to model uncertainty in these probabilities.

More specifically, the family of constrained noninformative distributions described under Alternate Methods in Section A-2.1.2 was selected. For both the probability of the safety function being lost and the probability of complete losses, the maximum entropy distribution constrained to have the specified mean probability was selected. The maximum entropy property results in a broad distribution; for the probability of an event with uncertain completeness being complete, the 5th and 95th percentile bounds are, respectively, 0.006 and 0.994. Thus, these distributions model a range of probabilities for the uncertain data attributes. For events in Category 9, for which both the safety function status and the completeness were unknown, the probability of complete failures with loss of the safety function was taken to be the product of the two separate probabilities. While the completeness and safety function loss status may not be completely independent among events with both attributes unknown, use of the product ensures that the modeled probability for these events will be as low, or lower, than the probability that the events with only one uncertain factor were complete losses of the safety function.

A-21

Page 101: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-2.1.3.2. Nature of the Simulations. The simulations occurred in the context of the

ordinary statistical analysis described in Sections A-2.1.1 and A-2.1.2. The first step in completing the analysis was to identify the best data subset, using the methods of Section A-2.1.1. The variation in the data was bounded by completing the analysis of Section A-2.1.1 using two cases:

• Lower bound case: counting no uncertain failures.

• Upper bound case: counting all uncertain failure (i.e., counting all the failures in Categories 3, 7, and 9 as complete losses of the safety function).

When differences were found between data sets in either of these bounding analyses, the differences were preserved for the simulation. That is, a subset was selected to best represent a RPS component’s failure probability or failure rate for Combustion Engineering plants if the rules given in Section A-2.1.1 applied in either the upper bound or the lower bound case. In the simulation, the selected data subset was analyzed using the simple Bayes method and also the empirical Bayes method for differences between plants and years. In each iteration, the data set itself differs according to the number of uncertain failures included. That is, for each selected set of data, the simulation proceeds as follows. First, a simulated number of failures was calculated for each combination of plant, year, plant mode, and method of discovery present in the data. Then, a simple Bayes or empirical Bayes distribution was sought. The results were saved and combined, as described in the next subsection.

The calculation of the simulated number of failures was simple. Suppose a cell of data (plant/ year/plant operational mode/method-of-discovery combination) had f failures that were known to be complete losses of the safety function, s failures for which the impact on the safety function was unknown, c failures for which the completeness was unknown, and b failures for which both the safety function impact and completeness were unknown. In the simulation, a psc for complete failures with unknown safety function status and a psu for unknown completeness failures with unknown safety function status were obtained by sampling from the beta distributions discussed above. A pc was obtained by sampling from the beta distribution discussed above with mean 0.5. A simulated number of failures with the safety function lost among the s failures with unknown impact was obtained by sampling from a binomial distribution with parameters s and psc. Here, the first parameter of a binomial distribution is the number of opportunities for an outcome, and the second is the probability of the outcome of interest in each independent trial. Similarly, a simulated number of complete failures among the c failures with unknown completeness was obtained by sampling from a binomial distribution with parameters c and pc. A simulated number of complete failures with safety function lost was generated from among the b failures with both uncertainties by sampling from a binomial distribution with parameters b and psu*pc. The total number of failures for the cell was f plus the values obtained from sampling from the three binomial distributions. This process was repeated for each cell of data.

A-2.1.3.3. Combining Output Distributions. The resulting beta or gamma distributions from the simulation cases were weighted equally and combined to produce distributions reflecting both the variation between plants or other specifically analyzed data sources, and the underlying uncertainty in the two attributes of the classification of the failure data. Two details of this process bear mention.

A-22

Page 102: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

In some of the simulated data sets, empirical Bayes distributions were not fitted to the data; the maximum likelihood estimates of the empirical Bayes distribution parameters did not exist. An outcome of the simulation was the percentage of the iterations for which empirical Bayes distributions were found. When no empirical Bayes distribution was fit to the simulated data, the simulated data were treated as being homogenous. The simple Bayes method represented the data using the updated Jeffrey’s noninformative prior distribution. The mean was taken to be the number of simulated failures plus 0.5, divided by the number of demands plus 1 (for probabilities) or by the exposure time (for rates). The resulting distribution goes into the mix along with the other distributions computed for the attribute under study in the simulations.

For each studied attribute, the simulation distributions were combined by matching moments. A lognormal distribution was obtained that has the same mean and variance as the mixture distribution arising from the simulation.

An option in the last step of this analysis would be to match the mean and the 95th

percentile from the simulation instead of the mean and variance. Two lognormal distributions can generally be found that match a specified mean and upper 95th percentile (the error factors are roots of a quadratic equation). For the RPS data, the 95th percentiles from the simulation were relatively low, and the mean and upper bound match led to unrealistic error factors (generally less than 1.5 or greater than 100). Therefore, lognormal distributions that matched the means and variances of the simulation data were used rather than distributions based on the mean and 95th percentiles.

A-2.2 The Combination of Failure Modes The failure mode probabilities were combined to obtain the unavailability. The primary tool

in this assessment was the SAPHIRE analysis of the fault trees for the four CE plant model groups (with analog or digital core protection calculators, and two different reactor trip breaker/contactor configurations in each of these categories).

Algebraic methods, described briefly here, were used to compute overall common-cause

failure probabilities and their associated uncertainties. The CCF probabilities were linear combinations of selected high-order CCF alpha factors, multiplied by the total failure probability or rate coming from the analysis of Section A-2.1. The CCF alpha factors, described in Appendix E, indicate the probability that, given a failure, a particular number of redundant components will fail by common-cause. For example, the probability of 6 of 8 components failing depends on the alpha factors for levels 6, 7, and 8. The linear combination of these terms was multiplied by QT, the total failure probability, to get the desired common-cause failure probability.

The following algebraic method is presented in more generality by Martz and Waller.A-17 The

CCF probability was an expression of the form (aX+bY)*Z where X, Y, and Z are events or failure modes or alpha factors that each had an uncertainty distribution, and a and b are positive constants between 0 and 1 that reflect a subset of CCF events

A-23

Page 103: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

of a given order meeting the particular criterion of the RPS fault tree. A combined distribution was obtained by repeatedly rewriting the expression using the facts that

Prob(kA) = k Prob(A) for the subsetting operation

Prob(A*B) = Prob(A and B) = Prob(A)*Prob(B) Prob(A+B) =Prob(A or B) = 1 - Prob(not A)*Prob(not B) = 1 - [1 - Prob(A)]*[1 - Prob(B)]

where A and B are any independent events. Because the resulting algebraic expressions were linear in each of the failure probabilities, the estimated mean and variance of the combination were obtained by propagating the failure probability means and variances. These means and variances were readily available from the beta distributions. Propagation of the means used the fact that the mean of a product is the product of the means, for independent random variables. Propagation of variances of independent factors was also readily accomplished, based on the fact that the variance of a random variable is the expected value of its square minus the square of its mean.

In practice, estimates were obtained by the following process:

• Compute the mean and variance of each beta distribution

• Compute the mean and variance of the combination for each case using simple equations for expected values of sums for "or" operations and of products for "and" operations

• Compute parameters for the lognormal distribution with the same mean and variance

• Report the mean and the 5th and 95th percentiles of the fitted lognormal distribution. The means and variances calculated from this process were exact. The 5th and 95th

percentiles were only approximate, however, because they assume that the final distribution is a lognormal distribution. Monte Carlo simulation for the percentiles is more accurate than this method if enough Monte Carlo runs are performed, because the output uncertainty distribution is empirical and not required to be lognormal.

A-3. METHODS FOR THE TREND ANALYSIS Trend analyses were performed for unplanned demands (reactor trips), failures, common

cause events, and failures within the data used to estimate the total failure probabilities for the unreliability assessment. In each set of data, the failures or events were binned by calendar year along with the associated exposure time. Trends were generally not analyzed, however, in data groupings with fewer than five failures or with fewer than three years in the study period with at least one failure.

Rates were tested for log trends. The log model is preferred over a simple linear model

because it does not allow the data to be negative. The log model trends were fitted using the SAS procedure, “GENMOD,” which fits generalized linear models.A-18 In these models, a probability structure is assumed for the data, and a linear model [e.g., log(rate)=a + b t] applies to the mean of the rates rather than to the rates themselves. Parameters in these models are estimated by

A-24

Page 104: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

maximizing the likelihood of the observed data assuming the specified structure, rather than by minimizing the sum of the squares of the differences between observed and model-predicted rates. The GENMOD rate model is based on the assumptions of random occurrences in time (as in a Poisson process). It thus allows the significance of the trend line to be estimated without requiring the assumption of normally-distributed data. A second major advantage of the method over least squares methods is that it uses zero counts for the log model without requiring any adjustment.

The generalized linear model also supports the estimation of simultaneous confidence bounds

for the mean of a rate. When the model adequately fits the data, the probability is 0.90 that the true curve describing the mean of the rates across years lies within the plotted band. The method also provides goodness-of-fit tests that show whether the data has the type of variation expected for random event counts. When the data have either much more or much less than expected variation, the model does not fit well. In the case of more variation in the data, the simultaneous confidence band will tend to be tighter than a similar band derived from a model that does fit the data. Since the trend models of this report are primarily for descriptive purposes and for identifying overall patterns, rather than for predictions or other detailed investigations, better-fitting models were not needed. Further technical details of the method are given in Reference A-20.

The final trend analysis was performed on the total failure probabilities (QT) used in the

unavailability analysis. Common-cause failure probabilities are largely driven by these probabilities, since the CCF probabilities are estimated by multiplying a function of the estimated alpha parameters (which are too sparse for trend analysis) and QT. For each component in the unreliability analysis, annual data were trended using the same methods as described above. The failures and demands entering this calculation were from the subset used for the QT analysis, with the exception that the entire time period was used even for components for which the unreliability estimates were based on data from the 1990-1995 or 1990-1998 period. The RPS demand count estimates are large in comparison to the failures for these components. Therefore, the trending methods applicable for rates were also applicable to these probabilities, and the demands were treated like the exposure times. The means of the uncertainty distributions were trended, and significant trends were highlighted and plotted using the same regression methods as for the frequencies.

A-4. REFERENCES A-1. G. M. Grant, W. S. Roesener, D. G. Hall, C. L. Atwood, C. D. Gentillon, and T. R. Wolf,

High Pressure Coolant Injection (HPCI) System Performance, 1987-1993, INEEL-94/0158, February, 1995.

A-2. G. M. Grant, J. P. Poloski, A. J. Luptak, C. D. Gentillon and W. J. Galyean, Emergency Diesel Generator Power System Reliability, 1987-1993, INEEL-95/0035, February, 1996.

A-3. G. M. Grant, J. P. Poloski, C. D. Gentillon and W. J. Galyean, Isolation Condenser System Reliability, 1987-1993, INEEL-95/0478, March, 1996.

A-4. J. P. Poloski, G. M. Grant, C. D. Gentillon, W. J. Galyean, W. S. Roesener, Reactor Core Isolation Cooling System Reliability, 1987-1993, INEEL-95/0196, September, 1996.

A-25

Page 105: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-5. J. P. Poloski, G. M. Grant, C. D. Gentillon, W. J. Galyean, J. K. Knudsen, Auxiliary/Emergency Feedwater System Reliability, 1987-1995 (Draft), INEEL/EXT-97-00740, November, 1997.

A-6. J. P. Poloski, G. M. Grant, C. D. Gentillon, and W. J. Galyean, Historical Reliability of the High-Pressure Core Spray System, 1987-1993, INEEL/EXT-95-00133, January, 1998.

A-7. George E. P. Box and George C. Tiao, Bayesian Inference in Statistical Analysis, Reading, MA: Addison Wesley, 1973, Sections 1.3.4–1.3.5.

A-8. Corwin L. Atwood, Hits per Trial: Basic Analysis of Binomial Data, EGG-RAAM-11041, September 1994.

A-9. Harry F. Martz and Ray A. Waller, Bayesian Reliability Analysis, Malabar, FL: Krieger, 1991, Section 7.6.

A-10.Corwin L. Atwood, “Constrained Noninformative Priors in Risk Assessment,” Reliability Engineering and System Safety, 53:37-46, 1966.

A-11.B. Harris, "Entropy," Encyclopedia of Statistical Sciences, Vol. 5, S. Kotz and N. L Johnson, editors, 1982, pp. 512–516.

A-12.Robert E. Kass and Duane Steffey, "Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models)," Journal of the American Statistical Association, 84, 1989, pp. 717–726, Equation (3.8).

A-13.M. E. Engelhardt, Events in Time: Basic Analysis of Poisson Data, EGG-RAAM-11088, Sept. 1994.

A-14. H. F. Martz and R. R. Picard, “Uncertainty in Poisson Event Counts and Exposure Time in Rate Estimation,” Reliability Engineering and System Safety, 48:181-190, 1995.

A-15. C. L. Atwood and C. D. Gentillon, “Bayesian Treatment of Uncertainty in Classifying Data: Two Case Studies,” Proceedings of the ESREL’96/PSAM-III International Conference on Probabilistic Safety Assessment and Management, June 24–28, 1996, Crete, Greece.

A-16. H. F. Martz, P. H. Kvam, and C. L. Atwood, “Uncertainty in Binomial Failures and Demands with Applications to Reliability,” International Journal of Reliability, Quality, and Safety Engineering, Vol. 3, No. 1 (1996).

A-17.H. F. Martz and R. A. Waller, "Bayesian Reliability Analysis of Complex Series/Parallel Systems of Binomial Subsystems and Components," Technometrics, 32, 1990, pp. 407-416.

A-18.U.S. NRC, Event Reporting Guidelines 10 CFR 50.72 and 50.73, NUREG-1022, Rev. 1, Section 3.3.2, January 1998.

A-19. SAS/STAT© Software: The GENMOD Procedure, Release 8.01, SAS Institute, Cary, NC. A-20. J. P. Poloski, et.al, Rates of Initiating Events at U. S. Nuclear Power Plants: 1987-1995,

NUREG/CR-5750, February, 1999.

A-26

Page 106: Reliability Study: Combustion Engineering Reactor Protection

Appendix A

A-27

Page 107: Reliability Study: Combustion Engineering Reactor Protection

Appendix B

Data Sum

mary

Page 108: Reliability Study: Combustion Engineering Reactor Protection
Page 109: Reliability Study: Combustion Engineering Reactor Protection

Appendix B

D

ata Summ

ary

This appendix summ

arizes the data evaluated in the comm

on-cause failure (CC

F) data collection in support of the C

ombustion Engineering R

PS study. Table B-1 lists C

ombustion Engineering independent

failure counts by type of component from

the source data files, summ

arized yearly. Table B-2 lists the

Com

bustion Engineering CC

F failure event counts by type of component from

the CC

F file, again sum

marized yearly. Table B

-3 summ

arizes in detail the Com

bustion Engineering CC

F events. The tables show

only records for components in the dataset.

The data presented in this appendix represent a subset of the data collected and analyzed for this study. The first screening w

as to exclude data prior to 1984 and to include only data from C

ombustion

Engineering plants. The second screening separated out the components of interest for the R

PS study. The follow

ing lists the components included in this sum

mary, w

ith a short description of each:

Com

ponent

D

escription

BM

E

B

reaker mechanical

BSN

B

reaker shunt trip coil B

UV

B

reaker undervoltage coil C

BI

Channel bistable

CPA

A

nalog core protection calculator C

PD

Digital core protection calculator

CPR

C

hannel pressure sensor/transmitter

CTP

Channel tem

perature sensor/transmitter

CR

D

Control rod drive m

echanism

MSW

M

anual scram sw

itch R

OD

C

ontrol rod R

YL

Logic Relay

RY

T

Trip R

elay

TLR

Trip Logic Relay (used in the pooled studies)

The third screening was for the safety function significance of the failure. The data collection

classified failures into three categories: fail-safe (FS), which represents a failure that does not affect the

component’s safety function; nonfail-safe (N

FS), which represents a failure of the com

ponent’s safety function; and unknow

n (UK

N), w

hich represents a failure that cannot be classified as FS or NFS because

of insufficient information concerning the failure. O

nly those failures designated as NFS or U

KN

are included in these attachm

ents. The fourth screening w

as for the failure completeness (degradation) value. Events w

ere categorized as com

plete failures (CF)(P=1.0), nonfailures (N

F)(P=0.1 or lower), or unknow

n com

pleteness (UC

)(P=0.5). Events with failure com

pleteness (degradation) values less than 0.5 are excluded from

the counts of independent events in Table B-1.

B

-1

Page 110: Reliability Study: Combustion Engineering Reactor Protection

Appendix B

The Table B-3 headings are listed and described below

:

Com

ponent

The component three-character identifier.

Fail Mode

Failure m

ode. The failure mode is a tw

o-character designator describing the m

ode of failure. The following list show

s the failure modes applicable to this

report:

FM

Description

IO

Instrument inoperability

IS

Instrum

ent setpoint drift

CO

Breaker fails to open

FO

Functionally failed (applies to RO

Ds)

CC

F Num

ber

Unique identifier for each com

mon-cause failure event. For this nonproprietary

report, the docket number portion of the C

CF num

ber has been replaced with

'XX

X'.

Event Year

The calendar year that the event occurred in.

Event Description

The description field for the CC

F.

Safety Function D

etermination of the type of failure as related to the safety function. A

llowable

entries are NFS, U

KN

, and FS.

TDF

Time D

elay Factor. The probability that two or m

ore component failures

separated in time represent a C

CF. A

llowable values are betw

een 0.1 and 1.0. (C

alled the Timing Factor in A

ppendix E.)

Coupling Strength

The analyst's uncertainty about the existence of coupling among the failures of

two or m

ore components. A

llowable values are betw

een 0.1 and 1.0. (Called the

Shared Cause Factor in A

ppendix E.)

CC

CG

The comm

on-cause component group size.

Shock Type

An indication of w

hether or not all components in a group can be expected to

fail. Allow

able entries: 'L' for lethal shock and 'NL' for nonlethal.

Date

The date of the event.

No. Failures

The num

ber of failure events included in the data record.

Degraded V

alue This field indicates the extent of each com

ponent failure. The allowable values

are decimal num

bers from 0.0 to 1.0. C

oding guidance for different values follow

s:

1.0 (C

F) The com

ponent has completely failed and w

ill not perform its

safety function.

0.5 (UC

) The com

pleteness of the component failure is unknow

n.

0.1 (NF)

The component is only slightly degraded or failure is incipient.

0.01 (N

F) The com

ponent was considered inoperable in the failure report;

however, the failure w

as so slight that failure did not seriously

affect com

ponent function.

0.0

The component did not fail (given a C

CF event).

B

-2

Page 111: Reliability Study: Combustion Engineering Reactor Protection

Table B-1. Combustion Engineering RPS independent failure yearly summary, 1984 to 1998.

SYSTEM ROD Componenta Safety Function 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Total CRD UKN 1 1 ROD NFS 1 1 1 1 4 Summary for 'SYSTEM' = ROD Sum 1 2 1 1 5 SYSTEM RPS Componenta Safety Function 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Total BME NFS 1 1 2 BSN NFS 2 2 4 BUV NFS 3 3 3 1 1 1 2 14 BUV UKN 1 1 1 3 CBI NFS 6 12 5 9 8 1 1 5 4 2 3 2 58 CBI UKN 2 3 1 4 1 1 1 13 CPA NFS 3 3 3 2 3 1 3 2 20

Appendix B

B-3

CPA UKN 1 1 4 1 2 1 1 1 2 14 CPD NFS 1 9 10 7 19 5 1 7 7 2 2 70 CPD UKN 2 1 3 6 2 1 1 1 17 CPR NFS 3 1 1 2 1 1 9 CPR UKN 2 1 4 1 1 2 1 1 1 1 15 CTP NFS 3 1 4 3 3 3 3 1 1 22 CTP UKN 3 1 3 2 1 1 2 1 2 1 17 MSW NFS 1 1 2 RYL NFS 1 1 2 RYL UKN 3 3 1 1 2 1 11 RYT NFS 1 1 2 Summary for 'SYSTEM' = RPS Sum 35 32 30 42 44 22 12 19 19 15 11 14 295

a. Components listed are those that have failure records with degradation values greater than 0.1.

Page 112: Reliability Study: Combustion Engineering Reactor Protection

Table B-2. Combustion Engineering RPS common-cause failure yearly summary, 1984 to 1998.

B-4

Appendix B

SYSTEM RPS Componenta Safety Function 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Total BME NFS 1 2 3 BSN NFS 1 1 BUV NFS 1 1 BUV UKN 1 1 CBI NFS 4 4 5 3 1 3 1 1 1 23 CBI UKN 1 1 1 1 4 CPA NFS 1 1 1 3 CPA UKN 2 1 1 4 CPD NFS 1 1 1 1 4 CPD UKN 1 2 1 1 5 CPR NFS 1 1 1 1 4 CPR UKN 1 1 2 CTP NFS 1 4 1 1 1 8 CTP UKN 2 2 Summary for 'SYSTEM' = RPS Sum 11 16 10 8 1 3 4 1 4 3 1 3 65 Study Total 11 16 10 8 1 3 4 1 4 3 1 3 65

a. Components listed are those that have CCF records.

Page 113: Reliability Study: Combustion Engineering Reactor Protection

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998.

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value BME CO N-XXX-84-1118-CO 1984 BREAKERS DID NOT CHANGE NFS 0.10 0.50 8 NL 9/25/1984 1 0.10 STATE IN THE REQUIRED 7/13/1984 1 0.10 BME CO N-XXX-85-1120-CO 1985 RTB FAILED ( UV ) TIME NFS 0.10 1.00 8 NL 4/8/1985 1 0.10 RESPONSE TIME TEST, 2/19/1985 1 0.10 FRONT FRAME BME CO N-XXX-85-1104-CO 1985 FRONT FRAME ASSEMBLIES NFS 1.00 1.00 8 NL 1/3/1985 1 0.10 WORN AND LACKING 1/3/1985 1 0.10 LUBRICATION BSN CO L-XXX-84-1094-CO 1984 DISCONNECTED LEADS NFS 1.00 1.00 8 NL 2/27/1984 4 1.00 REMOVED THE AUTOMATIC SHUNT TRIP FEATURE BUV CX L-XXX-85-1090-CX 1985 ARMATURES ON UV DEVICES UKN 1.00 0.50 8 NL 12/17/1985 2 0.10 FOR TCBS 4 AND 8 WERE IN A MID-POSIT BUV CO N-XXX-86-1121-CO 1986 UNDER VOLTAGE DEVICE NFS 0.10 0.50 8 NL 10/31/1986 1 0.10 ARMATURE EXTENSION DID 9/5/1986 1 1.00 NOT PICK UP CBI IS N-XXX-84-0609-IS 1984 PRE-TRIP BISTABLE NFS 1.00 0.50 56 NL 8/23/1984 1 0.10

Appendix B

B-5

SETPOINT HAD DRIFTED 8/23/1984 1 0.10 CBI IS N-XXX-84-0688-IS 1984 CONTAINMENT PRESSURE NFS 1.00 0.50 48 NL 4/21/1984 1 0.10 SWITCHES OOS 4/21/1984 1 0.10 4/21/1984 1 0.10 4/21/1984 1 0.10 CBI IO N-XXX-84-0644-IO 1984 TRIP MODULE FAILED TO NFS 1.00 0.10 56 NL 12/4/1984 1 1.00 RESPOND 12/4/1984 1 1.00 CBI IO N-XXX-84-0718-IS 1984 BISTABLE GREATER THAN NFS 1.00 1.00 56 NL 1/13/1984 1 0.10 15% POWER 'TRIP 1/13/1984 1 0.10 PERMISSIVE' OUT OF SPE CBI IS N-XXX-85-0617-IS 1985 TRIP ( ASGT ) TRIP UNIT WAS NFS 0.50 0.50 56 NL 12/20/1985 1 0.10 FOUND OUT OF 11/25/1985 1 0.10 CBI IO N-XXX-85-0611-IO 1985 TRIP UNIT POWER SUPPLYS UKN 1.00 1.00 56 NL 4/10/1985 1 1.00 FOUND UNSTABLE 4/10/1985 1 1.00 4/10/1985 1 1.00 4/10/1985 1 1.00 4/10/1985 1 1.00 4/10/1985 1 1.00

Page 114: Reliability Study: Combustion Engineering Reactor Protection

B-6

Appendix B

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998 (continued).

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value 4/10/1985 1 1.00 CBI IS N-XXX-85-0614-IS 1985 BISTABLE TRIP UNIT OUT OF NFS 1.00 0.50 56 NL 5/6/1985 1 0.10 SETPOINT CALIBRATION 5/4/1985 1 0.10 CBI IS N-XXX-85-0616-IS 1985 TRIP UNIT'S PRETRIP NFS 1.00 0.50 56 NL 10/25/1985 1 0.10 SETPOINT WAS FOUND OUT 10/25/1985 1 0.10 OF SPECIFICATION 10/2/1985 1 0.10 10/2/1985 1 0.10 9/20/1985 1 0.10 CBI IS N-XXX-85-0615-IS 1985 TRIP UNIT SETPOINT OUT OF NFS 1.00 0.50 56 NL 5/25/1985 1 0.10 SPECIFICATION LOW 5/25/1985 1 0.10 CBI IO N-XXX-86-0649-IO 1986 BISTABLE COMPARATOR NFS 1.00 0.50 56 NL 8/13/1986 1 1.00 CARDS FOUND TO BE BAD 8/13/1986 1 1.00 CBI IS N-XXX-86-0618-IS 1986 STEAM GENERATOR TRIP NFS 0.50 0.50 56 NL 5/14/1986 1 0.10 WAS FOUND OUT OF 5/13/1986 1 0.10 SPECIFICATION HIGH 4/17/1986 1 0.10 CBI IS N-XXX-86-0619-IS 1986 TRIP UNIT'S SETPOINT HAD NFS 1.00 0.50 56 NL 7/16/1986 1 0.10 DRIFTED 7/7/1986 1 0.10 CBI IO N-XXX-86-1144-IO 1986 VARIABLE SETPOINT CARDS NFS 1.00 0.50 56 NL 10/7/1986 1 1.00 FOUND TO BE BAD 9/29/1986 1 1.00 CBI IS N-XXX-86-0633-IS 1986 TRIP BISTABLE TRIP UNIT NFS 0.50 0.50 56 NL 12/17/1986 1 0.10 OUT OF SPEC LOW 11/21/1986 1 0.10 CBI IO N-XXX-87-0680-IO 1987 BISTABLE TRIP UNIT DUAL NFS 1.00 1.00 48 NL 2/21/1987 1 1.00 COIL RELAY HAD SHORTED 2/21/1987 1 1.00 2/21/1987 1 1.00 CBI IO N-XXX-87-0681-IO 1987 BISTABLE TRIP UNIT DUAL NFS 1.00 1.00 48 NL 3/18/1987 1 1.00 COIL RELAY COILS HAD 3/18/1987 1 1.00 SHORTED TOGETHE 3/18/1987 1 1.00 3/18/1987 1 1.00 3/18/1987 1 1.00 3/17/1987 1 1.00 3/17/1987 1 1.00 3/17/1987 1 1.00

Page 115: Reliability Study: Combustion Engineering Reactor Protection

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998 (continued).

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value 3/17/1987 1 1.00 3/17/1987 1 1.00 3/17/1987 1 1.00 CBI IS N-XXX-87-0621-IS 1987 BISTABLE TRIP UNIT'S NFS 1.00 0.50 56 NL 1/27/1987 1 0.10 SETPOINTS WERE FOUND 1/16/1987 1 0.10 OUT OF SPECIFICATI 1/16/1987 1 0.10 1/16/1987 1 0.10 CBI IS N-XXX-87-0634-IS 1987 TRIP BISTABLE TRIP UNIT UKN 1.00 0.50 56 NL 2/27/1987 1 0.10 OUT OF SPEC LOW 2/27/1987 1 0.10 2/13/1987 1 0.10 1/21/1987 1 0.10 1/21/1987 1 0.10 1/21/1987 1 0.10 CBI IO N-XXX-88-0684-IO 1988 DUAL COIL RELAY COILS NFS 1.00 1.00 48 NL 11/8/1988 1 1.00 HAD SHORTED TOGETHER 11/8/1988 1 1.00 CBI IS N-XXX-90-0735-IS 1990 BISTABLES FOUND OUT OF NFS 1.00 0.50 56 NL 6/13/1990 1 0.10 SPEC. HIGH ON CHANNELS A , 6/13/1990 1 0.10 B , AND C

Appendix B

B-7

6/13/1990 1 0.10 CBI IS N-XXX-90-0624-IS 1990 SET POINT WAS OUT OF NFS 1.00 0.50 56 NL 10/9/1990 1 0.10 SPECIFICATION IN THE TRIP 10/5/1990 1 0.10 UNIT 10/1/1990 1 0.10 9/28/1990 1 0.10 9/19/1990 1 0.10 9/11/1990 1 0.10 9/8/1990 1 0.10 CBI IO L-XXX-90-1149-IO 1990 ALL 4 POWER RANGE NFS 1.00 1.00 56 NL 10/2/1990 4 0.50 BISTABLES WERE FOUND TO BE OOS CBI IO N-XXX-91-0689-IO 1991 DUAL COIL RELAY COILS UKN 1.00 1.00 48 NL 2/17/1991 1 1.00 HAD SHORTED TOGETHER 2/11/1991 1 1.00 CBI IS N-XXX-92-0638-IS 1992 BI-POLAR AMPLIFIER HAD A UKN 0.10 0.50 56 NL 3/13/1992 1 0.10 SLIGHTLY LOW 3/12/1992 1 0.10 OUT-OF-SURVEILLANCE TE 2/10/1992 1 0.10

Page 116: Reliability Study: Combustion Engineering Reactor Protection

B-8

Appendix B

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998 (continued).

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value CBI IS N-XXX-92-0639-IS 1992 TRIP UNIT HAD DRIFTED NFS 1.00 0.50 56 NL 4/10/1992 1 0.10 SLIGHTLY OUT OF 4/8/1992 1 0.10 SURVEILLANCE TEST SPEC CBI IO N-XXX-94-0687-IO 1994 THE STEAM GENERATOR NFS 1.00 1.00 48 NL 10/5/1994 1 0.50 LOW LEVEL BISTABLE TRIP 10/4/1994 1 0.50 UNIT DID NOT SHU CBI IO L-XXX-95-0589-IO 1995 NONE OF THE FOUR NFS 1.00 1.00 56 NL 7/28/1995 4 1.00 CONTAINMENT HIGH PRESSURE CHANNELS WOULD IN CPA IS N-XXX-84-0631-IS 1984 CALCULATOR MINIMUM NFS 1.00 0.50 12 NL 12/18/1984 1 0.10 HIGH POWER TRIP SETPOINT 12/18/1984 1 0.10 VOLTAGE OUT OF S CPA IS N-XXX-89-0732-IS 1989 A FAULTY DUAL AMPLIFIER UKN 1.00 0.50 4 NL 3/5/1989 1 0.50 MODULES FOUND WITHIN 3/5/1989 1 0.50 THE CORE PROTEC CPA IO N-XXX-89-0733-IO 1989 DUAL AMPLIFIER MODULES UKN 1.00 0.50 4 NL 3/15/1989 1 1.00 FOUND BAD 3/14/1989 1 1.00 3/13/1989 1 1.00 3/6/1989 1 1.00 CPA IO N-XXX-92-0729-IO 1992 FLUX TRIP INTEGRATOR UKN 1.00 0.50 12 NL 4/7/1992 1 1.00 CALCULATOR DRAWER WAS 4/7/1992 1 1.00 NOT PRODUCING ANY 4/7/1992 1 1.00 4/7/1992 1 1.00 4/7/1992 1 1.00 4/7/1992 1 1.00 CPA IO N-XXX-93-0700-IO 1993 COMPUTATION MODULE NFS 1.00 0.50 12 NL 9/9/1993 1 1.00 HAD FAILED 9/9/1993 1 1.00 CPA IO N-XXX-95-0701-IO 1995 18 VOLT POWER SUPPLY NFS 0.50 1.00 4 NL 2/22/1995 1 1.00 VOLTAGE BELOW THE 2/9/1995 1 0.50 ACCEPTABLE TOLERANCE CPA IO N-XXX-95-0703-IO 1995 TRIP CALCULATOR DRAWER UKN 1.00 0.50 4 NL 12/30/1995 1 1.00 POTENTIOMETER WOULD 12/28/1995 1 1.00 NOT ADJUST AS REQ 12/26/1995 1 1.00 CPD IO N-XXX-84-0691-IO 1984 CPC / CEAC INDICATED UKN 1.00 0.50 12 NL 11/14/1984 1 1.00 CHANNEL PROBLEMS

Page 117: Reliability Study: Combustion Engineering Reactor Protection

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998 (continued).

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value 11/10/1984 1 1.00 CPD IO N-XXX-85-0645-IO 1985 CORE PROTECTION UKN 0.50 0.50 4 NL 5/1/1985 1 1.00 CALCULATOR WAS FOUND 4/15/1985 1 1.00 TO READ LOW CPD IO N-XXX-85-0694-IO 1985 ( CPC / CEAC ) HAD NFS 1.00 1.00 4 NL 11/19/1985 1 1.00 INTERMITTANT MEMORY 11/12/1985 1 1.00 PARITY ERRORS 11/9/1985 1 1.00 CPD IO N-XXX-85-0693-IO 1985 CPC/CEA POWER SUPPLY UKN 0.50 0.50 12 NL 10/8/1985 1 1.00 HAD REACHED ITS END OF 9/8/1985 1 1.00 CPD IS N-XXX-86-0647-IS 1986 PUMP INPUT WOULD NOT NFS 1.00 0.50 4 NL 6/23/1986 1 0.50 ADJUST, CORE PROTECTION 6/18/1986 1 0.50 CALCULATOR CPD IO N-XXX-86-0650-IO 1986 CONTROL ELEMENT UKN 1.00 0.50 4 NL 9/10/1986 1 1.00 ASSEMBLY CALCULATOR 9/9/1986 1 1.00 WAS NOT OPERATING CPD IO N-XXX-87-0669-IO 1987 ( CPC / CEAC ) DATA LINK NFS 1.00 0.50 4 NL 9/23/1987 1 1.00 FAILED 9/19/1987 1 1.00

Appendix B

B-9

CPD IO N-XXX-87-0656-IO 1987 CEAC DEVIATION SENSOR UKN 1.00 1.00 12 NL 9/9/1987 1 0.50 FAILED 9/9/1987 1 0.50 CPD IO N-XXX-89-0671-IO 1989 CORE PROTECTION NFS 1.00 0.50 4 NL 8/15/1989 1 1.00 CALCULATOR ( CPC ) FAILED 8/14/1989 1 1.00 DURING PERFORMANCE CPR IS N-XXX-84-0629-IS 1984 PRESSURE TRANSMITTER NFS 1.00 0.50 16 NL 6/24/1984 1 0.10 HAD DRIFTED LOW 6/24/1984 1 0.10 6/24/1984 1 0.10 CPR IS N-XXX-84-0630-IS 1984 SPAN OF THE TRANSMITTER UKN 1.00 0.50 16 NL 7/14/1984 1 0.10 HAD DRIFTED 7/14/1984 1 0.10 CPR IS L-XXX-85-0587-IS 1985 7 PZR PRESSURE NFS 1.00 0.50 16 NL 9/14/1985 7 0.10 TRANSMITTERS WERE OUT OF THE REQUIRED CALIBRA CPR IS N-XXX-87-1441-IS 1987 PRESSURE TRANSMITTERS NFS 1.00 0.50 16 NL 3/31/1987 1 0.10 OUT OF SPECIFICATION LOW 3/31/1987 1 0.10 CPR IS N-XXX-92-0724-IS 1992 POWER SUPPLY WAS FOUND UKN 1.00 0.50 16 NL 3/4/1992 1 0.10 TO HAVE HIGH OUT OF 2/3/1992 1 0.10 SPECIFICATION AC

Page 118: Reliability Study: Combustion Engineering Reactor Protection

B-10

Appendix B

Table B-3. Combustion Engineering RPS common-cause failure detailed summary, 1984 to 1998 (continued).

Component Fail CCF Number Event Event Description Safety TDF Coupling CCCG Shock Date No. Degraded Mode Year Function Strength Type Failuresa Value 2/3/1992 1 0.10 2/3/1992 1 0.10 2/3/1992 1 0.10 2/1/1992 1 0.50 CPR IO N-XXX-93-0641-IO 1993 STEAM GENERATOR NFS 1.00 0.50 16 NL 5/10/1993 1 1.00 PRESSURE HAD FAILED HIGH 5/10/1993 1 1.00 DUE TO A FAILED HIG CTP IO L-XXX-84-0593-IO 1984 12 RTDS EXCEEDED THE NFS 1.00 1.00 16 NL 2/13/1984 12 0.10 TECH SPEC LIMIT OF 8 SECS CTP IS N-XXX-85-0613-IS 1985 TEMPERATURE NFS 1.00 0.50 16 NL 5/1/1985 1 0.10 TRANSMITTER'S SPAN HAD 5/1/1985 1 0.10 DRIFTED LOW CTP IO N-XXX-85-0722-IO 1985 RESISTANCE TEMPERATURE NFS 1.00 1.00 16 NL 6/28/1985 1 0.10 DETECTORS HAD A CRACK 6/28/1985 1 0.10 IN IT DUE TO MA 6/28/1985 1 0.10 6/25/1985 1 1.00 CTP IO N-XXX-85-0728-IO 1985 RESISTANCE TEMPERATURE NFS 1.00 0.50 12 NL 9/7/1985 1 1.00 DETECTORS FOUND TO 9/7/1985 1 1.00 PRODUCE INTERMITTE CTP IO N-XXX-85-0646-IO 1985 RESISTANCE TEMPERATURE NFS 1.00 0.50 16 NL 7/30/1985 1 1.00 DETECTOR HAD FAILED 7/30/1985 1 1.00 CTP IS N-XXX-86-0652-IS 1986 TEMPERATURE UKN 1.00 0.50 16 NL 10/3/1986 1 0.10 TRANSMITTERS OUT OF 10/3/1986 1 0.10 CALIBRATION 10/3/1986 1 0.10 CTP IS N-XXX-86-0651-IS 1986 TEMPERATURE UKN 1.00 0.50 16 NL 9/29/1986 1 0.10 TRANSMITTERS OUT OF 9/29/1986 1 0.10 CALIBRATION 9/29/1986 1 0.10 CTP IS N-XXX-87-0657-IS 1987 THREE TEMPERATURE NFS 1.00 0.50 16 NL 12/29/1987 1 0.10 TRANSMITTERS IN THE CPC 12/29/1987 1 0.10 CHANNEL 'B' WERE O 12/29/1987 1 0.10 CTP IO N-XXX-90-0736-IO 1990 RTDS FAILED ITIME NFS 1.00 1.00 16 NL 9/11/1990 1 0.50 RESPONSE TEST 9/11/1990 1 0.50 CTP IO N-XXX-93-0699-IO 1993 HOT LEG TEMPERATURE NFS 1.00 1.00 16 NL 11/27/1993 1 1.00 DETECTOR HAD FAILED 11/27/1993 1 1.00 WITH AN OPEN CIRCUIT _______________ Note: a. This value represents the number of failures in the event record that is part of the CCF.

Page 119: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Quantitative Results of Basic Component Operational Data Analysis

Page 120: Reliability Study: Combustion Engineering Reactor Protection
Page 121: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Quantitative Results of Basic Component Operational Data Analysis

This appendix displays relevant RPS component counts and the estimated probability or rate for each

failure mode, including distributions that characterize any variation observed between portions of the data. The analysis is based primarily on data from Combustion Engineering plants during the period 1984 through 1998. However, since relatively few CE plants exist, and similar components exist in the RPS system for other PWR plants, the data were supplemented with data from other PWR vendors when such data were applicable and the CE data were sparse.

Table C-1 lists the components from the RPS unreliability analysis whose total failure probability or

rate was estimated from the failure data. The components are listed in sequence across the RPS, beginning with the channel sensor/transmitters and core protection calculator, then the channel bistables, then the logic relays, trip relays, breakers, and rods. For each quantity that is to be estimated, the CE operational data experience is listed (failures and demands or operating times). When fewer than three failures were observed, and other PWR vendors have possibly relevant failure data, the table contains additional rows showing the operational experience with all PWRs, CE and B&W data combined, and CE and Westinghouse data combined.

The quantitative analysis of the RPS failure data was also influenced by the uncertainty in the number

of complete failures for which the safety function of the associated component was lost. In each row in Table C-1, a range is given for the number of failures when uncertain failures occurred.

Additional columns in Table C-1 show the results of statistical tests on whether the vendor data can

be pooled. In the final column, the vendor data set selected for the analysis of this study is specified. The conclusion of the vendor analysis is that pooling for CE data will be done for manual switch failures, for breaker mechanical failures, and for failures associated with control rods/drives. The pooling is over all three PWR vendors, unless the statistical tests show one vendor to be different from CE and the third vendor.

A final comment with regard to pooling across vendors is that the determination is made at the level

of a particular estimate for the unreliability analysis. Each estimate identifies a different failure mode or way for the RPS system to become degraded. Thus, for example, the three breaker-related components are treated in two different ways. CE data are combined with B&W data for the mechanical part of the breaker, but are not combined with other vendors for the shunt trip and the undervoltage trip. CE and B&W have similar data for the mechanical part of the breaker and the CE data set is sparse, so pooling is considered. The CE data sets for shunt and UV trips each contain at least three complete failures. Thus, these sets are not regarded as sparse. Therefore, because the failure mode behaves differently, different estimations are used for the CE trip breaker performance.

C-1

Page 122: Reliability Study: Combustion Engineering Reactor Protection

C-2

Appendix C

Tab

le C

-1.

Ven

dor d

iffer

ence

s app

licab

le to

CE

RPS

com

pone

nts u

sed

in th

e PR

A (u

pper

failu

re c

ount

incl

udes

unc

erta

in fa

ilure

s).

Com

p.

code

C

ompo

nent

Dat

ase

tV

endo

r(s)

Fa

ilure

sa

b

Dem

ands

or

Y

ears

Test

St

atis

tic

P-va

lue

c C

oncl

usio

n C

hann

el c

ompo

nent

s C

PR

Pres

sure

sens

or/

trans

mitt

er

Cyc

lic a

nd q

uarte

rly te

stin

g fa

ilure

s and

dem

ands

C

8

to 1

9 11

,188

d

No

need

to p

ool.

Use

C d

ata

alon

e.

Occ

urre

nces

in ti

me

C

6 to

12

2,36

0.9

y —

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

C

TP

Tem

pera

ture

sens

or/

trans

mitt

er

Cyc

lic a

nd q

uarte

rly te

stin

g fa

ilure

s and

dem

ands

C

9

to 2

1 12

,530

d

No

need

to p

ool.

Use

C d

ata

alon

e.

Occ

urre

nces

in ti

me

C

11 to

25

2,64

5.4

y —

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

C

PA

Ana

log

core

pro

tect

ion

calc

ulat

or

Cyc

lic a

nd q

uarte

rly te

stin

g fa

ilure

s and

dem

ands

C

8

to 4

1 1,

524

d —

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

Occ

urre

nces

in ti

me

C

3 to

11

380.

5 y

No

need

to p

ool.

Use

C d

ata

alon

e.

CPD

D

igita

l cor

e pr

otec

tion

calc

ulat

or

Cyc

lic a

nd q

uarte

rly te

stin

g fa

ilure

s and

dem

ands

C

23

to 3

7 1,

171

d —

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

Occ

urre

nces

in ti

me

C

38 to

68

292.

9 y

No

need

to p

ool.

Use

C d

ata

alon

e.

CB

I

Bis

tabl

eQ

uarte

rly te

stin

g fa

ilure

s an

d de

man

ds

C

45 to

76

37,4

53 d

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

Trai

ns (t

rip lo

gic)

R

YL

Logi

c re

lay

C

2 to

8

16,1

60 d

Q

uarte

rly te

stin

g fa

ilure

s an

d de

man

ds

BC

W

45 to

58

849,

025

d<1

.E-5

(all

f.)

Use

C d

ata

alon

e (h

ighe

r fai

lure

pr

obab

ility

than

oth

er v

endo

rs)

C

B

3 to

9

74,5

04 d

<=

0.01

C

W

44 to

57

790,

682

d<1

.E-5

(all

f.)

R

YT

Trip

rela

yQ

uarte

rly te

stin

g fa

ilure

s an

d de

man

ds

C

1 to

2

16,1

60 d

U

sed

in C

E R

PS.

Not

com

para

ble

with

oth

er v

endo

rs.

MSW

Man

ual s

cram

switc

h C

1

3,42

6 d

BC

W2

19,7

90 d

0.23

Pool

dat

a fr

om a

ll th

ree

PWR

ve

ndor

s M

anua

l trip

s & q

uarte

rly

test

ing

failu

res

and

dem

ands

C

B1

5,53

8d

1.0

d

CW

217

,677

d0.

35

Page 123: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-1.

(Con

tinue

d)

C-3

C

omp.

co

de

Com

pone

ntD

ata

set

Ven

dor(

s)

Failu

res

ab

Dem

ands

or

Y

ears

Test

St

atis

tic

P-va

lue

c C

oncl

usio

n R

eact

or tr

ip b

reak

ers

BM

E B

reak

er m

echa

nica

l C

1

42,0

13 d

Po

ol C

and

B d

ata

BC

W

4 to

6

113,

585

d0.

006

(all

f)

Trip

s and

qua

rterly

an

d m

onth

ly te

stin

g

failu

res a

nd d

eman

ds

CB

183

,813

d1.

0

CW

4

to 6

71

,785

d

0.05

(all

f)

B

SN

Bre

aker

shun

t dev

ice

C

3 to

4

25,2

70 d

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

Q

uarte

rly te

stin

g fa

ilure

s an

d de

man

ds (6

test

s per

qu

arte

r)

BU

V

Bre

aker

und

ervo

ltage

co

il M

onth

ly te

stin

g fa

ilure

s an

d de

man

ds

C

10 to

18

12,6

35 d

N

o ne

ed to

poo

l. U

se C

dat

a al

one.

Con

trol r

od d

rive

and

rod

RM

A

C

1 to

3

58,0

06 d

Con

trol r

od d

rive

an

d ro

ds

Trip

s and

cyc

lic te

stin

g

failu

res a

nd d

eman

ds

BC

W

1 to

5

189,

536

d>0

.10

Pool

B, C

, and

W d

ata.

C

B

1 to

3

77,0

92 d

>0

.58

CW

1

to 5

17

0,45

0 d

>0.1

7

Not

es:

a.

B =

Bab

cock

and

Wilc

ox; C

= C

ombu

stio

n En

gine

erin

g, W

= W

estin

ghou

se.

b.

Whe

n a

rang

e is

giv

en, t

he lo

wer

num

ber i

s the

num

ber o

f cer

tain

failu

res (

com

plet

e, w

ith sa

fety

func

tion

lost

), an

d th

e up

per n

umbe

r is t

he u

pper

bou

nd th

at c

ount

s all

the

failu

res,

incl

udin

g th

e on

es w

ith u

nkno

wn

com

plet

enes

s and

/or u

nkno

wn

safe

ty im

pact

. c.

Lo

w p

-val

ues (

<0.0

5) sh

ow d

ata

that

shou

ld n

ot b

e po

oled

. W

hen

certa

in fa

ilure

s and

all

failu

res d

iffer

, the

re a

re tw

o po

ssib

le p

-val

ues.

If b

oth

are

rela

tivel

y hi

gh, s

how

ing

no o

bser

ved

diff

eren

ce b

etw

een

the

vend

ors,

the

resu

lt is

stat

ed a

s gre

ater

than

or e

qual

to th

e lo

wer

of t

he tw

o va

lues

. C

onve

rsel

y, if

bot

h ar

e ne

ar z

ero,

show

ing

data

that

sh

ould

not

be

pool

ed, t

he re

sult

is st

ated

as l

ess t

han

or e

qual

to th

e la

rger

of t

he v

alue

s. If

one

of t

he p

-val

ues i

s low

, sho

win

g da

ta th

at sh

ould

not

be

pool

ed, t

hat v

alue

will

be

cite

d w

ith a

par

ethe

tical

not

e on

whi

ch c

ase

it w

as (“

failu

res,”

or “

all f

”).

d.

Whe

n on

ly tw

o gr

oups

are

com

pare

d, o

ne w

ith n

o fa

ilure

s and

the

othe

r with

one

failu

re, a

nd th

e gr

oup

with

no

failu

res h

as le

ss d

eman

ds th

an th

e ot

her g

roup

, the

p-v

alue

w

ill a

lway

s be

1.0.

The

gro

up w

ith n

o fa

ilure

s has

insu

ffic

ient

dat

a to

be

able

to d

isce

rn a

diff

eren

ce in

the

two

grou

ps.

Appendix C

Page 124: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Table C-2 breaks down the failures within the selected vendor groups for each component. It shows

the number of events fully classified as known, complete failures, and the number of uncertain events within various subsets of the data. Within each component grouping, subsets in Table C-2 are based on the assessed method of discovery and the plant status (operations or shutdown) for each event (note that uncertainty in these two attributes of the data was not quantified in the data assessment). In addition, rows in Table C-2 show breakdowns for whether the failures occurred during the first part of the study period (1984–1989) or during the second part (1990–1998). For testing data, the second part range is 1990–1995, since only CE and B&W LER data were available for 1996–1998.

The choice of the most representative subset of data to use for each component for the fault tree was a

major part of the statistical data analysis. Where operations and shutdown data differ significantly, the subset of operations data was selected, since the unavailability analysis describes risk during operations. Similarly, when the newer data differed significantly from the data earlier in the study period, the newer data were used for the analysis. The analysis also considered whether the test data and data from unplanned scrams differ, for the limited number of components that are always demanded in a trip and whose failures would be detected. Rules for subset selection are discussed further in Section 2.1.1 of Appendix A.

Tables C-1 and C-2 show that the observed number of failures for each component potentially lies

between two bounds: a lower bound that excludes all the uncertain failures, and an upper bound that includes them. The initial analysis of the RPS failure data, to select the subsets, was based on these two extreme cases. The next four tables present information on how the subsets were selected using these two sets of data. Figure C-1 overviews the selection process and how the results feed into these tables.

As shown in Figure C-1, the analysis first considered the lower bound (LB) case of no uncertain

failures. These data correspond to the first failure count in Table C-1. Table C-3 provides these counts for several subsets, along with the associated denominators and simple calculated probabilities or rates. It also gives confidence bounds for the estimates. Note that the confidence bounds do not consider any special sources of variation (e.g., year or plant). The maximum likelihood estimates and bounds are presented for simple comparisons. They are not used directly in the unavailability analysis.

Table C-4 summarizes the results from testing the hypothesis of constant probabilities or, as

applicable, constant rates, across groupings for each basic component failure mode in the RPS fault trees having data. The table provides probability values (p-values) for the hypothesis tests, rounded to the nearest 0.001. When the hypothesis is rejected, the data show evidence of variation. The tests are for possible differences based on method of discovery or data source (unplanned reactor trips or testing), on plant mode (operations or shutdown), on the time period (1984–1989 versus 1990–1995), on different plant units, and on different calendar years. Like Table C-3, Table C-4 applies to the LB data. The results are subdivided according to the method of discovery whenever this distinction is applicable. In the table, finding empirical Bayes distributions for differences in plant mode or finding a p-value less than 0.05 for differences in plant mode resulted in the generation of lines describing the operational and shutdown data separately. Similarly, a finding of an empirical Bayes distribution or small p-value in the time period data groupings produced additional separate evaluations of the older and more recent data.

In Table C-4, low p-values point to variation and lack of homogeneity in the associated data

groupings. For example, in Table C-4 the entire row of p-values for data from quarterly tests of CE digital core protection calculators is marked as “<5.E-4.” The first of these values indicates that the data

C-4

Page 125: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

Sum

mar

y of

RPS

tota

l fai

lure

cou

nts a

nd w

eigh

ted

aver

age

tota

l fai

lure

s (in

depe

nden

t and

com

mon

-cau

se fa

ilure

s) fo

r PW

R v

endo

r gr

oups

use

d in

the

CE

unav

aila

bilit

y an

alys

is.

C-5

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

Cha

nnel

com

pone

nts

C c

yclic

and

qua

rterly

test

s 8

3 1

7 19

13

.7

—(o

p)

11

03

52.

3Pr

essu

re se

nsor

/ tra

nsm

itter

(CPR

)

—(s

/d)

72

14

1410

.9(1

984-

1989

)2

21

49

5.3

(198

4-19

89op

)

1

10

35

2.3

(198

4-19

89s/

d)

1

11

14

2.6

(199

0-19

95) (

alls

/d)

61

03

107.

7

C o

ccur

renc

es in

tim

e 6

3 0

3 12

7.

1

—(o

p)

23

02

72.

6

—(s

/d)

40

01

54.

3(1

984-

1989

)4

20

39

4.8

(198

4-19

89op

)

2

20

26

2.6

(198

4-19

89s/

d)

2

00

13

2.3

(199

0-19

95)

21

00

32.

3

—(1

990-

1995

op)

01

00

10.

1

—(1

990-

1995

s/d)

20

00

22.

0C

cyc

lic a

nd q

uarte

rly te

sts

9 2

7 3

21

15.1

Te

mpe

ratu

re se

nsor

/ tra

nsm

itter

(CTP

) —

(op)

4

23

110

7.4

(s/d

)

5

04

211

7.6

Appendix C

Page 126: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

(Con

tinue

d.)

Appendix C

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

(198

4-19

89)

6

11

08

7.2

Tem

pera

ture

sens

or/

trans

mitt

er, c

ontin

ued

—(1

984-

1989

op)

31

00

43.

7

—(1

984-

1989

s/d)

30

10

43.

5(1

990-

1995

)3

16

313

8.1

(199

0-19

95op

)

1

13

16

3.7

(199

0-19

95s/

d)

2

03

27

4.2

C

occ

urre

nces

in ti

me

11

8 4

2 25

16

.4

(op)

8

41

114

10.0

(s/d

)

3

43

111

6.6

(198

4-19

89)

86

12

1711

.4

—(1

984-

1989

op)

63

11

117.

9

—(1

984-

1989

s/d)

23

01

63.

6(1

990-

1995

)3

23

08

5.0

(199

0-19

95op

)

2

10

03

2.3

(199

0-19

95s/

d)

1

13

05

2.9

C q

uarte

rly te

sts

8 19

6

8 41

22

.9

Ana

log

core

pro

tect

ion

calc

ulat

or (C

PA)

—(o

p)

36

33

158.

2

—(s

/d)

513

35

2614

.9(1

984-

1989

)2

92

518

10.2

(198

4-19

89op

)

1

42

29

4.6

(198

4-19

89s/

d)

1

50

39

5.5

(199

0-19

95)

610

43

23

13.5

(199

0-19

95op

)

2

21

16

3.7

(199

0-19

95s/

d)

4

83

217

10.0

C-6

Page 127: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

(Con

tinue

d)

C-7

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

C o

ccur

renc

es in

tim

e 3

1 7

0 11

6.

7 —

(op)

2

06

08

5.0

Ana

log

core

pro

tect

ion

calc

ulat

or,

cont

inue

d —

(s/d

)

1

11

03

1.9

(198

4-19

89)

11

60

84.

3

—(1

984-

1989

op)

10

50

63.

5

—(1

984-

1989

s/d)

01

10

20.

8(1

990-

1995

)2

01

03

2.5

(199

0-19

95op

)

1

01

02

1.5

(199

0-19

95s/

d)

1

00

01

1.0

C q

uarte

rly te

sts

23

7 1

6 37

31

.6

Dig

ital c

ore

prot

ectio

n ca

lcul

ator

(CPD

) —

(op)

7

20

110

8.8

(s/d

)

16

51

527

23.2

(198

4-19

89)

216

16

3428

.6

—(1

984-

1989

op)

62

01

97.

8

—(1

984-

1989

s/d)

154

15

2521

.3(1

990-

1995

)2

10

03

2.8

(199

0-19

95op

)

1

00

01

1.0

(199

0-19

95s/

d)

1

10

02

1.8

C

occ

urre

nces

in ti

me

38

12

15

4 69

54

.0

(op)

33

712

355

44.0

(s/d

)

5

53

114

10.4

(198

4-19

89)

2310

134

50

36.7

(198

4-19

89op

)

20

510

338

28.9

(198

4-19

89s/

d)

3

53

112

7.9

Appendix C

Page 128: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

(Con

tinue

d.)

Appendix C

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

(199

0-19

95)

15

2

20

1917

.3D

igita

l cor

e pr

otec

tion

calc

ulat

or, c

ontin

ued

(199

0-19

95op

)

13

22

017

15.2

(199

0-19

95s/

d)

2

00

02

2.0

Bis

tabl

e (C

BI)

C

qua

rterly

test

s 45

15

14

2

76

63.7

—(o

p)

253

61

3530

.3

—(s

/d)

2012

81

4134

.7(1

984-

1989

)33

124

251

45

.1

—(1

984-

1989

op)

203

21

2623

.4

—(1

984-

1989

s/d)

139

21

2522

.4(1

990-

1995

)12

310

025

18.8

(199

0-19

95op

)

5

04

09

7.0

(199

0-19

95s/

d)

7

36

016

12.3

Trai

ns (t

rip lo

gic)

Lo

gic

rela

y (R

YL)

C

qua

rterly

test

s 2

6 0

0 8

4.1

(op)

1

40

05

2.5

(s/d

)

1

20

03

1.8

(198

4-19

89)

15

00

62.

5

—(1

984-

1989

op)

13

00

42.

5

—(1

984-

1989

s/d)

02

00

20.

3(1

990-

1995

)1

10

02

1.5

(199

0-19

95op

)

0

10

01

0.3

(199

0-19

95s/

d)

1

00

01

1.0

C-8

Page 129: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

(Con

tinue

d)

C-9

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

Trip

rela

y (R

YT)

C

qua

rterly

test

s (al

l op)

1

0 1

0 2

1.5

(198

4-19

89)

10

00

11.

0(1

990-

1995

)0

01

01

0.5

Man

ual s

cram

sw

itch

(MSW

) PW

R q

uarte

rly te

sts a

nd

man

ual s

cram

s (al

l 199

0-19

98)

2

00

02

2.0

(op)

1

00

01

1.0

(s/d

)

1

00

01

1.0

Rea

ctor

trip

bre

aker

s U

npla

nned

reac

tort

rips

00

00

00.

0B

reak

er

mec

hani

cal (

BM

E)

BC

qua

rterly

and

mon

thly

test

s (19

90-

1995

op)

1

0

00

11.

0

C q

uarte

rly te

sts (

1984

-198

9 op

) 3

0 1

0 4

3.5

Bre

aker

shun

t de

vice

(BSN

)

C m

onth

ly te

sts

10

1 5

2 18

13

.6

Bre

aker

und

ervo

ltage

co

il (B

UV

) —

(op)

5

14

212

8.1

(s/d

)

5

01

06

5.5

(198

4-19

89)

80

31

129.

9

—(1

984-

1989

op)

40

21

75.

4

—(1

984-

1989

s/d)

40

10

54.

5(1

990-

1995

)

2

12

16

3.7

—(1

990-

1995

op)

11

21

52.

6

—(1

990-

1995

s/d)

10

00

11.

0

Appendix C

Page 130: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-2.

(Con

tinue

d.)

Appendix C

Unc

erta

in fa

ilure

cou

nts

Bas

ic e

vent

(c

ompo

nent

) D

ata

seta

Low

er

boun

d:

know

n fa

ilure

s on

ly

Unc

erta

in

loss

of

safe

ty

func

tion

Unc

erta

in

com

plet

e-ne

ss

Bot

h un

certa

intie

s

Upp

er

boun

d:

all

failu

res

coun

ted

Tota

l fa

ilure

w

eigh

ted

aver

ageb

Con

trol r

od d

rive

and

rod

Con

trol e

lem

ent

asse

mbl

y &

rod

(RM

A)

Unp

lann

ed re

acto

r trip

s (b

oth

failu

res w

ere

in 1

990-

1998

) c 0

0

20

21.

0

PW

R c

yc. t

ests

(all

in 1

984-

1989

, s/d

) 1

0 2

0 3

2.0

a.

NSS

S ve

ndor

abb

revi

atio

ns:

C, C

E (o

nly)

; BC

, CE,

and

B&

W p

oole

d; C

W, C

E, a

nd W

poo

led;

and

PW

R, B

&W

, CE,

and

W a

ll po

oled

. Te

stin

g fr

eque

ncy

abbr

evia

tions

: m

on.,

mon

thly

; qtr.

, qua

rterly

; cyc

., cy

clic

. Th

e fr

eque

ncy

of te

stin

g ap

plie

s to

the

dem

and

coun

t est

imat

ions

. Th

e fa

ilure

dat

a ar

e cl

assi

fied

as b

eing

di

scov

ered

on

test

ing,

unp

lann

ed d

eman

ds o

r obs

erva

tion

(occ

urre

nces

in ti

me)

. Pl

ant s

tatu

s abb

revi

atio

ns:

op, o

pera

ting;

s/d,

shut

dow

n. T

he st

ated

test

ing

appl

ies t

o th

e C

E co

mpo

nent

s. O

ther

ven

dors

hav

e di

ffer

ent t

estin

g sc

hedu

les f

or so

me

of th

e co

mpo

nent

s. b.

Su

ppos

e th

ere

are

NFS

= 8

com

plet

e fa

ilure

s fo

r a c

ompo

nent

(CPR

, for

exa

mpl

e) w

ith th

e sa

fety

func

tion

lost

, and

FS

= 1

com

plet

e fa

ult t

hat i

s kn

own

from

the

failu

re

repo

rts t

o be

fai

l-saf

e.

For

this

rep

ort,

the

estim

ated

pro

babi

lity

(pcN

FS)

of s

afet

y fu

nctio

n lo

ss f

or a

com

plet

e fa

ult

with

unk

now

n sa

fety

im

pact

is

(NFS

+0.5

)/(N

FS+F

S+1)

= 0

.85.

A s

imila

r rat

io, (

pucN

FS),

is e

stim

ated

usi

ng th

e fa

ults

with

unk

now

n co

mpl

eten

ess

and

eith

er k

now

n or

unk

now

n sa

fety

impa

ct.

For

exam

ple,

for

CPR

with

1 s

afet

y fu

nctio

n lo

st e

vent

with

unk

now

n co

mpl

eten

ess,

and

0 fa

il sa

fe r

epor

ted

even

ts w

ith u

nkno

wn

com

plet

enes

s, (p

ucN

FS)

is

(1+0

.5)/(

1+0+

1) =

0.75

. 0.

5 w

as a

ssum

ed fo

r the

com

plet

enes

s pr

obab

ility

for a

n ev

ent w

ith u

ncer

tain

com

plet

enes

s. T

here

fore

, the

tota

l fai

lure

wei

ghte

d av

erag

e is

the

num

ber o

f “kn

own

failu

res o

nly”

(8 c

ompl

ete

and

with

kno

wn

safe

ty im

pact

) plu

s pcN

FS ti

mes

the

num

ber (

3) o

f com

plet

e fa

ilure

s tha

t mig

ht h

ave

had

a sa

fety

impa

ct,

plus

0.5

tim

es th

e nu

mbe

r (1

) of

saf

ety

impa

ct fa

ilure

s th

at m

ight

hav

e be

en c

ompl

ete,

plu

s pu

cNFS

tim

es 0

.5 ti

mes

the

num

ber (

7) o

f fa

ilure

s th

at m

ight

hav

e ha

d a

safe

ty im

pact

and

mig

ht h

ave

been

com

plet

e. T

hus,

for C

PR a

s an

exam

ple,

the

tota

l wei

ghte

d fa

ilure

s is 1

3.7

= 8

+ 3

* 0.

85 +

1 *

0.5

+ 7

* 0

.75

*0.5

. c.

Th

e 19

96–1

998

perio

d co

nsid

ers o

nly

CE

and

B&

W d

eman

ds fr

om tr

ips.

Not

e th

at a

ny fa

ilure

s tha

t occ

ur d

urin

g th

ese

dem

ands

are

ass

umed

to b

e re

porte

d in

the

LER

s th

at e

xpla

in th

e re

acto

r trip

s. T

his a

pplie

s to

sing

le fa

ilure

s as w

ell a

s mul

tiple

failu

res.

Pro

blem

s with

bre

aker

s and

con

trol r

od d

rives

and

rods

that

occ

ur d

urin

g tri

ps

shou

ld b

e di

scus

sed

in th

e LE

R (t

hey

mig

ht h

ave

a po

tent

ial c

omm

on-c

ause

eff

ect).

C-10

Page 131: Reliability Study: Combustion Engineering Reactor Protection

C-11

Appendix C

Sele

ct a

sing

le d

ata

subs

et to

est

imat

e Q

Doe

sco

mpo

nent

have

unc

erta

infa

ilure

s?

Ope

ratio

nal m

ode

diff

eren

ces?

(See

Tab

le C

-4,

seco

nd c

olum

n)Ti

me

perio

ddi

ffer

ence

s for

oper

atio

ns d

ata?

Tim

e pe

riod

diff

eren

ces?

(See

Tab

le C

-4,

mid

dle

colu

mn)

T (e

.g.,

new

, ope

ratio

nsda

ta if

app

licab

le).

Sel

ectio

ns a

re su

mm

ariz

ed in

Tab

le C

-7.

Sele

ct n

ew d

ata

(199

0-19

98)

Sele

ct fu

llda

ta se

tSe

lect

oper

atio

ns d

ata

Sele

ct n

ew,

oper

atio

ns d

ata

Step

2.

Rev

iew

all

poss

ibly

app

licab

le fa

ilure

s (se

e co

unts

and

den

omin

ator

s for

subs

ets i

n Ta

ble

C-5

).

Step

3.

For t

he se

lect

ed d

ata

set,

eval

uate

pos

sibl

e di

ffer

ence

s bet

wee

n pl

ants

or y

ears

(see

the

last

two

colu

mns

of T

able

s C-4

and

C-6

).

Yes

Yes

Yes

Yes

No

No

No

Diff

eren

ces

amon

gpl

ants

?

Cha

ract

eriz

ebe

twee

n-pl

ant

varia

bilit

y

Yes

Cha

ract

eriz

ebe

twee

n-ye

arva

riabi

lity

Diff

eren

ces

amon

gye

ars?

Cha

ract

eriz

esa

mpl

ing

varia

bilit

y

Yes

No

No

No

Step

1 (a

fter

per

form

ing

the

vend

or e

valu

atio

n). R

evie

w fu

lly-c

lass

ified

failu

res (

see

coun

ts a

nd d

enom

inat

ors f

or su

bset

s in

Tabl

e C

-3).

Figu

re C

-1.

Dec

isio

n al

gorit

hm fo

r unc

erta

inty

dis

tribu

tion

sele

ctio

n (a

pplie

d fo

r eac

h co

mpo

nent

).

Step

4.

Obt

ain

empi

rical

Bay

es u

ncer

tain

ty d

istri

butio

ns, u

sing

sim

ulat

ions

for t

he p

artia

lly-w

eigh

ted

unce

rtain

failu

re e

vent

s (Ta

ble

C-8

).M

atch

the

mea

n an

d va

rianc

es to

obt

ain

logn

orm

al u

ncer

tain

ty b

ound

s, sh

own

in T

able

C-9

.

Rep

eat S

tep

1, u

sing

eva

luat

ion

crite

ria fr

om T

able

C-6

.

(See

Tab

le C

-4,

mid

dle

colu

mn)

Page 132: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Table C-3. Point estimates and confidence bounds for component groups used in the assessment of CE RPS total failure probabilities and rates (complete failures with safety function lost, only).

Failure mode (component) Data set

Failures f

Denominator d or T

Probability or rate a

and 90% confidence interval Channel components

C cyclic & qtrly. tests 8 11188 (3.6E-04, 7.2E-04, 1.3E-03) C cyclic & qtrly. tests (op) 1 8296 (6.2E-06, 1.2E-04, 5.7E-04)

Pressure sensor/transmitter (CPR)

C cyclic & qtrly. tests (s/d) 7 2892 (1.1E-03, 2.4E-03, 4.5E-03) C tests, 1984-1989 (s/d) 1 1446 (3.5E-05, 6.9E-04, 3.3E-03) C tests, 1990-1995 (s/d) 6 1446 (1.8E-03, 4.1E-03, 8.2E-03) C occurrences in time 6 2360.9 c (1.1E-03, 2.5E-03, 5.0E-03) C occurrences in time (op) b 2 b 1740.4 b,c (2.0E-04, 1.1E-03, 3.6E-03) b C occurrences in time (s/d) 4 620.6 c (2.2E-03, 6.4E-03, 1.5E-02)

C cyclic & qtrly. tests 9 12530 (3.7E-04, 7.2E-04, 1.3E-03) C cyclic & qtrly. tests (op) 4 9266 (1.5E-04, 4.3E-04, 9.9E-04)

Temperature sensor/transmitter (CTP)

C cyclic & qtrly. tests (s/d) 5 3264 (6.0E-04, 1.5E-03, 3.2E-03) C occurrences in time 11 2645.4 c (2.3E-03, 4.2E-03, 6.9E-03)

C quarterly tests 8 1524 (2.6E-03, 5.2E-03, 9.5E-03) C quarterly tests (op) 3 1082 (7.6E-04, 2.8E-03, 7.2E-03)

Analog core protection calcu- lator (CPA)

C quarterly tests (s/d) 5 442 (4.5E-03, 1.1E-02, 2.4E-02) C occurrences in time 3 380.5 c (2.2E-03, 7.9E-03, 2.0E-02)

C quarterly tests 23 1171 (1.3E-02, 2.0E-02, 2.8E-02) C quarterly tests (op) 7 894 (3.7E-03, 7.8E-03, 1.5E-02)

Digital core protection calcu- lator (CPD)

C qtr. tests, 1984-1989 (op) 6 346 (7.6E-03, 1.7E-02, 3.4E-02) C qtr. tests, 1990-1995 (op) 1 548 (9.4E-05, 1.8E-03, 8.6E-03) C quarterly tests (s/d) 16 277 (3.7E-02, 5.8E-02, 8.6E-02) C qtr. tests, 1984-1989 (s/d) 15 153 (6.1E-02, 9.8E-02, 1.5E-01) C qtr. tests, 1990-1995 (s/d) 1 124 (4.1E-04, 8.1E-03, 3.8E-02) C occurrences in time 38 292.9 c (9.9E-02, 1.3E-01, 1.7E-01) C occurrences in time, 1984-1989 23 124.9 c (1.3E-01, 1.8E-01, 2.5E-01) C occurrences in time, 1990-1995 15 168.0 c (5.6E-02, 8.9E-02, 1.3E-01) Bistable (CBI) C quarterly tests 45 37453 (9.2E-04, 1.2E-03, 1.5E-03) C quarterly tests (op) 25 27494 (6.3E-04, 9.1E-04, 1.3E-03) C qtr. tests, 1984-1989 (op) 20 12232 (1.1E-03, 1.6E-03, 2.4E-03) C qtr. tests, 1990-1995 (op) 5 15262 (1.3E-04, 3.3E-04, 6.9E-04) C quarterly tests (s/d) 20 9959 (1.3E-03, 2.0E-03, 2.9E-03)

Trains (trip logic)

Logic relay (RYL) C quarterly tests 2 16160 (2.2E-05, 1.2E-04, 3.9E-04) Trip relay (RYT) C quarterly tests 1 16160 (3.2E-06, 6.2E-05, 2.9E-04)

C-12

Page 133: Reliability Study: Combustion Engineering Reactor Protection

Table C-3. (Continued.)

Appendix C

Failure mode (component) Data set

Failures f

Denominator d or T

Probability or rate a

and 90% confidence interval PWR unplanned trips 0 2222 (0.0E+00, 0.0E+00, 1.3E-03) Manual scram

switch (MSW) PWR quarterly tests 2 17567 (2.0E-05, 1.1E-04, 3.6E-04) PWR pooled trips & tests 2 19789 (1.8E-05, 1.0E-04, 3.2E-04)

Reactor trip breakers

BC unplanned trips 0 5416 (0.0E+00, 0.0E+00, 5.5E-04) Breaker mech. (BME) BC quarterly tests 1 78397 (6.5E-07, 1.3E-05, 6.1E-05) BC pooled trips & tests 1 83813 (6.1E-07, 1.2E-05, 5.7E-05)

C quarterly tests 3 25270 (3.2E-05, 1.2E-04, 3.1E-04) C quarterly tests, 1984-1989 3 12022 (6.8E-05, 2.5E-04, 6.4E-04)

Breaker shunt device (BSN)

C quarterly tests, 1990-1995 0 13248 (0.0E+00, 0.0E+00, 2.3E-04) C monthly tests 10 12635 (4.3E-04, 7.9E-04, 1.3E-03) C monthly tests, 1984-1989 8 6011 (6.6E-04, 1.3E-03, 2.4E-03)

Breaker under- voltage coil (BUV)

C monthly tests, 1990-1995 2 6624 (5.4E-05, 3.0E-04, 9.5E-04) Control rod drive and rod

PWR unplanned trips 0 161514 (0.0E+00, 0.0E+00, 1.9E-05) PWR cyclic tests 1 28022 (1.8E-06, 3.6E-05, 1.7E-04)

Control element assembly & rod (RMA)

PWR pooled trips & tests 1 189536 (2.7E-07, 5.3E-06, 2.5E-05) a. The middle number is the point estimate, f/d, or f/T, and the two end numbers form a 90% confidence interval. For demands,

the interval is based on a binomial distribution for the occurrence of failures, while it is based on a Poisson distribution for the rates. Rates are identified from the “occurrences in time” data set, and a footnote in the denominator column. Note that these maximum likelihood estimates may be zero and are not used directly in the unavailability analysis.

b. Highlighted rows show the data sets selected for the unavailability analysis. In sections where no row is highlighted, see Table C-5.

c. Component years. The associated rates are failures per component year. should not be pooled over plant mode. From Table C-3, more failures occurred during shutdown periods than during operational periods. Furthermore, from the prorating assumption used to estimate the number of test demands, many fewer test demands were counted for shutdown periods than for operations. The p-value is a measure of the likelihood of the observed difference or a more extreme difference if the two groups had the same failure probability. The low statistical p-value means that either a “rare” (probability less than 0.0005) situation occurred, or the two sets of failures and demands have different failure probabilities (the actual p-value was 3.15E-6). The statistical test for time period differences is similar. Only two of 23 failures occurred during the 1990–1995 period. This phenomenon is even less likely under the assumption of homogeneity than the observed difference with regard to plant state (the actual p-value was 1.2E-6). The low p-values in the last two columns similarly indicate differences, first between plants, and then between years.

Throughout these tables, p-values that are less than or equal to 0.05 are highlighted. The tables show

many cases where differences in plant unit reporting were observed.

C-13

Page 134: Reliability Study: Combustion Engineering Reactor Protection

C-14

Appendix C

Table C-4. Evaluation of differences between groups for CE RPS failure modes (based only on complete failures with safety function lost).a P-values for test of variation c

Failure mode (component) Data set b

Rx. trip vs.

tests

In plant

modes In time periods

In plant units

In years

Channel components and bistables

C cyclic & qtrly. tests — <5.E-4 (E) 0.306 <5.E-4 (E) 0.001 (E) C cyclic & qtrly. tests (op) — — 0.436 0.240 0.148 C cyclic & qtrly. tests (s/d) — — 0.125 (E) 0.010 (E) <5.E-4 (E)

Pressure sensor/ transmitter (CPR)

C tests, 1984-1989 (s/d) — — — 0.151 0.434 C tests, 1990-1995 (s/d) — — — 0.002 (E) 0.005 (E) C occurrences in time — 0.025 (E) 0.313 0.395 0.254 (E) C occurrences in time (op) — — 0.113 0.746 0.358 C occurrences in time (s/d) — — 0.964 0.414 (E) 0.020 (E)

C cyclic & qtrly. tests — 0.058 (E) 0.316 0.017 (E) 0.052 (E) C cyclic & qtrly. tests (op) — — 0.328 0.853 0.521 C cyclic & qtrly. tests (s/d) — — 0.686 0.001 (E) 0.093 (E)

Temperature sensor/ transmitter (CTP)

C occurrences in time — 0.955 0.081 0.731 0.491 C quarterly tests — 0.050 (E) 0.288 0.005 (E) <5.E-4 (E)C quarterly tests (op) — — 0.624 0.754 0.169 (E) C quarterly tests (s/d) — — 0.374 0.003 (E) 0.004 (E)

Analog core protection calculator (CPA)

C occurrences in time — 0.861 0.575 0.669 0.113 (E) C quarterly tests — <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) <5.E-4 (E)C quarterly tests (op) — — 0.015 (E) 0.095 (E) 0.050 (E) C qtr. tests, 1984-1989 (op) — — — 0.495 0.366

Digital core protection calculator (CPD)

C qtr. tests, 1990-1995 (op) — — — 0.439 0.412 C quarterly tests (s/d) — — 0.001 (E) <5.E-4 (E) <5.E-4 (E) C qtr. tests, 1984-1989 (s/d) — — — <5.E-4 (E) <5.E-4 (E) C qtr. tests, 1990-1995 (s/d) — — — 0.386 0.387 C occurrences in time — 0.125 0.026 (E) <5.E-4 (E) 0.092 (E) C occurrences in time, 1984-1989 — 0.067 — <5.E-4 (E) 0.675 C occurrences in time, 1990-1995 — 0.599 — <5.E-4 (E) 0.038 (E) Bistable (CBI) C quarterly tests — 0.010 (E) <5.E-4 (E) <5.E-4 (E) 0.009 (E) C quarterly tests (op) — — <5.E-4 (E) <5.E-4 (E) 0.014 (E) C qtr. tests, 1984-1989 (op) — — — <5.E-4 (E) 0.404 C qtr. tests, 1990-1995 (op) — — — 0.029 (E) 0.390 C quarterly tests (s/d) — — 0.264 <5.E-4 (E) 0.547

Trains (trip logic)

Logic relay (RYL) C quarterly tests — 0.461 1.000 0.592 0.504 Trip relay (RYT) C quarterly tests — 1.000 0.465 0.501 0.336

Page 135: Reliability Study: Combustion Engineering Reactor Protection

Table C-4. (Continued.)

Appendix C

P-values for test of variation c

Failure mode (component) Data set b

Rx. trip vs.

tests

In plant

modes In time periods

In plant units

In years

PWR unplanned trips — 0 F 0 F 0 F 0 F Manual scram switch (MSW) PWR quarterly tests — — 0.505 0.503 0.634 PWR pooled trips & tests 1.000 — 0.500 0.728 0.769

Reactor trip breakers

BC unplanned trips — 0 F 0 F 0 F 0 F BC monthly tests — 1.000 1.000 <5.0E-4d 0.464

Breaker mechanical (BME)

BC pooled trips & tests 0.793 1.000 0.495 <5.0E-4 d 0.673 CW quarterly tests — 0.574 0.108 (E) 0.788 0.035 (E) Breaker shunt

device (BSN) CW quarterly tests, 1984-1989 — 0.566 — 0.827 0.138 (E) CW quarterly tests, 1990-1995 — 0 F — 0 F 0 F

C monthly tests — 0.139 0.055 (E) 0.008 (E) 0.199 (E) C monthly tests, 1984-1989 — 0.227 — 0.054 (E) 0.380

Breaker undervoltage coil (BUV)

C monthly tests, 1990-1995 — 0.427 — 0.228 0.549 Control rod drive and rod

PWR unplanned trips — 0 F 0 F 0 F 0 F PWR cyclic tests — 0.244 0.500 0.979 0.561

Control element assembly & rod (RMA)

PWR pooled trips & tests 0.148 0.036 1.000 0.978 0.499 a. This table describes components in the fault tree whose failure probability or rate was estimated from the RPS data.

Unplanned demands are considered for some components, as indicated in Table A-2. Additional rows for subsets based on plant status or time period appear if significant differences in these attributes were found in the larger groups of data.

b. —, a subset of the test data for the component based on plant state (operating or shut down) and/or year. In the first line of data for an estimate, vendor groups are given as follows: C, CE (only); BC, CE, and B&W pooled; CW, B&W, and W pooled; and PWR, CE, B&W, and W all pooled.

c. —, not applicable; 0 F, no failures (thus, no test); All F, no successes (thus, no test). P-values less than or equal to 0.05 are in a bold font. For the evaluation columns other than “Rx. trip vs. tests,” an “E” is in parentheses after the p-value if and only if an empirical Bayes distribution was found accounting for variations in groupings. Low p-values and the fitting of empirical Bayes distributions are indications of variability between the groupings considered in the column.

d. The chi-square test statistic is only an approximation. In this case, the actual p-value for the pooled data is 0.015. A single failure occurred at a plant with 1.5% of the total demands, while twenty other plants each had more demands and no failures.

C-15

Page 136: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

In each of the first three main evaluation columns in Table C-4, two entities or data groupings are being compared (reactor trips versus tests, operational versus shutdown, and older versus more recent). In the leftmost evaluation column, where applicable, the reactor trip data were compared with the data from testing. This evaluation is for information only, since both sets of data were pooled for the unavailability analysis.

The plant operating mode and time period evaluations in Table C-4 also reflect the comparison of

pairs of attributes. "Step 1" in Figure C-1 shows how these evaluations are used in the selection of a subset of data for analysis. The selections were also dictated by the allowed component combinations listed in Table A-2.

Step 2 in the data selection process is to repeat Step 1 using the upper bound (UB) data from the fifth

data column in Table C-1. Table C-5 is similar to Table C-3, and gives denominators, probabilities or rates, and confidence intervals. Table C-6 shows the p-values computed for the tests of differences in groups for the UB data.

The subset selection results for the LB and UB cases agreed for all but three of the estimates. For

cyclic and quarterly tests of pressure sensor/transmitters, both runs showed higher probabilities for shutdown tests than for tests during operation, but only the upper bound case showed differences according to the two time periods. For the rate evaluation of failures detected during routine operations for pressure sensor/transmitters, the strongest difference was found between plant operational states in the lower bound run (with just two of six failures during operations) and between the two time periods in the upper bound run (with just three of twelve failures in the more recent period). The third estimate having differences between the two bounding runs was the temperature sensor/transmitter rate. Here, significant differences for both plant state and time period were seen in the upper bound run.

The general principle that subsets are used if either of the bounding analyses showed a need for them

was used for the first and third estimates just discussed. This point is explained in the last Step 2 box in Figure C-1. The decision process thus reduced the data in these two cases to plant operations in the 1990-1995 period.

For the pressure sensor/transmitter rates, the LB and UB differences led to different sets for

consideration, rather than to more detailed subsets. For the UB case, four of the six uncertain failures considered in addition to the known failures occurred in the earlier period, during operations. These events thus reduced the impact of plant state differences, while increasing the impact of the two different time periods. The subset selection for the pressure sensor/ transmitters rate evaluation was based on plant state, and not on the two time periods, because the p-value for plant state differences in the LB case was lower (and thus more significant) than the p-value for time period differences in the UB case. Also, the LB case has more impact in the evaluation since less than half of the added failures in the UB case are counted as complete with safety function lost.

C-16

Page 137: Reliability Study: Combustion Engineering Reactor Protection

C-17

Appendix C

Table C-5. Point estimates and confidence bounds for component groups used in the assessment of CE RPS total failure probabilities and rates (including all failures with unknown completeness and/or unknown loss of the safety function).

Failure mode (component) Data set

Failures f

Denominatord or T

Probability or rate a

and 90% confidence interval Channel components

C cyclic & qtr. tests 19 11188 (1.1E-03, 1.7E-03, 2.5E-03) C cyclic & qtr. tests (op) 5 8296 (2.4E-04, 6.0E-04, 1.3E-03) C cyc. & qtr. tests, 1984-1989 (op) 5 3618 (5.4E-04, 1.4E-03, 2.9E-03)

Pressure sensor/ transmitter (CPR)

C cyc. & qtr. tests, 1990-1995 (op) b 0 b 4678 b (0.0E+00, 0.0E+00, 6.4E-04) b C cyclic & qtr. tests (s/d) 14 2892 (2.9E-03, 4.8E-03, 7.6E-03) C occurrences in time 12 2360.9 c (2.9E-03, 5.1E-03, 8.2E-03) C occurrences in time, 1984-1989 9 1088.9 c (4.3E-03, 8.3E-03, 1.4E-02) C occurrences in time, 1990-1995 3 1272.0 c (6.4E-04, 2.4E-03, 6.1E-03)

C cyclic & qtr. tests 21 12530 (1.1E-03, 1.7E-03, 2.4E-03) C cyclic & qtr. tests (op) 10 9266 (5.9E-04, 1.1E-03, 1.8E-03) C cyclic & qtr. tests (s/d) 11 3264 (1.9E-03, 3.4E-03, 5.6E-03)

Temperature sensor/ transmitter (CTP)

C occurrences in time 25 2645.4 c (6.6E-03, 9.5E-03, 1.3E-02) C occurrences in time (op) 14 1943.9 c (4.4E-03, 7.2E-03, 1.1E-02) C occur. in time, 1984-1989 (op) 11 872.2 c (7.1E-03, 1.3E-02, 2.1E-02) C occur. in time, 1990-1995 (op) 3 1071.7 c (7.6E-04, 2.8E-03, 7.2E-03) C occurrences in time (s/d) 11 701.5 c (8.8E-03, 1.6E-02, 2.6E-02)

C quarterly tests 41 1524 (2.0E-02, 2.7E-02, 3.5E-02) C quarterly tests (op) 15 1082 (8.6E-03, 1.4E-02, 2.1E-02) C quarterly tests (s/d) 26 442 (4.2E-02, 5.9E-02, 8.1E-02)

Analog core protection calculator (CPA)

C occurrences in time 11 380.5 c (1.6E-02, 2.9E-02, 4.7E-02) C quarterly tests 37 1171 (2.4E-02, 3.2E-02, 4.1E-02) C quarterly tests (op) 10 894 (6.1E-03, 1.1E-02, 1.9E-02) C qtr. tests, 1984-1989 (op) 9 346 (1.4E-02, 2.6E-02, 4.5E-02)

Digital core protection calculator (CPD)

C qtr. tests, 1990-1995 (op) 1 548 (9.4E-05, 1.8E-03, 8.6E-03) C quarterly tests (s/d) 27 277 (7.0E-02, 9.7E-02, 1.3E-01) C qtr. tests, 1984-1989 (s/d) 25 153 (1.2E-01, 1.6E-01, 2.2E-01) C qtr. tests, 1990-1995 (s/d) 2 124 (2.9E-03, 1.6E-02, 5.0E-02) C occurrences in time 68 292.9 c (1.9E-01, 2.3E-01, 2.8E-01) C occurrences in time, 1984-1989 49 124.9 c (3.2E-01, 3.9E-01, 4.7E-01) C occurrences in time, 1990-1995 19 168.0 c (7.5E-02, 1.1E-01, 1.6E-01) Bistable (CBI) C quarterly tests 76 37453 (1.7E-03, 2.0E-03, 2.5E-03) C quarterly tests (op) 35 27494 (9.4E-04, 1.3E-03, 1.7E-03) C qtr. tests, 1984-1989 (op) 26 12232 (1.5E-03, 2.1E-03, 2.9E-03) C qtr. tests, 1990-1995 (op) 9 15262 (3.1E-04, 5.9E-04, 1.0E-03) C quarterly tests (s/d) 41 9959 (3.1E-03, 4.1E-03, 5.3E-03)

Page 138: Reliability Study: Combustion Engineering Reactor Protection

Table C-5. (Continued).

Appendix C

Failure mode (component) Data set

Failures f

Denominatord or T

Probability or rate a

and 90% confidence interval Trains (trip logic) d

Logic relay (RYL) C quarterly tests 8 16160 (2.5E-04, 5.0E-04, 8.9E-04) Trip relay (RYT) C quarterly tests 2 16160 (2.2E-05, 1.2E-04, 3.9E-04)

Reactor trip breakers

C quarterly tests 4 25270 (5.4E-05, 1.6E-04, 3.6E-04) Breaker shunt device (BSN) C quarterly tests, 1984-1989 4 12022 (1.1E-04, 3.3E-04, 7.6E-04) C quarterly tests, 1990-1995 0 13248 (0.0E+00, 0.0E+00, 2.3E-04) Breaker under- voltage coil (BUV)

C monthly tests 18 12635 (9.2E-04, 1.4E-03, 2.1E-03)

Control rod drive and rod

PWR unplanned trips 2 161514 (2.2E-06, 1.2E-05, 3.9E-05) PWR cyclic tests 3 28022 (2.9E-05, 1.1E-04, 2.8E-04)

Control element assembly & rod (RMA)

PWR cyclic tests (op) 0 21179 (0.0E+00, 0.0E+00, 1.4E-04) PWR cyclic tests (s/d) 3 6843 (1.2E-04, 4.4E-04, 1.1E-03) PWR cyclic tests, 1984-1989 3 14003 (5.8E-05, 2.1E-04, 5.5E-04) PWR cyclic tests, 1990-1998 0 14019 (0.0E+00, 0.0E+00, 2.1E-04) PWR pooled trips & tests 5 189536 (1.0E-05, 2.6E-05, 5.5E-05) PWR pooled trips & tests (op) 2 182693 (1.9E-06, 1.1E-05, 3.4E-05) a. The middle number is the point estimate, f/d, or f/T, and the two end numbers form a 90% confidence interval.

For demands, the interval is based on a binomial distribution for the occurrence of failures, whereas it is based on a Poisson distribution for the rates. Rates are identified from the “occurrences in time” data set, and a footnote in the denominator column. Note that these maximum likelihood estimates may be zero and are not used directly in the unavailability analysis. Note also that manual switches, silicon-controlled rectifiers, and breaker mechanical are not included in this table, since they had no uncertain failure data in the subsets under consideration for the unavailability analysis (see Table C3).

b. Highlighted rows show the data sets selected for the unavailability analysis. No rows are highlighted among the occurrences in time because the unavailability associated with each rate and an 8-hour per year down time is an order of magnitude lower than the unavailability computed from the test data.

c. Component years. The associated rates are failures per component year. d. No row for manual switches. There were no uncertain failures for this component.

C-18

Page 139: Reliability Study: Combustion Engineering Reactor Protection

C-19

Appendix C

Table C-6. Evaluation of differences between groups for CE RPS failure modes, including failures with unknown completeness and/or unknown loss of safety function. a P-values for test of variation c

Failure mode (component) Data set b

Rx. trip vs. tests

In plant

modes In time periods

In plant units

In years

Channel components

C cyclic & qtrly. tests — <5.E-4 (E) 1.000 0.001 (E) 0.122 (E) C cyclic & qtrly. tests (op) — — 0.016 (E) 0.001 (E) 0.026 (E) C cyc. & qtr. tests, 1984-1989 (op) — — — 0.003 (E) 0.245

Pressure sensor/ transmitter (CPR)

C cyc. & qtr. tests, 1990-1995 (op) — — — 0 F 0 F C cyclic & qtrly. tests (s/d) — — 0.179 0.001 (E) 0.073 (E) C occurrences in time — 0.226 0.045 (E) 0.001 (E) 0.389 C occurrences in time, 1984-1989 — 0.781 — 0.228 (E) 0.746 C occurrences in time, 1990-1995 — 0.082 — 0.023 (E) 0.221

C cyclic & qtrly. tests — 0.011 (E) 0.520 0.002 (E) 0.357 C cyclic & qtrly. tests (op) — — 1.000 0.608 0.492 C cyclic & qtrly. tests (s/d) — — 0.548 0.007 (E) 0.301 (E)

Temperature sensor/ transmitter (CTP)

C occurrences in time — 0.048 (E) 0.031 (E) 0.164 (E) 0.191 (E) C occurrences in time (op) — — 0.011 (E) 0.123 (E) 0.022 (E) C occur. in time, 1984-1989 (op) — — — 0.440 0.133 (E) C occur. in time, 1990-1995 (op) — — — 0.517 0.749 C occurrences in time (s/d) — — 0.810 0.001 (E) 0.545

C quarterly tests — <5.E-4 (E) 0.528 <5.E-4 (E) 0.001 (E) C quarterly tests (op) — — 0.605 0.085 (E) 0.479 C quarterly tests (s/d) — — 0.163 <5.E-4 (E) <5.E-4 (E)

Analog core protection calculator (CPA)

C occurrences in time — 0.914 0.124 0.290 0.074 (E) C quarterly tests — <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) C quarterly tests (op) — — 0.001 (E) 0.116 (E) 0.002 (E) C qtr. tests, 1984-1989 (op) — — — 0.457 0.165

Digital core protection calculator (CPD)

C qtr. tests, 1990-1995 (op) — — — 0.439 0.412 C quarterly tests (s/d) — — <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) C qtr. tests, 1984-1989 (s/d) — — — <5.E-4 (E) <5.E-4 (E) C qtr. tests, 1990-1995 (s/d) — — — 0.046 0.570 C occurrences in time — 0.370 <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) C occurrences in time, 1984-1989 — 0.215 — <5.E-4 (E) 0.115 (E) C occurrences in time, 1990-1995 — 0.365 — <5.E-4 (E) 0.051 (E)

Page 140: Reliability Study: Combustion Engineering Reactor Protection

Table C-6. (Continued.)

Appendix C

P-values for test of variation c

Failure mode (component) Data set b

Rx. trip vs. tests

In plant

modes In time periods

In plant units

In years

Bistable (CBI) C quarterly tests — <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) <5.E-4 (E) C quarterly tests (op) — — <5.E-4 (E) <5.E-4 (E) 0.007 (E) C qtr. tests, 1984-1989 (op) — — — <5.E-4 (E) 0.291 C qtr. tests, 1990-1995 (op) — — — 0.001 (E) 0.245 C quarterly tests (s/d) — — 0.213 <5.E-4 (E) 0.001 (E)

Trains (trip logic)

Logic relay (RYL) C quarterly tests — 0.445 0.157 <5.E-4 (E) 0.690 Trip relay (RYT) C quarterly tests — 1.000 1.000 0.592 0.504

Reactor trip breakers

C quarterly tests — 0.578 0.051 (E) 0.860 0.021 (E) C quarterly tests, 1984-1989 — 0.581 — 0.892 0.126 (E)

Breaker shunt device (BSN)

C quarterly tests, 1990-1995 — 0 F — 0 F 0 F Breaker undervoltage coil (BUV)

C monthly tests — 0.431 0.155 0.001 (E) 0.259 (E)

Control rod drive and rod

PWR unplanned trips — — 0.077 0.667 0.209 PWR cyclic tests — 0.015 (E) d 0.125 (E) <5.E-4 (E) 0.101 (E)

Control element assembly & rod (RMA)

PWR cyclic tests (op) — — 0 F 0 F 0 F PWR cyclic tests (s/d) — — 0.254 0.002 (E) 0.118 (E) PWR cyclic tests, 1984-1989 — 0.018 (E) d — <5.E-4 (E) 0.263 PWR cyclic tests, 1990-1998 — 0 F — 0 F 0 F PWR pooled trips & tests 0.026 d <5.E-4 (E) d 0.649 0.001 (E) 0.585 (E) PWR pooled trips & tests (op) 1.000 — 0.092 0.571 0.364

a. This table describes components in the fault tree whose failure probability or rate was estimated from the RPS data including uncertain failures. Unplanned demands are considered for some components as indicated in Table A-2. Additional rows for subsets based on plant status or time period appear if significant differences in these attributes were found in the larger groups of data. Note that manual switches, silicon-controlled rectifiers, and breaker mechanical are not included in this table since they had no uncertain failure data in the subsets under consideration for the unavailability analysis. See Table C-4 for these components.

b. —, a subset of the test data for the component based on plant state (operating or shut down) and/or year. In the first line of data for an estimate, vendor groups are given as follows: C, CE (only); BC, CE and B&W pooled; CW, CE and W pooled; and PWR, CE, B&W, and W all pooled.

C-20

Page 141: Reliability Study: Combustion Engineering Reactor Protection

Table C-6. (Continued.)

Appendix C

P-values for test of variation c

Failure mode (component) Data set b

Rx. trip vs. tests

In plant

modes In time periods

In plant units

In years

c. —, not applicable; 0 F, no failures (thus, no test); All F, no successes (thus, no test). P-values less than or equal to 0.05 are in a bold font. For the evaluation columns other than “Rx. trip vs. tests,” an “E” is in parentheses after the p-value if and only if an empirical Bayes distribution was found accounting for variations in groupings. Low p-values and the fitting of empirical Bayes distributions are indications of variability between the groupings considered in the column.

d. Pooled trips and tests were used for the unavailability analysis, in spite of statistical tests showing differences in the unplanned demands and tests and between tests in operations and tests while shut down. The reactor trip experience is like the RPS demand being modeled for this study. The cyclic rod drop tests are also believed to be relevant, representing failure modes that could occur on an unplanned demand, regardless of whether they were conducted during operations or during shutdown periods.

Table C-6 notes, continued

In both Tables C-3 and C-5, lines are highlighted corresponding to the subsets selected. Table C-7 concisely summarizes the data in the selected subsets.

Within each selected subset, the next evaluation focused on the two remaining attributes for study of

data variation, namely differences between plants and between calendar years. Tables C-4 and C-6 include results from these evaluations in the last two columns. These evaluations are used in Step 3 in Figure 1. In nearly every instance where a significant p-value appears in these columns, empirical Bayes distributions reflect the associated variability. One exception to this finding is for one mechanical breaker (BME) failure at a CE plant. The result stands out because this plant had less than half as many BME demands as estimated for most of the other plants. However, the data were too sparse for estimation of an empirical Bayes distribution. The only other exception was for similar sparse data with two breaker shunt device failures that occurred at different Westinghouse plants.

In the Table C-6 data, the rod and control rod drive component show a higher probability from testing

failures than from trips (p-value=0.026). One failure and one possible failure were found in nearly 162,000 trip demands, and the three possible failures were identified in an estimated 12,000 operational cyclic tests. The trip data are directly relevant to the study of operational reliability, but confidence in the detection of all failures occurring during trips is not as high as for the periodic testing failures. The tests are also believed to be complete. Pooling the trip and test data sets is conservative.

The evaluation of data groupings resulted in no failures in the final data set considered from testing

CE pressure sensor/transmitters. Seven of the eight known failures (and 7 of the 11 uncertain failures) occurred while the plants were shutdown. The p-value for the test of equality across plant state among the known failures was less than 5.E-4. Since operational unreliability is the focus of this study, the CPR test data were restricted to plant operational periods. Furthermore, all the failures during plant operation

C-21

Page 142: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Tab

le C

-7.

Poin

t est

imat

es o

f fai

lure

pro

babi

litie

s and

rate

s for

CE

RPS

una

vaila

bilit

y an

alys

is.

Prob

abili

ty a

pplie

d to

un

certa

inty

in w

heth

er th

e sa

fety

func

tion

is lo

stb

Bas

ic E

vent

(c

ompo

nent

) D

ata

set a

No

unce

rtain

fa

ilure

s

Failu

re

coun

t with

un

certa

in

failu

res

incl

uded

Am

ong

com

plet

e fa

ilure

s

Am

ong

unce

rtain

co

mpl

eten

ess

failu

res

Wei

ghte

d av

erag

e to

tal

failu

res

Den

omin

ator

(d

eman

ds o

r ho

urs)

Failu

res

per

dem

and

or h

our

Upd

ate

of

Jeff

reys

N

onin

form

ativ

e Pr

ior c

Cha

nnel

com

pone

nts C c

yc. &

qtr.

test

s, 19

90-1

995

(op)

0

0

——

0.0

4678

0.0E

+00

1.1E

-04

Pres

sure

sens

or/

trans

mitt

er (C

PR)

C o

ccur

renc

es

in ti

me

(op)

2

7

0.14

70.

167

2.6

1524

5553

h 1.

7E-0

72.

0E-0

7

C c

yc. &

qtr.

te

sts (

op)

4

100.

750

0.70

07.

492

667.

9E-0

48.

5E-0

4Te

mpe

ratu

re

sens

or/

trans

mitt

er (C

TP)

C o

ccur

renc

es in

tim

e, 1

990-

1995

(op)

2

3

0.25

0—

2.3

9387

636

h 2.

4E-0

72.

9E-0

7

C q

tr. te

sts (

op)

3 15

0.

438

0.70

0 8.

2 10

82

7.6E

-03

8.0E

-03

Ana

log

core

pr

otec

tion

ca

lcul

ator

(CPA

) C

occ

urre

nces

in ti

me

3 11

0.

233

6.7

3333

109

h 2.

0E-0

6 2.

2E-0

6

C q

tr. te

sts,

19

90-1

995

(op)

1

1

——

1.0

548

1.8E

-03

2.7E

-03

Dig

ital c

ore

prot

ectio

n

calc

ulat

or (C

PD)

C o

ccur

renc

es in

tim

e, 1

990-

1995

15

19

0.64

6—

17.3

1471

680

h1.

2E-0

51.

2E-0

5

Bis

tabl

e (C

BI)

C

qtr.

test

s,

1990

-199

5 (o

p)

5

9—

—7.

015

262

4.6E

-04

4.9E

-04

Trai

ns (t

rip lo

gic)

Lo

gic

rela

y (R

YL)

C q

tr. te

sts

2 8

0.31

3 0.

5 3.

8 16

160

2.6E

-04

2.9E

-04

Trip

rela

y (R

YT)

C

qtr.

test

s 1

2 —

1.

5 16

160

9.3E

-05

1.2E

-04

Man

ual s

cram

sw

itch

(MSW

) PW

R u

npla

nned

sc

ram

s & q

tr. te

sts

2

2—

—2.

019

789

1.0E

-04

1.3E

-04

C-22

Page 143: Reliability Study: Combustion Engineering Reactor Protection

Tab

le C

-7.

(Con

tinue

d)

C-23

Appendix C

Prob

abili

ty a

pplie

d to

un

certa

inty

in w

heth

er th

e sa

fety

func

tion

is lo

stb

Bas

ic E

vent

(c

ompo

nent

) D

ata

set a

No

unce

rtain

fa

ilure

s

Failu

re

coun

t with

un

certa

in

failu

res

incl

uded

Am

ong

com

plet

e fa

ilure

s

Am

ong

unce

rtain

co

mpl

eten

ess

failu

res

Wei

ghte

d av

erag

e to

tal

failu

res

Den

omin

ator

(d

eman

ds o

r ho

urs)

Failu

res

per

dem

and

or h

our

Upd

ate

of

Jeff

reys

N

onin

form

ativ

e Pr

ior c

Rea

ctor

trip

bre

aker

s B

reak

er

mec

hani

cal

(BM

E)

BC

unp

lann

ed sc

ram

s &

qtr.

& m

on. t

ests

1

1

——

1.0

8381

3.1.

2E-0

51.

8E-0

5

Bre

aker

shun

t de

vice

(BSN

) C

qtr.

test

s 3

4 0.

700

3.5

2527

0 1.

4E-0

4 1.

6E-0

4

Bre

aker

un

derv

olta

ge c

oil

(BU

V)

C m

on. t

ests

10

18

0.

318

0.78

6 13

.6

1263

5 1.

1E-0

3 1.

1E-0

3

Con

trol r

od d

rive

and

rod

Con

trol e

lem

ent

asse

mbl

y &

rod

(RM

A)

PWR

unp

lann

ed

scra

ms &

cyc

. tes

ts

1

5—

—3.

018

9536

1.6E

-05

1.8E

-05

a.

Ven

dor g

roup

s ar

e gi

ven

as fo

llow

s: C

, CE

(onl

y); B

C, C

E an

d B

&W

poo

led;

CW

, CE

and

W p

oole

d; a

nd P

WR

, CE,

B&

W, a

nd W

all

pool

ed.

Den

omin

ator

s w

ere

com

pute

d se

para

tely

for e

ach

vend

or, a

ccor

ding

to th

e te

stin

g sc

hedu

le o

f the

ven

dors

. b.

“—

“ w

hen

ther

e w

ere

no a

pplic

able

unc

erta

in e

vent

s. T

he p

roba

bilit

y us

ed fo

r unc

erta

inty

in c

ompl

eten

ess i

s 0.5

. c.

(F

ailu

res +

0.5

)/(D

enom

inat

or+1

) for

pro

babi

litie

s; (F

ailu

res +

0.5

)/Den

omin

ator

for r

ates

.

Page 144: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

occurred during the 1984–1989 period. When the old and new data differ significantly (p-value 0.016), the most recent block of data is selected as the most applicable.

The upper and lower bound empirical Bayes analyses included tests of goodness of fit for the

resulting beta-binomial model for probabilities or the associated gamma-Poisson model for rates. Each grouping level (each plant, or each year) was evaluated to see if it was a high outlier compared with the fitted GE model for each component. For the subsets of data used in the unreliability analysis, no outliers were found.

Within each selected subset for which differences exist in the LB and UB data, a simulation was

conducted to observe the variation in the composite data, which includes the fully classified failures and a fraction of the uncertain failures. This evaluation, referenced in Step 4 of Figure 1, also focused on the two attributes for study of data variation that remain after considering the data subsets, namely differences between plants and between calendar years. In the simulation, the probability of being complete failures for events whose completeness was unknown was determined by a fixed distribution with a mean of 0.5. The probability that events with unknown safety function status were losses of the safety function was estimated based on the failure data within each subset, including the events (not shown in Table C-1) that were assessed as fail-safe. The last column of Table C-1 shows the weighted average of the events that would be complete losses of the safety function.

Table C-8 presents the final results of the basic quantitative component data analysis, most of which

come from the simulation. Table C-8 describes the Bayes distributions initially selected to describe the statistical variability in the data used to model the basic RPS events. Table C-8 differs from Tables C-3 and C-5 because it gives Bayes distributions and intervals, not confidence intervals. This choice allows the results for the failure modes to be combined to give an uncertainty distribution on the unavailability. When distributions were fit for both plant variation and year variation, the distribution for differences between plants had greater variability and was selected. Where empirical Bayes distributions were not found, the simple Bayes method was used to obtain uncertainty distributions.

In the unreliability analysis, the means and variances of the generic Bayes distributions were fitted

to lognormal distributions, listed in Table C-9. As applicable, these distributions describe the total failure probabilities (QT) associated with the common-cause fault tree events.

C-24

Page 145: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Table C-8. Results of uncertainty analysis. a Failure Mode (Component)

Fail-uresb

Denom-inator c

Modeled variation d Distribution e

Bayes mean and interval f

Channel components 0 4678 Sampling (only) g Beta(0.5,4678.5) (4.20E-07,1.07E-04,4.10E-04) Pressure sensor

transmitter (CPR) 2.6 1740.4 h Sampling Gamma(2.7,1497.2) (4.42E-04,1.79E-03,3.89E-03) 7.3 9266 Sampling Beta(6.5,7781.7) (3.82E-04,8.41E-04,1.44E-03) Temperature sensor/

transmitter (CTP) 2.2 1071.6 h Sampling Gamma(2.6,1009.8) (6.07E-04,2.56E-03,5.61E-03) 8.2 1082 Between plant Beta(1.3,162.5) (6.50E-04,7.64E-03,2.11E-02) Analog core protection

calculator (CPA) 6.8 380.5 h Between year Gamma(0.8,45.2) (5.20E-04,1.80E-02,5.80E-02) 1 548 Sampling (only) g Beta(1.5,547.5) (3.21E-04,2.73E-03,7.11E-03) Digital core protection

calculator (CPD) 17.3 168.0 h Between plant Gamma(0.4,3.9) (1.03E-04,1.03E-01,4.28E-01) Bistable (CBI) 7.0 15262 Between plant Beta(0.3,613.4) (6.53E-08,5.00E-04,2.27E-03)

Trains (trip logic) Logic relay (RYL) 3.8 16160 Between plant Beta(0.5,1951.1) (7.57E-07,2.45E-04,9.56E-04) Trip relay (RYT) 1.5 16160 Sampling Beta(1.8,14351) (1.84E-05,1.23E-04,3.03E-04) Manual scram switch (MSW)

2 19789 Sampling (only) g Beta(2.5,19788) (2.89E-05,1.26E-04,2.80E-04)

Reactor trip breakers Breaker mechanical (BME)

1 83813 Sampling (only) g Beta(1.5,83813) (2.10E-06,1.79E-05,4.66E-05)

Breaker shunt device (BSN)

3.5 25270 Between Year Beta(0.2,1259.4) (1.00E-09,1.49E-04,7.79E-04)

Breaker undervoltage coil (BUV)

13.6 12635 Between plant Beta(0.6,544.8) (1.25E-05,1.14E-03,4.05E-03)

Control rod drive and rod Control element assembly & rod (RMA)

2.9 189536 Between plant Beta(0.1,5157.9) (8.18E-20,1.66E-05,9.70E-05)

a. When results consist of two lines, the first is for failures in demand; the second is for a rate of failure in time. b. Number of failures, averaged over 1000 simulation iterations, each of which had an integral number of failures. c. Estimated number of demands or exposure time, based on the selected data sets or subsets shown in Table C-7. d. In addition to variation from unknown completeness and/or from unknown loss of safety function. e. Beta distributions for probabilities and gamma distributions for rates. The simple and empirical Bayes distributions are

initially either beta or gamma distributions. See Table C-9 for lognormal bounds. f. Aggregate of Bayes distributions from simulation, unless otherwise noted. Obtained by matching the mean and variance of

the simulation output distribution. If the variation is not just sampling, empirical Bayes distributions were found in each simulated iteration, except for the following: CPR probability, 7% of the time; CPR rate, 16%; CPA rate, 28%; CPA probability, 74%; RYL, 75%; and RMA, 52% of the time. Sampling variation (from the simple Bayes method) entered the simulation mixture when EB distributions were not found.

g. Simple Bayes distribution not based on the simulations. No uncertain events were in the selected subsets. h. Component years rather than demands. Also, the rates in the Bayes mean column are per year. The rates were not used in

fault tree assessment, because the unavailability associated with the failure rates was much lower than the unavailability estimated from the testing data.

C-25

Page 146: Reliability Study: Combustion Engineering Reactor Protection

Appendix C

Table C-9. Lognormal uncertainty distributions used for CE RPS total failure probabilities (QT). Failure Mode (Component) Data set a Median

Error factor b

Lognormal distribution mean and interval c

Channel components

C cyc. & qtr. tests, 1990–1995 (op)

6.2E-05 5.6 (1.1E-05, 1.1E-04, 3.5E-04)

C occurrences in time (op) 1.5E-03 /y 2.5 (6.1E-04, 1.8E-03, 3.9E-03)

Pressure sensor/ transmitter

Probability from rate d 1.4E-06 2.5 (5.5E-07, 1.6E-06, 3.5E-06) C cyc. & qtr. tests (op) 7.8E-04 1.9 (4.2E-04, 8.4E-04, 1.5E-03) C occurrences in time, 1990–1995 (op)

2.2E-03/y 2.6 (8.6E-04, 2.6E-03, 5.6E-03) Temperature sensor/ transmitter

Probability from rate d 2.0E-06 2.6 (7.8E-07, 2.3E-06, 5.1E-06) C qtr. tests (op) 5.7E-03 3.5 (1.6E-03, 7.6E-03, 2.0E-02) C occurrences in time 1.2E-02/y 4.4 (2.7E-03, 1.8E-02, 5.2E-02)

Analog core protection calculator

Probability from rate d 1.1E-05 4.4 (2.5E-06, 1.6E-05, 4.8E-05) C qtr. tests, 1990–1995 (op) 2.1E-03 3.2 (6.5E-04, 2.7E-03, 6.8E-03) C occurrences in time, 1990–1995

5.5E-02/y 6.3 (8.7E-03, 1.0E-01, 3.5E-01) Digital core protection calculator

Probability from rate d 5.0E-05 6.3 (8.0E-06, 9.4E-05, 3.2E-04) Bistable C qtr. tests, 1990–1995 (op) 2.4E-04 7.2 (3.4E-05, 5.0E-04, 1.8E-03) Trains (trip logic)

Logic relay C qtr. tests 1.4E-04 5.7 (2.4E-05, 2.5E-04, 8.0E-04) Trip relay C qtr. tests 9.8E-05 3.0 (3.3E-05, 1.2E-04, 3.0E-04) Manual scram switch PWR unplanned scrams

& qtr. tests 1.1E-04 2.6 (4.1E-05, 1.3E-04, 2.8E-04)

Reactor trip breakers

Breaker mechanical BC unplanned scrams & qtr. & mon. tests

1.4E-05 3.2 (4.3E-06, 1.8E-05, 4.5E-05)

Breaker shunt device C qtr. tests 5.9E-05 9.3 (6.3E-06, 1.5E-04, 5.5E-04) Breaker undervoltage coil C mon. tests 7.1E-04 5.0 (1.4E-04, 1.1E-03, 3.5E-03) Control rod drive and rod

Control element assembly & rod

PWR unplanned scrams & cyc. tests

4.7E-06 13.8 (3.4E-07, 1.7E-05, 6.4E-05)

a. C: Combustion Engineering. B: B&W. W: Westinghouse. b. Lognormal error factor corresponding to 5% and 95% bounds. c. Mean and lognormal distribution 5th and 95th percentiles. Obtained by matching the mean and variance of the distributions

from Table C-8, which are used in the unreliability analysis. d. Probability computed from rate using an 8-hour downtime. This probability was not used in the fault tree assessment since

it is much lower than the probability computed from failures and demands.

C-26

Page 147: Reliability Study: Combustion Engineering Reactor Protection

Appendix D

Fault Trees

Page 148: Reliability Study: Combustion Engineering Reactor Protection
Page 149: Reliability Study: Combustion Engineering Reactor Protection

Appendix D

Fault Trees This appendix presents the reactor protection system

(RPS) fault trees representing the C

ombustion

Engineering RPS designs. The num

ber near the bottom of transfer gates indicates the fault tree page

number (show

n in the lower right corner of the fault tree border) w

here the logic is transferred.

Com

bustion Engineering RPS G

roup 1 Model............................................................................D

-3

Com

bustion Engineering RPS G

roup 2 Model..........................................................................D

-46

Com

bustion Engineering RPS G

roup 3 Model..........................................................................D

-99

Com

bustion Engineering RPS G

roup 4 Model........................................................................D

-152

NU

REG

/CR

-5500, Vol. 10

D-1

Page 150: Reliability Study: Combustion Engineering Reactor Protection

Appendix D

D

-2

Page 151: Reliability Study: Combustion Engineering Reactor Protection

COMBUSTION ENGINEERING RPS GROUP 1 MODEL

Appendix D

D-3

Page 152: Reliability Study: Combustion Engineering Reactor Protection

CE1-01-RPS - REACTOR PROTECTION SYSTEM (RPS) FOR CE GROUP 1 TYPE FAILS 2001/10/05 Page 1

D-4

Appendix D

CE1-01-RPS

CE1-01-RPS1

CE1-01-RPS1-1

5

CE1-02-M1

6

CE1-03-M2

CE1-01-RPS1-2

7

CE1-04-M3

8

CE1-05-M4

3

CE1-01-RPS1-LMF-1

2

CE1-01-RPS1-BSF-1

8.4E-7

CE1-ROD-CF-RODS

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

COMMON CAUSEFAILURES OF LOGIC

MATRIX RELAYS

FAILURE OF TRIPCONTACTOR M3

AND M4

FAILURE OF TRIPCONTACTOR M1

AND M2

CLUTCH POWERSUPPLY BUSES

FAIL TO DE-ENERGIZE

FAILURE OF TRIPCONTACT M4

FAILURE OF TRIPCONTACT M3

FAILURE OF TRIPCONTACT M2

FAILURE OF TRIPCONTACT M1

REACTOR PROTECTIONSYSTEM (RPS)

FOR CE GROUP1 TYPE FAILS

CCF 20% OR MORECRD/RODS FAIL TO

INSERT

Page 153: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-5

CE1-01-RPS1-BSF-1

4

CE1-01-RPS1-MT1-F CE1-01-RPS1-BSF-2

CE1-01-RPS1-BICHATM

1.6E-2

CE1-RPS-TM-CHA

1.7E-6

CE1-CBI-CF-4OF6TM

CE1-01-RPS1-BIF-4

11

CE1-08-CHA-NOTM

7.7E-7

CE1-CBI-CF-6OF8

CCF OF BISTABLETRIP UNITS (CHA NOT IN T&M)

CCF OF BISTABLETRIP UNITS

OPERATOR FAILSTO MANUAL TRIP

RPS

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

CCF OF BISTABLETRIP UNITS DURING

CH A T&M

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF SPECIFIC4 OF 6 BISTABLETRIP UNITS (CH

A T&M)

CCF SPECIFIC6 OF 8 BISTABLE

TRIP UNITS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-01-RPS1-BSF-1 - COMMON CAUSE FAILURE OF BISTABLE TRIP UNITS 2001/03/02 Page 2

Page 154: Reliability Study: Combustion Engineering Reactor Protection

D-6

Appendix D

CE1-01-RPS1-LMF-1

4

CE1-01-RPS1-MT1-F CE1-01-RPS1-LMF-2

CE1-01-RPS1-CHATM

1.6E-2

CE1-RPS-TM-CHA

1.6E-7

CE1-RYL-CF-LM6OF12TM

CE1-01-RPS1-LMF-3

11

CE1-08-CHA-NOTM

4.3E-8

CE1-RYL-CF-LM12OF24

CCF OF LOGICMATRIX RELAYS

(CH A NOT INT&M)

CCF OF LOGICMATRIX RELAYS

DURING CH A T&M

CCF OF LOGICMATRIC RELAYS

OPERATOR FAILSTO MANUAL TRIP

RPS

COMMON CAUSEFAILURES OF LOGIC

MATRIX RELAYS

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF SPECIFIC6 OF 12 LOGIC

MATRIX OUTPUTRELAYS (CH A

T&M)

CCF SPECIFIC12 OF 24 LOGICMATRIX OUTPUT

RELAYS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-01-RPS1-LMF-1 - COMMON CAUSE FAILURES OF LOGIC MATRIX RELAYS 2001/03/02 Page 3

Page 155: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-7

CE1-01-RPS1-MT1-F

9

CE1-06-MT1

29

CE1-26-MT2

OPERATOR FAILSTO MANUAL TRIP

RPS

FAILURE OF MANUALSWITCH 2

FAILURE OF MANUALSWITCH 1

CE1-01-RPS1-MT1-F - OPERATOR FAILS TO MANUAL TRIP RPS 2001/03/02 Page 4

Page 156: Reliability Study: Combustion Engineering Reactor Protection

D-8

Appendix D

CE1-02-M1

CE1-02-M1-F

9

CE1-06-MT1 CE1-02-M1-1

CE1-02-M1-2

11

CE1-08-CHA-NOTM

10

CE1-07-M1LM

CE1-02-M1-3

12

CE1-09-M1LMATM

1.6E-2

CE1-RPS-TM-CHA

1.2E-4

CE1-RYT-FF-ICM1

4.8E-6

CE1-RYT-CF-2OF4

TRIP CONTACTM1 FAILURES

FAILURE OF LOGICMATRIX RELAY

FOR M1 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR M1 SIGNAL

(CH A NOT INT&M

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

LOGIC MATRIXRELAYS FOR M1FAILS (CHANNEL

A IN T&M)

LOGIC MATRIXRELAYS FOR M1

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR M1SIGNAL FAIL

FAILURE OF MANUALSWITCH 1

FAILURE OF TRIPCONTACT M1

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

TRIP CONTACTORM1 RELAY FAILS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-02-M1 - FAILURE OF TRIP CONTACTOR M1 2001/03/02 Page 5

Page 157: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-9

CE1-03-M2

CE1-03-M2-F

9

CE1-06-MT1 CE1-03-M2-1

CE1-03-M2-2

11

CE1-08-CHA-NOTM

27

CE1-24-M2LM

CE1-03-M2-3

28

CE1-25-M2LMATM

1.6E-2

CE1-RPS-TM-CHA

4.8E-6

CE1-RYT-CF-2OF4

1.2E-4

CE1-RYT-FF-ICM2

TRIP CONTACTM2 FAILURES

FAILURE OF LOGICMATRIX RELAY

FOR M2 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR M2 SIGNAL

(CH A NOT INT&M

LOGIC MATRIXRELAYS FOR M2FAILS (CHANNEL

A IN T&M)

LOGIC MATRIXRELAYS FOR M2

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR M2SIGNAL FAIL

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF MANUALSWITCH 1

FAILURE OF TRIPCONTACT M2

TRIP CONTACTORM2 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-03-M2 - FAILURE OF TRIP CONTACTOR M2 2001/03/02 Page 6

Page 158: Reliability Study: Combustion Engineering Reactor Protection

D-10

Appendix D

CE1-04-M3

CE1-04-M3-F

29

CE1-26-MT2 CE1-04-M3-1

CE1-04-M3-2

11

CE1-08-CHA-NOTM

30

CE1-27-M3LM

CE1-04-M3-3

31

CE1-28-M3LMATM

1.6E-2

CE1-RPS-TM-CHA

4.8E-6

CE1-RYT-CF-2OF4

1.2E-4

CE1-RYT-FF-ICM3

TRIP CONTACTM3 FAILURS

FAILURE OF LOGICMATRIX RELAY

FOR M3 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR M3 SIGNAL

(CH A NOT INT&M

LOGIC MATRIXRELAYS FOR M3FAILS (CHANNEL

A IN T&M)

LOGIC MATRIXRELAYS FOR M3

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR M3SIGNAL FAIL

FAILURE OF MANUALSWITCH 2

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF TRIPCONTACT M3

TRIP CONTACTORM3 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-04-M3 - FAILURE OF TRIP CONTACTOR M3 2001/03/02 Page 7

Page 159: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-11

CE1-05-M4

CE1-05-M4-F

29

CE1-26-MT2 CE1-05-M4-1

CE1-05-M4-2

11

CE1-08-CHA-NOTM

32

CE1-29-M4LM

CE1-05-M4-3

33

CE1-30-M4LMATM

1.6E-2

CE1-RPS-TM-CHA

4.8E-6

CE1-RYT-CF-2OF4

1.2E-4

CE1-RYT-FF-ICM4

TRIP CONTACTM4 FAILURES

FAILURE OF LOGICMATRIX RELAY

FOR M4 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR M4 SIGNAL

(CH A NOT INT&M

LOGIC MATRIXRELAYS FOR M4FAILS (CHANNEL

A IN T&M)

LOGIC MATRIXRELAYS FOR M4

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR M4SIGNAL FAIL

FAILURE OF MANUALSWITCH 2

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF TRIPCONTACT M4

TRIP CONTACTORM4 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-05-M4 - FAILURE OF TRIP CONTACTOR M4 2001/03/02 Page 8

Page 160: Reliability Study: Combustion Engineering Reactor Protection

D-12

Appendix D

CE1-06-MT1

1.0E-2

CE1-XHE-XE-SCRAM

1.3E-4

CE1-MSW-FF-MT1

FAILURE OF MANUALSWITCH 1

MANUAL SWITCH1 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE1-06-MT1 - MANUAL TRIP 1 FAILS 2001/03/02 Page 9

Page 161: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-13

CE1-07-M1LM

CE1-07-M1LM-1

CE1-07-M1LM-AB

13

CE1-10-LMAB

2.6E-4

CE1-RYL-FF-LAB1

CE1-07-M1LM-BC

14

CE1-11-LMBC

2.6E-4

CE1-RYL-FF-LBC1

CE1-07-M1LM-BD

15

CE1-12-LMBD

2.6E-4

CE1-RYL-FF-LBD1

CE1-07-M1LMAC

16

CE1-13-LMAC

2.6E-4

CE1-RYL-FF-LAC1

CE1-07-M1LM-CD

17

CE1-14-LMCD

2.6E-4

CE1-RYL-FF-LCD1

CE1-07-M1LM-AD

18

CE1-15-LMAD

2.6E-4

CE1-RYL-FF-LAD1

2.0E-7

CE1-RYL-CF-1LM6OF6

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

LOGIC MATRIXAD OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M 1 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR M1 SIGNAL

(CH A NOT INT&M

AD OUTPUT RELAY1 FAILS

CCF 6 OF 6 M1LOGIC M ATRIC

REL AY OUTPUTS

CD OUTPUT RELAY1 FAILS

AC OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

AB OUTPUT RELAY1 FAILS

CE1-07-M1LM - FAILURE OF LOGIC MATRIX RELAYS FOR M1 SIGNAL 2001/06/07 Page 10

Page 162: Reliability Study: Combustion Engineering Reactor Protection

D-14

Appendix D

CE1-08-CHA-NOTM

1.6E-2

CE1-RPS-TM-CHA

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

RPS CHANNELA IN TEST ANDMAINTENANCE

CE1-08-CHA-NOTM - RPS CHANNEL A NOT IN TEST AND MAINTENANCE 2001/03/02 Page 11

Page 163: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-15

CE1-09-M1LMATM

CE1-09-M1LM-1

CE1-09-M1LM-BC

34

CE1-31-LMBCATM

2.6E-4

CE1-RYL-FF-LBC1

CE1-09-M1LM-BD

35

CE1-32-LMBDATM

2.6E-4

CE1-RYL-FF-LBD1

CE1-09-M1LM-CD

36

CE1-33-LMCDATM

2.6E-4

CE1-RYL-FF-LCD1

4.7E-7

CE1-RYL-CF-1LM3OF3TM

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

LOGIC MATRIXCD OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M1 SIGNALFAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR M1 SIGNAL(CH A IN T&M)

CCF 3 OF 3 M1LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

CE1-09-M1LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR M1 SIGNAL (CH A T&M) 2001/06/07 Page 12

Page 164: Reliability Study: Combustion Engineering Reactor Protection

D-16

Appendix D

CE1-10-LMAB

CE1-10-LMAB-CA

19

CE1-16-CHAT

20

CE1-17-CHAP

CE1-10-LMAB-CB

21

CE1-18-CHBT

22

CE1-19-CHBP

INPUT TO LOGICMATRIX AB FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELB FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELA FAILS

CE1-10-LMAB - INPUT SIGNAL TO LOGIC MATRIX AB FAILS 2001/03/02 Page 13

Page 165: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-17

CE1-11-LMBC

CE1-11-LMBC-CB

21

CE1-18-CHBT

22

CE1-19-CHBP

CE1-11-LMBC-CC

24

CE1-21-CHCP

23

CE1-20-CHCT

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELB FAILS

INPUT TO LOGICMATRIX BC FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CE1-11-LMBC - INPUT SIGNAL TO LOGIC MATRIX BC FAILS 2001/03/02 Page 14

Page 166: Reliability Study: Combustion Engineering Reactor Protection

D-18

Appendix D

CE1-12-LMBD

CE1-12-LMBD-CB

21

CE1-18-CHBT

22

CE1-19-CHBP

CE1-12-LMBD-CD

26

CE1-23-CHDP

25

CE1-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELD FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELB FAILS

INPUT TO LOGICMATRIX BD FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CE1-12-LMBD - INPUT SIGNAL TO LOGIC MATRIX BD FAILS 2001/03/02 Page 15

Page 167: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-19

CE1-13-LMAC

CE1-13-LMAC-CA

19

CE1-16-CHAT

20

CE1-17-CHAP

CE1-13-LMAC-CC

24

CE1-21-CHCP

23

CE1-20-CHCT

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELA FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

INPUT TO LOGICMATRIX AC FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

CE1-13-LMAC - INPUT SIGNAL TO LOGIC MATRIX AC FAILS 2001/03/02 Page 16

Page 168: Reliability Study: Combustion Engineering Reactor Protection

D-20

Appendix D

CE1-14-LMCD

CE1-14-LMCD-CC

24

CE1-21-CHCP

23

CE1-20-CHCT

CE1-14-LMCD-CD

26

CE1-23-CHDP

25

CE1-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELC FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

INPUT TO LOGICMATRIX CD FAILS

CE1-14-LMCD - INPUT SIGNAL TO LOGIC MATRIX CD FAILS 2001/03/02 Page 17

Page 169: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-21

CE1-15-LMAD

CE1-15-LMAD-CA

19

CE1-16-CHAT

20

CE1-17-CHAP

CE1-15-LMAD-CD

26

CE1-23-CHDP

25

CE1-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELA FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

INPUT TO LOGICMATRIX AD FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

CE1-15-LMAD - INPUT SIGNAL TO LOGIC MATRIX AD FAILS 2001/03/02 Page 18

Page 170: Reliability Study: Combustion Engineering Reactor Protection

D-22

Appendix D

CE1-16-CHAT

5.0E-4

CE1-CBI-FF-TA

7.2E-6

CE1-CBI-CF-T3OF4

7.6E-3

CE1-CPA-FF-TA

1.7E-4

CE1-CPA-CF-T3OF4

8.4E-4

CE1-CTP-FF-HTA

1.0E-5

CE1-CTP-CF-HT3OF4

8.4E-4

CE1-CTP-FF-CTA

1.0E-5

CE1-CTP-CF-CT3OF4

CHANNEL A TEMPERATUREBISTABLE FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CHANNEL A ANALOGCORE PROTECTIONCALCULATOR FAILS

CCF OF 3 OF4 TEMPERATURE

BISTABLES

CHANNEL A TEMPERATUREBISTABLE UNIT

FAILS

CE1-16-CHAT - CHANNEL A TEMPERATURE BISTABLE FAILS 2001/06/07 Page 19

Page 171: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-23

CE1-17-CHAP

5.0E-4

CE1-CBI-FF-PA

1.1E-4

CE1-CPR-FF-PA

1.5E-6

CE1-CPR-CF-P3OF4

7.2E-6

CE1-CBI-CF-P3OF4

CHANNEL A PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CHANNEL A PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CE1-17-CHAP - CHANNEL A PRESSURE BISTABLE FAILS 2001/03/02 Page 20

Page 172: Reliability Study: Combustion Engineering Reactor Protection

D-24

Appendix D

CE1-18-CHBT

7.2E-6

CE1-CBI-CF-T3OF4

1.7E-4

CE1-CPA-CF-T3OF4

1.0E-5

CE1-CTP-CF-HT3OF4

1.0E-5

CE1-CTP-CF-CT3OF4

5.0E-4

CE1-CBI-FF-TB

7.6E-3

CE1-CPA-FF-TB

8.4E-4

CE1-CTP-FF-HTB

8.4E-4

CE1-CTP-FF-CTB

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL BTEMPERATURE BISTABLE

UNIT FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF OF 3 OF4 TEMPERATURE

BISTABLES

CE1-18-CHBT - CHANNEL B TEMPERATURE BISTABLE FAILS 2001/06/07 Page 21

Page 173: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-25

CE1-19-CHBP

1.5E-6

CE1-CPR-CF-P3OF4

7.2E-6

CE1-CBI-CF-P3OF4

5.0E-4

CE1-CBI-FF-PB

1.1E-4

CE1-CPR-FF-PB

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE1-19-CHBP - CHANNEL B PRESSURE BISTABLE FAILS 2001/03/02 Page 22

Page 174: Reliability Study: Combustion Engineering Reactor Protection

D-26

Appendix D

CE1-20-CHCT

7.2E-6

CE1-CBI-CF-T3OF4

1.7E-4

CE1-CPA-CF-T3OF4

1.0E-5

CE1-CTP-CF-HT3OF4

1.0E-5

CE1-CTP-CF-CT3OF4

5.0E-4

CE1-CBI-FF-TC

7.6E-3

CE1-CPA-FF-TC

8.4E-4

CE1-CTP-FF-HTC

8.4E-4

CE1-CTP-FF-CTC

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL CTEMPERATURE BISTABLE

UNIT FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF OF 3 OF4 TEMPERATURE

BISTABLES

CE1-20-CHCT - CHANNEL C TEMPERATURE BISTABLE FAILS 2001/06/07 Page 23

Page 175: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-27

CE1-21-CHCP

1.5E-6

CE1-CPR-CF-P3OF4

7.2E-6

CE1-CBI-CF-P3OF4

5.0E-4

CE1-CBI-FF-PC

1.1E-4

CE1-CPR-FF-PC

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE1-21-CHCP - CHANNELC PRESSURE BISTABLE FAILS 2001/03/02 Page 24

Page 176: Reliability Study: Combustion Engineering Reactor Protection

D-28

Appendix D

CE1-22-CHDT

7.2E-6

CE1-CBI-CF-T3OF4

1.7E-4

CE1-CPA-CF-T3OF4

1.0E-5

CE1-CTP-CF-HT3OF4

1.0E-5

CE1-CTP-CF-CT3OF4

5.0E-4

CE1-CBI-FF-TD

7.6E-3

CE1-CPA-FF-TD

8.4E-4

CE1-CTP-FF-HTD

8.4E-4

CE1-CTP-FF-CTD

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL DTEMPERATURE BISTABLE

UNIT FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF OF 3 OF4 TEMPERATURE

BISTABLES

CE1-22-CHDT - CHANNEL D TEMPERATURE BISTABLE FAILS 2001/06/07 Page 25

Page 177: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-29

CE1-23-CHDP

1.5E-6

CE1-CPR-CF-P3OF4

7.2E-6

CE1-CBI-CF-P3OF4

5.0E-4

CE1-CBI-FF-PD

1.1E-4

CE1-CPR-FF-PD

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE1-23-CHDP - CHANNEL D PRESSURE BISTABLE FAILS 2001/03/02 Page 26

Page 178: Reliability Study: Combustion Engineering Reactor Protection

D-30

Appendix D

CE1-24-M2LM

CE1-24-M2LM-1

CE1-24-M2LM-AB

13

CE1-10-LMAB

2.6E-4

CE1-RYL-FF-LAB2

CE1-24-M2LM-BC

14

CE1-11-LMBC

2.6E-4

CE1-RYL-FF-LBC2

CE1-24-M2LM-BD

15

CE1-12-LMBD

2.6E-4

CE1-RYL-FF-LBD2

CE1-24-M2LMAC

16

CE1-13-LMAC

2.6E-4

CE1-RYL-FF-LAC2

CE1-24-M2LM-CD

17

CE1-14-LMCD

2.6E-4

CE1-RYL-FF-LCD2

CE1-24-M2LM-AD

18

CE1-15-LMAD

2.6E-4

CE1-RYL-FF-LAD2

2.0E-7

CE1-RYL-CF-2LM6OF6

LOGIC MATRIXAD OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXOUTPUT REL AYSFOR M2 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAY

FOR M2 SIGNAL(CH A NOT IN

T&M

INPUT TO LOGICM ATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

CCF 6 OF 6 M2LOGIC MATRIC

RELAY OUTPUTS

AD OUTPUT RELAY2 FAILS

CD OUTPUT RELAY2 FAILS

AC OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

AB OUTPUT RELAY2 FAILS

CE1-24-M2LM - FAILURE OF LOGIC MATRIX RELAYS FOR M2 SIGNAL 2001/06/07 Page 27

Page 179: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-31

CE1-25-M2LMATM

CE1-25-M2LM-1

CE1-25-M2LM-BC

34

CE1-31-LMBCATM

2.6E-4

CE1-RYL-FF-LBC2

CE1-25-M2LM-BD

35

CE1-32-LMBDATM

2.6E-4

CE1-RYL-FF-LBD2

CE1-25-M2LM-CD

36

CE1-33-LMCDATM

2.6E-4

CE1-RYL-FF-LCD2

4.7E-7

CE1-RYL-CF-2LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M2 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR M2 SIGNAL(CH A IN T&M)

CCF 3 OF 3 M2LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

CE1-25-M2LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR M2 SIGNAL (CH A T&M) 2001/06/07 Page 28

Page 180: Reliability Study: Combustion Engineering Reactor Protection

D-32

Appendix D

CE1-26-MT2

1.0E-2

CE1-XHE-XE-SCRAM

1.3E-4

CE1-MSW-FF-MT2

FAILURE OF MANUALSWITCH 2

MANUAL SWITCH2 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE1-26-MT2 - MANUAL TRIP 2 FAILS 2001/03/02 Page 29

Page 181: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-33

CE1-27-M3LM

CE1-27-M3LM-1

CE1-27-M3LM-AB

13

CE1-10-LMAB

2.6E-4

CE1-RYL-FF-LAB3

CE1-27-M3LM-BC

14

CE1-11-LMBC

2.6E-4

CE1-RYL-FF-LBC3

CE1-27-M3LM-BD

15

CE1-12-LMBD

2.6E-4

CE1-RYL-FF-LBD3

CE1-27-M3LMAC

16

CE1-13-LMAC

2.6E-4

CE1-RYL-FF-LAC3

CE1-27-M3LM-CD

17

CE1-14-LMCD

2.6E-4

CE1-RYL-FF-LCD3

CE1-27-M3LM-AD

18

CE1-15-LMAD

2.6E-4

CE1-RYL-FF-LAD3

2.0E-7

CE1-RYL-CF-3LM6OF6

LOGIC MATRIXAD OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M3 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR M3 SIGNAL

(CH A NOT INT&M

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

CCF 6 OF 6 M3L OGIC MATRIC

RELAY OUTPUTS

AC OUTPUT RELAY3 FAILS

AD OUTPUT RELAY3 FAILS

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

AB OUTPUT RELAY3 FAILS

CE1-27-M3LM - FAILURE OF LOGIC MATRIX RELAYS FOR M3 SIGNAL 2001/06/07 Page 30

Page 182: Reliability Study: Combustion Engineering Reactor Protection

D-34

Appendix D

CE1-28-M3LMATM

CE1-28-M3LM-1

CE1-28-M3LM-BC

34

CE1-31-LMBCATM

2.6E-4

CE1-RYL-FF-LBC3

CE1-28-M3LM-BD

35

CE1-32-LMBDATM

2.6E-4

CE1-RYL-FF-LBD3

CE1-28-M3LM-CD

36

CE1-33-LMCDATM

2.6E-4

CE1-RYL-FF-LCD3

4.7E-7

CE1-RYL-CF-3LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M3 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR M3 SIGNAL(CH A IN T&M)

CCF 3 OF 3 M3LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

CE1-28-M3LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR M3 SIGNAL (CH A T&M) 2001/06/07 Page 31

Page 183: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-35

CE1-29-M4LM

CE1-29-M4LM-1

CE1-29-M4LM-AB

13

CE1-10-LMAB

2.6E-4

CE1-RYL-FF-LAB4

CE1-29-M4LM-BC

14

CE1-11-LMBC

2.6E-4

CE1-RYL-FF-LBC4

CE1-29-M4LM-BD

15

CE1-12-LMBD

2.6E-4

CE1-RYL-FF-LBD4

CE1-29-M4LMAC

16

CE1-13-LMAC

2.6E-4

CE1-RYL-FF-LAC4

CE1-29-M4LM-CD

17

CE1-14-LMCD

2.6E-4

CE1-RYL-FF-LCD4

CE1-29-M4LM-AD

18

CE1-15-LMAD

2.6E-4

CE1-RYL-FF-LAD4

2.0E-7

CE1-RYL-CF-4LM6OF6

LOGIC MATRIXAD OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M4 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR M4 SIGNAL

(CH A NOT INT&M

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

CCF 6 OF 6 M4L OGIC MATRIC

RELAY OUTPUTS

AD OUTPUT RELAY4 FAILS

CD OUTPUT RELAY4 FAILS

AC OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

AB OUTPUT RELAY4 FAILS

CE1-29-M4LM - FAILURE OF LOGIC MATRIX RELAYS FOR M4 SIGNAL 2001/06/07 Page 32

Page 184: Reliability Study: Combustion Engineering Reactor Protection

D-36

Appendix D

CE1-30-M4LMATM

CE1-30-M4LM-1

CE1-30-M4LM-BC

34

CE1-31-LMBCATM

2.6E-4

CE1-RYL-FF-LBC4

CE1-30-M4LM-BD

35

CE1-32-LMBDATM

2.6E-4

CE1-RYL-FF-LBD4

CE1-30-M4LM-CD

36

CE1-33-LMCDATM

2.6E-4

CE1-RYL-FF-LCD4

4.7E-7

CE1-RYL-CF-4LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO M4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR M4 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR M4 SIGNAL(CH A IN T&M)

CCF 3 OF 3 M4LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

CE1-30-M4LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR M4 SIGNAL (CH A T&M) 2001/06/07 Page 33

Page 185: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-37

CE1-31-LMBCATM

CE1-31-LMBC-CB

37

CE1-34-CHBTATM

38

CE1-35-CHBPATM

CE1-31-LMBC-CC

39

CE1-36-CHCTATM

40

CE1-37-CHCPATM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

CE1-31-LMBCATM - INPUT SIGNAL TO LOGIC MATRIX BC FAILS (CH A T&M) 2001/08/06 Page 34

Page 186: Reliability Study: Combustion Engineering Reactor Protection

D-38

Appendix D

CE1-32-LMBDATM

CE1-32-LMBD-CB

37

CE1-34-CHBTATM

38

CE1-35-CHBPATM

CE1-32-LMBD-CD

41

CE1-38-CHDTATM

42

CE1-39-CHDPATM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

CE1-32-LMBDATM - INPUT SIGNAL TO LOGIC MATRIX BD FAILS (CH A T&M) 2001/08/06 Page 35

Page 187: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-39

CE1-33-LMCDATM

CE1-33-LMCD-CC

39

CE1-36-CHCTATM

40

CE1-37-CHCPATM

CE1-33-LMCD-CD

41

CE1-38-CHDTATM

42

CE1-39-CHDPATM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXCD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXCD FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CE1-33-LMCDATM - INPUT SIGNAL TO LOGIC MATRIX CD FAILS (CH A T&M) 2001/08/06 Page 36

Page 188: Reliability Study: Combustion Engineering Reactor Protection

D-40

Appendix D

CE1-34-CHBTATM

5.0E-4

CE1-CBI-FF-TB

7.6E-3

CE1-CPA-FF-TB

8.4E-4

CE1-CTP-FF-HTB

8.4E-4

CE1-CTP-FF-CTB

2.6E-7

CE1-CBI-CF-T2OF3TM

3.8E-4

CE1-CPA-CF-T2OF3TM

3.7E-5

CE1-CTP-CF-HT2OF3TM

3.7E-5

CE1-CTP-CF-CT2OF3TM

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CE1-34-CHBTATM - CHANNEL B TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 37

Page 189: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-41

CE1-35-CHBPATM

5.0E-4

CE1-CBI-FF-PB

1.1E-4

CE1-CPR-FF-PB

5.0E-6

CE1-CPR-CF-P2OF3TM

2.6E-7

CE1-CBI-CF-P2OF3TM

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CE1-35-CHBPATM - CHANNEL B PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 38

Page 190: Reliability Study: Combustion Engineering Reactor Protection

D-42

Appendix D

CE1-36-CHCTATM

5.0E-4

CE1-CBI-FF-TC

7.6E-3

CE1-CPA-FF-TC

8.4E-4

CE1-CTP-FF-HTC

8.4E-4

CE1-CTP-FF-CTC

2.6E-7

CE1-CBI-CF-T2OF3TM

3.8E-4

CE1-CPA-CF-T2OF3TM

3.7E-5

CE1-CTP-CF-HT2OF3TM

3.7E-5

CE1-CTP-CF-CT2OF3TM

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL C TEMPERATUREBISTABLE UNIT

FAILS

CE1-36-CHCTATM - CHANNELC TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 39

Page 191: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-43

CE1-37-CHCPATM

5.0E-4

CE1-CBI-FF-PC

1.1E-4

CE1-CPR-FF-PC

5.0E-6

CE1-CPR-CF-P2OF3TM

2.6E-7

CE1-CBI-CF-P2OF3TM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE1-37-CHCPATM - CHANNELC PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 40

Page 192: Reliability Study: Combustion Engineering Reactor Protection

D-44

Appendix D

CE1-38-CHDTATM

5.0E-4

CE1-CBI-FF-TD

7.6E-3

CE1-CPA-FF-TD

8.4E-4

CE1-CTP-FF-HTD

8.4E-4

CE1-CTP-FF-CTD

2.6E-7

CE1-CBI-CF-T2OF3TM

3.8E-4

CE1-CPA-CF-T2OF3TM

3.7E-5

CE1-CTP-CF-HT2OF3TM

3.7E-5

CE1-CTP-CF-CT2OF3TM

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CE1-38-CHDTATM - CHANNEL D TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 41

Page 193: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-45

CE1-39-CHDPATM

5.0E-4

CE1-CBI-FF-PD

1.1E-4

CE1-CPR-FF-PD

5.0E-6

CE1-CPR-CF-P2OF3TM

2.6E-7

CE1-CBI-CF-P2OF3TM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE1-39-CHDPATM - CHANNELD PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 42

Page 194: Reliability Study: Combustion Engineering Reactor Protection

D-46

Appendix D

COMBUSTION ENGINEERING RPS GROUP 2 MODEL

Page 195: Reliability Study: Combustion Engineering Reactor Protection

CE2-04-M7 CE2-05-M8 CE2-02-M5 CE2-03-M6

CE2-01-RPS - REACTOR PROTECTION SYSTEM (RPS) FOR CE GROUP 2 TYPE FAILS 2001/10/05 Page 43

Appendix D

D-47

CE2-01-RPS

CE2-01-RPS1

45

CE2-01-RPS1-LMF-1

44

CE2-01-RPS1-BSF-1 CE2-01-RPS1-TCB

CE2-01-RPS1-TCB-01

CE2-01-RPS1-TCB-01-12

47

CE2-02-M1

50

CE2-03-M2

CE2-01-RPS1-TCB-01-78

55 58

CE2-01-RPS1-TCB-02

CE2-01-RPS1-TCB-02-34

53

CE2-04-M3

56

CE2-05-M4

CE2-01-RPS1-TCB-02-56

49 52

8.4E-7

CE2-ROD-CF-RODS

FAILURE OF TRIPCIRCUIT BREAKERTCB-5 AND TCB-6

FAILURE OF TRIPCIRCUIT BREAKERTCB-3 AND TCB-4

FAILURE OF TRIPCIRCUIT BREAKERTCB-7 AND TCB-8

FAILURE OF TRIPCIRCUIT BREAKERS

CEDM POWER SUPPLY2

FAILURE OF TRIPCIRCUIT BREAKERS

CEDM POWER SUPPLY1

FAILURE OF TRIPCIRCUIT BREAKERS

CEDM COIL POWERSUPPLY BUSES

FAIL TO DE-ENERGIZE

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

COMMON CAUSEFAILURE OF LOGICMATRIX RELAYS

FAILURE OF TRIPCIRCUIT BREAKER

TCB-8

FAILURE OF TRIPCIRCUIT BREAKER

TCB-7

FAILURE OF TRIPCIRCUIT BREAKER

TCB-6

FAILURE OF TRIPCIRCUIT BREAKER

TCB-5

FAILURE OF TRIPCIRCUIT BREAKERTCB-1 AND TCB-2

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

REACTOR PROTECTIONSYSTEM (RPS)FOR CE GROUP

2 TYPE FAILS

CCF 20% OR MORECRD/RODS FAIL TO

INSERT

Page 196: Reliability Study: Combustion Engineering Reactor Protection

D-48

Appendix D

CE2-01-RPS1-BSF-1

46

CE2-01-RPS1-MT1-F CE2-01-RPS1-BSF-2

CE2-01-RPS1-BIF-4

61

CE2-08-CHA-NOTM

7.7E-7

CE2-CBI-CF-6OF8

CE2-01-RPS1-BICHATM

1.6E-2

CE2-RPS-TM-CHA

1.7E-6

CE2-CBI-CF-4OF6TM

CCF OF BISTABLETRIP UNITS DURING

CH A T&M

CCF OF BISTABLETRIP UNITS (CHA NOT IN T&M)

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

CCF OF BISTABLETRIP UNITS

OPERATOR FAILSTO MANUAL TRIP

RPS

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF SPECIFIC6 OF 8 BISTABLE

TRIP UNITS

CCF SPECIFIC4 OF 6 BISTABLETRIP UNITS (CH

A T&M)

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-01-RPS1-BSF-1 - COMMON CAUSE FAILURE OF BISTABLE TRIP UNITS 2001/03/02 Page 44

Page 197: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-49

CE2-01-RPS1-LMF-1

46

CE2-01-RPS1-MT1-F CE2-01-RPS1-LMF-2

CE2-01-RPS1-LMF-3

61

CE2-08-CHA-NOTM

4.3E-8

CE2-RYL-CF-LM12OF24

CE2-01-RPS1-CHATM

1.6E-2

CE2-RPS-TM-CHA

1.6E-7

CE2-RYL-CF-LM6OF12TM

CCF OF LOGICMATRIX RELAYS

DURING CH A T&M

COMMON CAUSEFAILURE OF LOGIC

MATRIX RELAYS

CCF OF LOGICMATRIX RELAYS

CCF OF LOGICMATRIX RELAYS

(CH A NOT INT&M)

OPERATOR FAILSTO MANUAL TRIP

RPS

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF OF 12 OF24 LOGIC MATRIXOUTPUT RELAYS

CCF OF 6 OF12 LOGIC MATRIXOUTPUT RELAYS

(CH A T&M)

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-01-RPS1-LMF-1 - COMMON CAUSE FAILURE OF LOGIC MATRIX RELAYS 2001/03/02 Page 45

Page 198: Reliability Study: Combustion Engineering Reactor Protection

D-50

Appendix D

CE2-01-RPS1-MT1-F

CE2-01-RPS1-MT34-F

93

CE2-40-MT3

94

CE2-41-MT4

CE2-01-RPS1-MT12-F

59

CE2-06-MT1

79

CE2-26-MT2

OPERATOR FAILSTO MANUAL TRIP

RPS

MANUAL TRIPPATHS 1 AND 2

FAIL

MANUAL TRIPPATHS 3 AND 4

FAIL

FAILURE OF MANUALSWITCH 4

FAILURE OF MANUALSWITCH 3

FAILURE OF MANUALSWITCH 2

FAILURE OF MANUALSWITCH 1

CE2-01-RPS1-MT1-F - OPERATOR FAILS TO MANUAL TRIP RPS 2001/08/06 Page 46

Page 199: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-51

CE2-02-M1

CE2-02-M1-CB

CE2-02-M1-4

CE2-02-M1-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB15

1.5E-4

CE2-BSN-FO-TB1

CE2-02-M1-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB1

1.8E-5

CE2-BME-FO-TB1

1.0E-6

CE2-BME-CF-TB2OF8

48

CE2-02-M1-S

FAILURE OF TRIPINITIATION CIRCUIT

K1

TRIP CIRCUITBREAKER TCB-1

FAILS

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-1

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

TRIP CIRCUITBREAKER TCB-1

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGE

DEVICE FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP DEVICEFAILS

TCB-1-TCB-5SHUNT TRIP DEVICE

DC POWER FAILS

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-02-M1 - FAILURE OF TRIP CIRCUIT BREAKER TCB-1 2001/06/07 Page 47

Page 200: Reliability Study: Combustion Engineering Reactor Protection

D-52

Appendix D

CE2-02-M1-S

59

CE2-06-MT1 CE2-02-M1-F

CE2-02-M1-1

CE2-02-M1-2

61

CE2-08-CHA-NOTM

60

CE2-07-M1LM

CE2-02-M1-3

62

CE2-09-M1LMATM

1.6E-2

CE2-RPS-TM-CHA

1.2E-4

CE2-RYT-FF-ICK1

4.8E-6

CE2-RYT-CF-2OF4

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPINITIATION CIRCUIT

K1

FAILURE OF TRIPCONTACT INITIATOR

K1

LOGIC MATRIXRELAYS FOR K1FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K1

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K1SIGNAL FAIL

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF MANUALSWITCH 1

CCF OF 2 OF4 TRIP CONTACTORS

TRIP CONTACTORK1 RELAY FAILS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-02-M1-S - FAILURE OF TRIP INITIATION CIRCUIT K1 2001/06/07 Page 48

Page 201: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-53

CE2-02-M5

48

CE2-02-M1-S CE2-02-M5-CB

CE2-02-M5-4

CE2-02-M5-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB5

CE2-02-M5-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB15

1.5E-4

CE2-BSN-FO-TB5

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB5

FAILURE OF TRIPCIRCUIT BREAKER

TCB-5

TRIP CIRCUITBREAKER TCB-5

COMMAND FAILURES

TRIP CIRCUITBREAKER TCB-5

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-5UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-5

FAILS

FAILURE OF TRIPINITIATION CIRCUIT

K1

TRIP CIRCUITBREAKER TCB-5

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-5UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-5

HARDWARE FAILURES

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

TCB-1-TCB-5SHUNT TRIP DEVICE

DC POWER FAILS

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-02-M5 - FAILURE OF TRIP CIRCUIT BREAKER TCB-5 2001/06/07 Page 49

Page 202: Reliability Study: Combustion Engineering Reactor Protection

D-54

Appendix D

CE2-03-M2

CE2-03-M2-CB

CE2-03-M2-4

CE2-03-M2-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB26

1.5E-4

CE2-BSN-FO-TB2

CE2-03-M2-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB2

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB2

51

CE2-03-M2-S

FAILURE OF TRIPINITIATION CIRCUIT

K2

TRIP CIRCUITBREAKER TCB-2

FAILS

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-2

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

TRIP CIRCUITBREAKER TCB-2

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP DEVICEFAILS

TCB-2-TCB-6SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-03-M2 - FAILURE OF TRIP CIRCUIT BREAKER TCB-2 2001/06/07 Page 50

Page 203: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-55

CE2-03-M2-S

79

CE2-26-MT2 CE2-03-M2-F

CE2-03-M2-1

CE2-03-M2-2

61

CE2-08-CHA-NOTM

77

CE2-24-M2LM

CE2-03-M2-3

78

CE2-25-M2LMATM

1.6E-2

CE2-RPS-TM-CHA

4.8E-6

CE2-RYT-CF-2OF4

1.2E-4

CE2-RYT-FF-ICK2

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPINITIATION CIRCUIT

K2

FAILURE OF TRIPCONTACT INITIATOR

K2

LOGIC MATRIXRELAYS FOR K2FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K2

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K2SIGNAL FAIL

FAILURE OF MANUALSWITCH 2

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK2 RELAY FAILS

CCF OF 2 OF4 TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-03-M2-S - FAILURE OF TRIP INITIATION CIRCUIT K2 2001/06/07 Page 51

Page 204: Reliability Study: Combustion Engineering Reactor Protection

D-56

Appendix D

CE2-03-M6

51

CE2-03-M2-S CE2-03-M6-CB

CE2-03-M6-4

CE2-03-M6-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB6

CE2-03-M6-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB26

1.5E-4

CE2-BSN-FO-TB6

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB6

FAILURE OF TRIPCIRCUIT BREAKER

TCB-6

TRIP CIRCUITBREAKER TCB-6

COMMAND FAILURES

TRIP CIRCUITBREAKER TCB-6

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-6UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-6

FAILS

FAILURE OF TRIPINITIATION CIRCUIT

K2

TRIP CIRCUITBREAKER TCB-6

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-6UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-6

HARDWARE FAILURES

TCB-2-TCB-6SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-03-M6 - FAILURE OF TRIP CIRCUIT BREAKER TCB-6 2001/06/07 Page 52

Page 205: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-57

CE2-04-M3

CE2-04-M3-CB

CE2-04-M3-4

CE2-04-M3-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB37

1.5E-4

CE2-BSN-FO-TB3

CE2-04-M3-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB3

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB3

54

CE2-04-M3-S

FAILURE OF TRIPINITIATION CIRCUIT

K3

TRIP CIRCUITBREAKER TCB-3

FAILS

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-3

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

TRIP CIRCUITBREAKER TCB-3

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP DEVICEFAILS

TCB-3-TCB-7SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-04-M3 - FAILURE OF TRIP CIRCUIT BREAKER TCB-3 2001/06/07 Page 53

Page 206: Reliability Study: Combustion Engineering Reactor Protection

D-58

Appendix D

CE2-04-M3-S

93

CE2-40-MT3 CE2-04-M3-F

CE2-04-M3-1

CE2-04-M3-2

61

CE2-08-CHA-NOTM

80

CE2-27-M3LM

CE2-04-M3-3

81

CE2-28-M3LMATM

1.6E-2

CE2-RPS-TM-CHA

4.8E-6

CE2-RYT-CF-2OF4

1.2E-4

CE2-RYT-FF-ICK3

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPINITIATION CIRCUIT

K3

FAILURE OF TRIPCONTACT INITIATOR

K3

LOGIC MATRIXRELAYS FOR K3FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K3

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K3SIGNAL FAIL

FAILURE OF MANUALSWITCH 3

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK3 RELAY FAILS

CCF OF 2 OF4 TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-04-M3-S - FAILURE OF TRIP INITIATION CIRCUIT K3 2001/06/07 Page 54

Page 207: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-59

CE2-04-M7

54

CE2-04-M3-S CE2-04-M7-CB

CE2-04-M7-4

CE2-04-M7-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB7

CE2-04-M7-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB37

1.5E-4

CE2-BSN-FO-TB7

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB7

FAILURE OF TRIPCIRCUIT BREAKER

TCB-7

TRIP CIRCUITBREAKER TCB-7

COMMAND FAILURES

TRIP CIRCUITBREAKER TCB-7

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-7UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-7

FAILS

FAILURE OF TRIPINITIATION CIRCUIT

K3

TRIP CIRCUITBREAKER TCB-7

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-7UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-7

HARDWARE FAILURES

TCB-3-TCB-7SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-04-M7 - FAILURE OF TRIP CIRCUIT BREAKER TCB-7 2001/06/07 Page 55

Page 208: Reliability Study: Combustion Engineering Reactor Protection

D-60

Appendix D

CE2-05-M4

CE2-05-M4-CB

CE2-05-M4-4

CE2-05-M4-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB48

1.5E-4

CE2-BSN-FO-TB4

CE2-05-M4-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB4

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB4

57

CE2-05-M4-S

FAILURE OF TRIPINITIATION CIRCUIT

K4

TRIP CIRCUITBREAKER TCP-4

FAILS

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-4

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

TRIP CIRCUITBREAKER TCB-4

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP DEVICEFAILS

TCB-4-TCB-8SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-05-M4 - FAILURE OF TRIP CIRCUIT BREAKER TCB-4 2001/06/26 Page 56

Page 209: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-61

CE2-05-M4-S

94

CE2-41-MT4 CE2-05-M4-F

CE2-05-M4-1

CE2-05-M4-2

61

CE2-08-CHA-NOTM

82

CE2-29-M4LM

CE2-05-M4-3

83

CE2-30-M4LMATM

1.6E-2

CE2-RPS-TM-CHA

4.8E-6

CE2-RYT-CF-2OF4

1.2E-4

CE2-RYT-FF-ICK4

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPINITIATION CIRCUIT

K4

FAILURE OF TRIPCONTACT INITIATOR

K4

LOGIC MATRIXRELAYS FOR K4FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K4

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K4SIGNAL FAIL

FAILURE OF MANUALSWITCH 4

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK4 RELAY FAILS

CCF OF 2 OF4 TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-05-M4-S - FAILURE OF TRIP INITIATION CIRCUIT K4 2001/06/07 Page 57

Page 210: Reliability Study: Combustion Engineering Reactor Protection

D-62

Appendix D

CE2-05-M8

57

CE2-05-M4-S CE2-05-M8-CB

CE2-05-M8-4

CE2-05-M8-6

5.4E-5

CE2-BUV-CF-TB2OF8

1.1E-3

CE2-BUV-FO-TB8

CE2-05-M8-5

1.1E-5

CE2-BSN-CF-TB2OF8

2.5E-6

CE2-PWR-CF-TB2OF4

6.0E-5

CE2-PWR-FF-TB48

1.5E-4

CE2-BSN-FO-TB8

1.0E-6

CE2-BME-CF-TB2OF8

1.8E-5

CE2-BME-FO-TB8

FAILURE OF TRIPCIRCUIT BREAKER

TCB-8

TRIP CIRCUITBREAKER TCB-8

COMMAND FAILURES

TRIP CIRCUITBREAKER TCB-8

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-8UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCP-8

FAILS

FAILURE OF TRIPINITIATION CIRCUIT

K4

TRIP CIRCUITBREAKER TCB-8

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-8UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-8

HARDWARE FAILURES

TCB-4-TCB-8SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE2-05-M8 - FAILURE OF TRIP CIRCUIT BREAKER TCB-8 2001/06/07 Page 58

Page 211: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-63

CE2-06-MT1

1.0E-2

CE2-XHE-XE-SCRAM

1.3E-4

CE2-MSW-FF-MT1

4.9E-6

CE2-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 1

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH1 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE2-06-MT1 - MANUAL TRIP 1 FAILS 2001/03/02 Page 59

Page 212: Reliability Study: Combustion Engineering Reactor Protection

D-64

Appendix D

CE2-07-M1LM

CE2-07-M1LM-1

CE2-07-M1LM-AB

63

CE2-10-LMAB

2.6E-4

CE2-RYL-FF-LAB1

CE2-07-M1LM-AD

68

CE2-15-LMAD

2.6E-4

CE2-RYL-FF-LAD1

CE2-07-M1LM-BC

64

CE2-11-LMBC

2.6E-4

CE2-RYL-FF-LBC1

CE2-07-M1LM-BD

65

CE2-12-LMBD

2.6E-4

CE2-RYL-FF-LBD1

CE2-07-M1LM-CD

67

CE2-14-LMCD

2.6E-4

CE2-RYL-FF-LCD1

CE2-07-M1LMAC

66

CE2-13-LMAC

2.6E-4

CE2-RYL-FF-LAC1

2.0E-7

CE2-RYL-CF-1LM6OF6

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

LOGIC MATRIXAC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K1 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A NOT IN

T&M

AD OUTPUT RELAY1 FAILS

CD OUTPUT RELAY1 FAILS

AC OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

AB OUTPUT RELAY1 FAILS

CCF 6 OF 6 K1LOGIC MATRIC

RELAY OUTPUTS

CE2-07-M1LM - FAILURE OF LOGIC MATRIX RELAYS FOR K1 SIGNAL 2001/06/07 Page 60

Page 213: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-65

CE2-08-CHA-NOTM

1.6E-2

CE2-RPS-TM-CHA

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

RPS CHANNELA IN TEST ANDMAINTENANCE

CE2-08-CHA-NOTM - RPS CHANNEL A NOT IN TEST AND MAINTENANCE 2001/03/02 Page 61

Page 214: Reliability Study: Combustion Engineering Reactor Protection

D-66

Appendix D

CE2-09-M1LMATM

CE2-09-M1LM-1

CE2-09-M1LM-BC

84

CE2-31-LMBCATM

2.6E-4

CE2-RYL-FF-LBC1

CE2-09-M1LM-BD

85

CE2-32-LMBDATM

2.6E-4

CE2-RYL-FF-LBD1

CE2-09-M1LM-CD

86

CE2-33-LMCDATM

2.6E-4

CE2-RYL-FF-LCD1

4.7E-7

CE2-RYL-CF-1LM3OF3TM

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K1 SIGNALFAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K1LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

CE2-09-M1LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K1 SIGNAL (CH A T&M) 2001/06/07 Page 62

Page 215: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-67

CE2-10-LMAB

CE2-10-LMAB-CA

69

CE2-16-CHAT

70

CE2-17-CHAP

CE2-10-LMAB-CB

71

CE2-18-CHBT

72

CE2-19-CHBP

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELB FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELA FAILS

INPUT TO LOGICMATRIX AB FAILS

CE2-10-LMAB - INPUT SIGNAL TO LOGIC MATRIX AB FAILS 2001/03/02 Page 63

Page 216: Reliability Study: Combustion Engineering Reactor Protection

D-68

Appendix D

CE2-11-LMBC

CE2-11-LMBC-CB

71

CE2-18-CHBT

72

CE2-19-CHBP

CE2-11-LMBC-CC

73

CE2-20-CHCT

74

CE2-21-CHCP

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELB FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX BC FAILS

CE2-11-LMBC - INPUT SIGNAL TO LOGIC MATRIX BC FAILS 2001/03/02 Page 64

Page 217: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-69

CE2-12-LMBD

CE2-12-LMBD-CB

71

CE2-18-CHBT

72

CE2-19-CHBP

CE2-12-LMBD-CD

75

CE2-22-CHDT

76

CE2-23-CHDP

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELB FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX BD FAILS

CE2-12-LMBD - INPUT SIGNAL TO LOGIC MATRIX BD FAILS 2001/03/02 Page 65

Page 218: Reliability Study: Combustion Engineering Reactor Protection

D-70

Appendix D

CE2-13-LMAC

CE2-13-LMAC-CA

69

CE2-16-CHAT

70

CE2-17-CHAP

CE2-13-LMAC-CC

73

CE2-20-CHCT

74

CE2-21-CHCP

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELA FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX AC FAILS

CE2-13-LMAC - INPUT SIGNAL TO LOGIC MATRIX AC FAILS 2001/03/02 Page 66

Page 219: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-71

CE2-14-LMCD

CE2-14-LMCD-CC

73

CE2-20-CHCT

74

CE2-21-CHCP

CE2-14-LMCD-CD

75

CE2-22-CHDT

76

CE2-23-CHDP

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELC FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX CD FAILS

CE2-14-LMCD - INPUT SIGNAL TO LOGIC MATRIX CD FAILS 2001/03/02 Page 67

Page 220: Reliability Study: Combustion Engineering Reactor Protection

D-72

Appendix D

CE2-15-LMAD

CE2-15-LMAD-CA

69

CE2-16-CHAT

70

CE2-17-CHAP

CE2-15-LMAD-CD

75

CE2-22-CHDT

76

CE2-23-CHDP

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELA FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX AD FAILS

CE2-15-LMAD - INPUT SIGNAL TO LOGIC MATRIX AD FAILS 2001/03/02 Page 68

Page 221: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-73

CE2-16-CHAT

5.0E-4

CE2-CBI-FF-TA

7.2E-6

CE2-CBI-CF-T3OF4

7.6E-3

CE2-CPA-FF-TA

1.7E-4

CE2-CPA-CF-T3OF4

8.4E-4

CE2-CTP-FF-HTA

1.0E-5

CE2-CTP-CF-HT3OF4

8.4E-4

CE2-CTP-FF-CTA

1.0E-5

CE2-CTP-CF-CT3OF4

CHANNEL A TEMPERATUREBISTABLE FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CHANNEL A ANALOGCORE PROTECTIONCALCULATOR FAILS

CCF 3 OF 4TEMPERATURE

BISTABLES

CHANNEL A TEMPERATUREBISTABLE UNIT

FAILS

CE2-16-CHAT - CHANNEL A TEMPERATURE BISTABLE FAILS 2001/06/07 Page 69

Page 222: Reliability Study: Combustion Engineering Reactor Protection

D-74

Appendix D

CE2-17-CHAP

5.0E-4

CE2-CBI-FF-PA

1.1E-4

CE2-CPR-FF-PA

2.5E-6

CE2-CPR-CF-P3OF4

7.2E-6

CE2-CBI-CF-P3OF4

CHANNEL A PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CHANNEL A PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CE2-17-CHAP - CHANNEL A PRESSURE BISTABLE FAILS 2001/03/02 Page 70

Page 223: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-75

CE2-18-CHBT

7.2E-6

CE2-CBI-CF-T3OF4

1.7E-4

CE2-CPA-CF-T3OF4

1.0E-5

CE2-CTP-CF-HT3OF4

1.0E-5

CE2-CTP-CF-CT3OF4

5.0E-4

CE2-CBI-FF-TB

7.6E-3

CE2-CPA-FF-TB

8.4E-4

CE2-CTP-FF-HTB

8.4E-4

CE2-CTP-FF-CTB

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4 TEMPERATUREBISTABLES

CE2-18-CHBT - CHANNEL B TEMPERATURE BISTABLE FAILS 2001/06/07 Page 71

Page 224: Reliability Study: Combustion Engineering Reactor Protection

D-76

Appendix D

CE2-19-CHBP

2.5E-6

CE2-CPR-CF-P3OF4

7.2E-6

CE2-CBI-CF-P3OF4

5.0E-4

CE2-CBI-FF-PB

1.1E-4

CE2-CPR-FF-PB

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE2-19-CHBP - CHANNEL B PRESSURE BISTABLE FAILS 2001/03/02 Page 72

Page 225: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-77

CE2-20-CHCT

7.2E-6

CE2-CBI-CF-T3OF4

1.7E-4

CE2-CPA-CF-T3OF4

1.0E-5

CE2-CTP-CF-HT3OF4

1.0E-5

CE2-CTP-CF-CT3OF4

5.0E-4

CE2-CBI-FF-TC

7.6E-3

CE2-CPA-FF-TC

8.4E-4

CE2-CTP-FF-HTC

8.4E-4

CE2-CTP-FF-CTC

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL C TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4 TEMPERATUREBISTABLES

CE2-20-CHCT - CHANNEL C TEMPERATURE BISTABLE FAILS 2001/06/07 Page 73

Page 226: Reliability Study: Combustion Engineering Reactor Protection

D-78

Appendix D

CE2-21-CHCP

2.5E-6

CE2-CPR-CF-P3OF4

7.2E-6

CE2-CBI-CF-P3OF4

5.0E-4

CE2-CBI-FF-PC

1.1E-4

CE2-CPR-FF-PC

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE2-21-CHCP - CHANNEL C PRESSURE BISTABLE FAILS 2001/03/02 Page 74

Page 227: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-79

CE2-22-CHDT

7.2E-6

CE2-CBI-CF-T3OF4

1.7E-4

CE2-CPA-CF-T3OF4

1.0E-5

CE2-CTP-CF-HT3OF4

1.0E-5

CE2-CTP-CF-CT3OF4

5.0E-4

CE2-CBI-FF-TD

7.6E-3

CE2-CPA-FF-TD

8.4E-4

CE2-CTP-FF-HTD

8.4E-4

CE2-CTP-FF-CTD

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION CALCULATORS

CCF 3 OF 4 TEMPERATUREBISTABLES

CE2-22-CHDT - CHANNEL D TEMPERATURE BISTABLE FAILS 2001/06/07 Page 75

Page 228: Reliability Study: Combustion Engineering Reactor Protection

D-80

Appendix D

CE2-23-CHDP

2.5E-6

CE2-CPR-CF-P3OF4

7.2E-6

CE2-CBI-CF-P3OF4

5.0E-4

CE2-CBI-FF-PD

1.1E-4

CE2-CPR-FF-PD

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE2-23-CHDP - CHANNEL D PRESSURE BISTABLE FAILS 2001/03/02 Page 76

Page 229: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-81

CE2-24-M2LM

CE2-24-M2LM-1

CE2-24-M2LM-AB

63

CE2-10-LMAB

2.6E-4

CE2-RYL-FF-LAB2

CE2-24-M2LM-AD

68

CE2-15-LMAD

2.6E-4

CE2-RYL-FF-LAD2

CE2-24-M2LM-BC

64

CE2-11-LMBC

2.6E-4

CE2-RYL-FF-LBC2

CE2-24-M2LM-BD

65

CE2-12-LMBD

2.6E-4

CE2-RYL-FF-LBD2

CE2-24-M2LM-CD

67

CE2-14-LMCD

2.6E-4

CE2-RYL-FF-LCD2

CE2-24-M2LMAC

66

CE2-13-LMAC

2.6E-4

CE2-RYL-FF-LAC2

2.0E-7

CE2-RYL-CF-2LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A NOT IN

T&M

AD OUTPUT RELAY2 FAILS

CD OUTPUT RELAY2 FAILS

AC OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

AB OUTPUT RELAY2 FAILS

CCF 6 OF 6 K2LOGIC MATRIC

RELAY OUTPUTS

CE2-24-M2LM - FAILURE OF LOGIC MATRIX RELAYS FOR K2 SIGNAL 2001/06/07 Page 77

Page 230: Reliability Study: Combustion Engineering Reactor Protection

D-82

Appendix D

CE2-25-M2LMATM

CE2-25-M2LM-1

CE2-25-M2LM-BC

84

CE2-31-LMBCATM

2.6E-4

CE2-RYL-FF-LBC2

CE2-25-M2LM-BD

85

CE2-32-LMBDATM

2.6E-4

CE2-RYL-FF-LBD2

CE2-25-M2LM-CD

86

CE2-33-LMCDATM

2.6E-4

CE2-RYL-FF-LCD2

4.7E-7

CE2-RYL-CF-2LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K2LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

CE2-25-M2LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K2 SIGNAL (CH A T&M) 2001/06/07 Page 78

Page 231: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-83

CE2-26-MT2

1.0E-2

CE2-XHE-XE-SCRAM

4.9E-6

CE2-MSW-CF-2OF4

1.3E-4

CE2-MSW-FF-MT2

FAILURE OF MANUALSWITCH 2

MANUAL SWITCH2 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE2-26-MT2 - MANUAL TRIP 2 FAILS 2001/03/02 Page 79

Page 232: Reliability Study: Combustion Engineering Reactor Protection

D-84

Appendix D

CE2-27-M3LM

CE2-27-M3LM-1

CE2-27-M3LM-AB

63

CE2-10-LMAB

2.6E-4

CE2-RYL-FF-LAB3

CE2-27-M3LM-AD

68

CE2-15-LMAD

2.6E-4

CE2-RYL-FF-LAD3

CE2-27-M3LM-BC

64

CE2-11-LMBC

2.6E-4

CE2-RYL-FF-LBC3

CE2-27-M3LM-BD

65

CE2-12-LMBD

2.6E-4

CE2-RYL-FF-LBD3

CE2-27-M3LM-CD

67

CE2-14-LMCD

2.6E-4

CE2-RYL-FF-LCD3

CE2-27-M3LMAC

66

CE2-13-LMAC

2.6E-4

CE2-RYL-FF-LAC3

2.0E-7

CE2-RYL-CF-3LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K3 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A NOT IN

T&M

AD OUTPUT RELAY3 FAILS

CD OUTPUT RELAY3 FAILS

AC OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

AB OUTPUT RELAY3 FAILS

CCF 6 OF 6 K3LOGIC MATRIC

RELAY OUTPUTS

CE2-27-M3LM - FAILURE OF LOGIC MATRIX RELAYS FOR K3 SIGNAL 2001/06/07 Page 80

Page 233: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-85

CE2-28-M3LMATM

CE2-28-M3LM-1

CE2-28-M3LM-BC

84

CE2-31-LMBCATM

2.6E-4

CE2-RYL-FF-LBC3

CE2-28-M3LM-BD

85

CE2-32-LMBDATM

2.6E-4

CE2-RYL-FF-LBD3

CE2-28-M3LM-CD

86

CE2-33-LMCDATM

2.6E-4

CE2-RYL-FF-LCD3

4.7E-7

CE2-RYL-CF-3LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K3 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K3LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

CE2-28-M3LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K3 SIGNAL (CH A T&M) 2001/06/07 Page 81

Page 234: Reliability Study: Combustion Engineering Reactor Protection

D-86

Appendix D

CE2-29-M4LM

CE2-29-M4LM-1

CE2-29-M4LM-AB

63

CE2-10-LMAB

2.6E-4

CE2-RYL-FF-LAB4

CE2-29-M4LM-AD

68

CE2-15-LMAD

2.6E-4

CE2-RYL-FF-LAD4

CE2-29-M4LM-BC

64

CE2-11-LMBC

2.6E-4

CE2-RYL-FF-LBC4

CE2-29-M4LM-BD

65

CE2-12-LMBD

2.6E-4

CE2-RYL-FF-LBD4

CE2-29-M4LM-CD

67

CE2-14-LMCD

2.6E-4

CE2-RYL-FF-LCD4

CE2-29-M4LMAC

66

CE2-13-LMAC

2.6E-4

CE2-RYL-FF-LAC4

2.0E-7

CE2-RYL-CF-4LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K4 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A NOT IN

T&M

AD OUTPUT RELAY4 FAILS

CD OUTPUT RELAY4 FAILS

AC OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

AB OUTPUT RELAY4 FAILS

CCF 6 OF 6 K4LOGIC MATRIC

RELAY OUTPUTS

CE2-29-M4LM - FAILURE OF LOGIC MATRIX RELAYS FOR K4 SIGNAL 2001/06/07 Page 82

Page 235: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-87

CE2-30-M4LMATM

CE2-30-M4LM-1

CE2-30-M4LM-BC

84

CE2-31-LMBCATM

2.6E-4

CE2-RYL-FF-LBC4

CE2-30-M4LM-BD

85

CE2-32-LMBDATM

2.6E-4

CE2-RYL-FF-LBD4

CE2-30-M4LM-CD

86

CE2-33-LMCDATM

2.6E-4

CE2-RYL-FF-LCD4

4.7E-7

CE2-RYL-CF-4LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K4 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K4LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

CE2-30-M4LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K4 SIGNAL (CH A T&M) 2001/06/07 Page 83

Page 236: Reliability Study: Combustion Engineering Reactor Protection

D-88

Appendix D

CE2-31-LMBCATM

CE2-31-LMBC-CB

87

CE2-34-CHBTATM

88

CE2-35-CHBPATM

CE2-31-LMBC-CC

89

CE2-36-CHCTATM

90

CE2-37-CHCPATM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

CE2-31-LMBCATM - INPUT SIGNAL TO LOGIC MATRIX BC FAILS (CH A T&M) 2001/08/06 Page 84

Page 237: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-89

CE2-32-LMBDATM

CE2-32-LMBD-CB

87

CE2-34-CHBTATM

88

CE2-35-CHBPATM

CE2-32-LMBD-CD

91

CE2-38-CHDTATM

92

CE2-39-CHDPATM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL B

FAILS (CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

CE2-32-LMBDATM - INPUT SIGNAL TO LOGIC MATRIX BD FAILS (CH A T&M) 2001/08/06 Page 85

Page 238: Reliability Study: Combustion Engineering Reactor Protection

D-90

Appendix D

CE2-33-LMCDATM

CE2-33-LMCD-CC

89

CE2-36-CHCTATM

90

CE2-37-CHCPATM

CE2-33-LMCD-CD

91

CE2-38-CHDTATM

92

CE2-39-CHDPATM

INPUT TO LOGIC MATRIXCD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXCD FROM CHANNEL C

FAILS (CH A T&M)

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CE2-33-LMCDATM - INPUT SIGNAL TO LOGIC MATRIX CD FAILS (CH A T&M) 2001/08/06 Page 86

Page 239: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-91

CE2-34-CHBTATM

5.0E-4

CE2-CBI-FF-TB

7.6E-3

CE2-CPA-FF-TB

8.4E-4

CE2-CTP-FF-HTB

8.4E-4

CE2-CTP-FF-CTB

2.6E-7

CE2-CBI-CF-T2OF3TM

3.8E-4

CE2-CPA-CF-T2OF3TM

3.7E-5

CE2-CTP-CF-HT2OF3TM

3.7E-5

CE2-CTP-CF-CT2OF3TM

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CE2-34-CHBTATM - CHANNEL B TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 87

Page 240: Reliability Study: Combustion Engineering Reactor Protection

D-92

Appendix D

CE2-35-CHBPATM

5.0E-4

CE2-CBI-FF-PB

1.1E-4

CE2-CPR-FF-PB

8.2E-6

CE2-CPR-CF-P2OF3TM

2.6E-7

CE2-CBI-CF-P2OF3TM

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CE2-35-CHBPATM - CHANNEL B PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 88

Page 241: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-93

CE2-36-CHCTATM

5.0E-4

CE2-CBI-FF-TC

7.6E-3

CE2-CPA-FF-TC

8.4E-4

CE2-CTP-FF-HTC

8.4E-4

CE2-CTP-FF-CTC

2.6E-7

CE2-CBI-CF-T2OF3TM

3.8E-4

CE2-CPA-CF-T2OF3TM

3.7E-5

CE2-CTP-CF-HT2OF3TM

3.7E-5

CE2-CTP-CF-CT2OF3TM

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL C TEMPERATUREBISTABLE UNIT

FAILS

CE2-36-CHCTATM - CHANNEL C TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 89

Page 242: Reliability Study: Combustion Engineering Reactor Protection

D-94

Appendix D

CE2-37-CHCPATM

5.0E-4

CE2-CBI-FF-PC

1.1E-4

CE2-CPR-FF-PC

8.2E-6

CE2-CPR-CF-P2OF3TM

2.6E-7

CE2-CBI-CF-P2OF3TM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE2-37-CHCPATM - CHANNEL C PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 90

Page 243: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-95

CE2-38-CHDTATM

5.0E-4

CE2-CBI-FF-TD

7.6E-3

CE2-CPA-FF-TD

8.4E-4

CE2-CTP-FF-HTD

8.4E-4

CE2-CTP-FF-CTD

2.6E-7

CE2-CBI-CF-T2OF3TM

3.8E-4

CE2-CPA-CF-T2OF3TM

3.7E-5

CE2-CTP-CF-HT2OF3TM

3.7E-5

CE2-CTP-CF-CT2OF3TM

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D ANALOGCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CE2-38-CHDTATM - CHANNEL D TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 91

Page 244: Reliability Study: Combustion Engineering Reactor Protection

D-96

Appendix D

CE2-39-CHDPATM

5.0E-4

CE2-CBI-FF-PD

1.1E-4

CE2-CPR-FF-PD

8.2E-6

CE2-CPR-CF-P2OF3TM

2.6E-7

CE2-CBI-CF-P2OF3TM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE2-39-CHDPATM - CHANNEL D PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 92

Page 245: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-97

CE2-40-MT3

1.0E-2

CE2-XHE-XE-SCRAM

4.9E-6

CE2-MSW-CF-2OF4

1.3E-4

CE2-MSW-FF-MT3

FAILURE OF MANUALSWITCH 3

MANUAL SWITCH3 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE2-40-MT3 - FAILURE OF MANUAL SWITCH 3 2001/06/07 Page 93

Page 246: Reliability Study: Combustion Engineering Reactor Protection

D-98

Appendix D

CE2-41-MT4

1.0E-2

CE2-XHE-XE-SCRAM

4.9E-6

CE2-MSW-CF-2OF4

1.3E-4

CE2-MSW-FF-MT4

FAILURE OF MANUALSWITCH 4

MANUAL SWITCH4 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE2-41-MT4 - FAILURE OF MANUAL SWITCH 4 2001/06/07 Page 94

Page 247: Reliability Study: Combustion Engineering Reactor Protection

COMBUSTION ENGINEERING RPS GROUP 3 MODEL

Appendix D

D-99

Page 248: Reliability Study: Combustion Engineering Reactor Protection

CE3-04-M7 CE3-05-M8 CE3-02-M5 CE3-03-M6

CE3-01-RPS - REACTOR PROTECTION SYSTEM (RPS) FOR CE GROUP 3 TYPE FAILS 2001/10/05 Page 95

D-100

Appendix D

CE3-01-RPS

CE3-01-RPS1

96

CE3-01-RPS1-BSF-1

97

CE3-01-RPS1-LMF-1 CE3-01-RPS1-TCB

CE3-01-RPS1-TCB-01

CE3-01-RPS1-TCB-01-12

99

CE3-02-M1

102

CE3-03-M2

CE3-01-RPS1-TCB-01-78

107 110

CE3-01-RPS1-TCB-02

CE3-01-RPS1-TCB-02-34

105

CE3-04-M3

108

CE3-05-M4

CE3-01-RPS1-TCB-02-56

101 104

8.4E-7

CE3-ROD-CF-RODS

FAILURE OF TRIPCIRCUIT BREAKER

TCB-8

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

FAILURE OF TRIPCIRCUIT BREAKER

TCB-7

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

FAILURE OF TRIPCIRCUIT BREAKER

TCB-6

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

FAILURE OF TRIPCIRCUIT BREAKER

TCB-5

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

FAILURE OF TRIPCIRCUIT BREAKERTCB-5 AND TCB-6

FAILURE OF TRIPCIRCUIT BREAKERTCB-3 AND TCB-4

FAILURE OF TRIPCIRCUIT BREAKERS

CEDM POWER SUPPLY2

FAILURE OF TRIPCIRCUIT BREAKERTCB-7 AND TCB-8

FAILURE OF TRIPCIRCUIT BREAKERTCB-1 AND TCB-2

FAILURE OF TRIPCIRCUIT BREAKERS

CEDM POWER SUPPLY1

FAILURE OF TRIPCIRCUIT BREAKERS

COMMON CAUSEFAILURE OF LOGICMATRIX RELAYS

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

CEDM COIL POWERSUPPLY BUSES

FAIL TO DE-ENERGIZE

REACTOR PROTECTIONSYSTEM (RPS)FOR CE GROUP

3 TYPE FAILS

CCF 20% OR MORECRD/RODS FAIL TO

INSERT

Page 249: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-101

CE3-01-RPS1-BSF-1

CE3-01-RPS1-BSF-2

CE3-01-RPS1-BICHATM

1.6E-2

CE3-RPS-TM-CHA

1.7E-6

CE3-CBI-CF-4OF6TM

CE3-01-RPS1-BIF-4

113

CE3-08-CHA-NOTM

7.7E-7

CE3-CBI-CF-6OF8

98

CE3-01-RPS1-MT1-F

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

OPERATOR FAILSTO MANUAL TRIP

RPS

CCF OF BISTABLETRIP UNITS

CCF OF BISTABLETRIP UNITS (CHA NOT IN T&M)

CCF OF BISTABLETRIP UNITS DURING

CH A T&M

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

CCF SPECIFIC4 OF 6 BISTABLETRIP UNITS (CH

A T&M)

RPS CHANNELA IN TEST ANDMAINTENANCE

CCF SPECIFIC6 OF 8 BISTABLE

TRIP UNITS

CE3-01-RPS1-BSF-1 - COMMON CAUSE FAILURE OF BISTABLE TRIP UNITS 2001/03/02 Page 96

Page 250: Reliability Study: Combustion Engineering Reactor Protection

D-102

Appendix D

CE3-01-RPS1-LMF-1

98

CE3-01-RPS1-MT1-F CE3-01-RPS1-LMF-2

CE3-01-RPS1-CHATM

1.6E-2

CE3-RPS-TM-CHA

1.6E-7

CE3-RYL-CF-LM6OF12TM

CE3-01-RPS1-LMF-3

113

CE3-08-CHA-NOTM

4.3E-8

CE3-RYL-CF-LM12OF24

CCF OF LOGICMATRIX RELAYS

(CH A NOT INT&M)

CCF OF LOGICMATRIX RELAYS

CCF OF LOGICMATRIX RELAYS

DURING CH A T&M

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

OPERATOR FAILSTO MANUAL TRIP

RPS

COMMON CAUSEFAILURE OF LOGIC

MATRIX RELAYS

CCF SPECIFIC6 OF 12 LOGIC

MATRIX OUTPUTRELAYS (CH A

T&M)

CCF SPECIFIC12 OF 24 LOGICMATRIX OUTPUT

RELAYS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-01-RPS1-LMF-1 - COMMON CAUSE FAILURE OF LOGIC MATRIX RELAYS 2001/03/02 Page 97

Page 251: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-103

CE3-01-RPS1-MT1-F

CE3-01-RPS1-MT12-F

111

CE3-06-MT1

131

CE3-26-MT2

CE3-01-RPS1-MT34-F

145

CE3-40-MT3

146

CE3-41-MT4

FAILURE OF MANUALSWITCH 4

FAILURE OF MANUALSWITCH 3

FAILURE OF MANUALSWITCH 2

FAILURE OF MANUALSWITCH 1

MANUAL TRIPPATHS 3 AND 4

FAIL

MANUAL TRIPPATHS 1 AND 2

FAIL

OPERATOR FAILSTO MANUAL TRIP

RPS

CE3-01-RPS1-MT1-F - OPERATOR FAILS TO MANUAL TRIP RPS 2001/08/06 Page 98

Page 252: Reliability Study: Combustion Engineering Reactor Protection

D-104

Appendix D

CE3-02-M1

CE3-02-M1-CB

CE3-02-M1-4

CE3-02-M1-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB15

1.5E-4

CE3-BSN-FO-TB1

CE3-02-M1-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB1

1.8E-5

CE3-BME-FO-TB1

1.0E-6

CE3-BME-CF-TB2OF8

100

CE3-02-M1-S

FAILURE OF TRIPINITIATION CIRCUIT

K1

TRIP CIRCUITBREAKER TCB-1

FAILS

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-1

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

TRIP CIRCUITBREAKER TCB-1

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGE

DEVICE FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP DEVICEFAILS

TCB-1-TCB-5SHUNT TRIP DEVICE

DC POWER FAILS

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-02-M1 - FAILURE OF TRIP CIRCUIT BREAKER TCB-1 2001/06/07 Page 99

Page 253: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-105

CE3-02-M1-S

111

CE3-06-MT1 CE3-02-M1-F

CE3-02-M1-1

CE3-02-M1-2

113

CE3-08-CHA-NOTM

112

CE3-07-M1LM

CE3-02-M1-3

114

CE3-09-M1LMATM

1.6E-2

CE3-RPS-TM-CHA

1.2E-4

CE3-RYT-FF-ICK1

4.8E-6

CE3-RYT-CF-2OF4

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPCONTACT INITIATOR

K1

LOGIC MATRIXRELAYS FOR K1FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K1

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K1SIGNAL FAIL

FAILURE OF TRIPINITIATION CIRCUIT

K1

FAILURE OF MANUALSWITCH 1

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

TRIP CONTACTORK1 RELAY FAILS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-02-M1-S - FAILURE OF TRIP INITIATION CIRCUIT K1 2001/06/07 Page 100

Page 254: Reliability Study: Combustion Engineering Reactor Protection

D-106

Appendix D

CE3-02-M5

100

CE3-02-M1-S CE3-02-M5-CB

CE3-02-M5-4

CE3-02-M5-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB15

1.5E-4

CE3-BSN-FO-TB5

CE3-02-M5-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB5

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB5

TRIP CIRCUITBREAKER TCB-5

FAILS

TRIP CIRCUITBREAKER TCB-5UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-5

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-5

COMMAND FAILURES

FAILURE OF TRIPINITIATION CIRCUIT

K1

FAILURE OF TRIPCIRCUIT BREAKER

TCB-5

TRIP CIRCUITBREAKER TCB-5

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-5UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-5

HARDWARE FAILURES

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

TCB-1-TCB-5SHUNT TRIP DEVICE

DC POWER FAILS

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-02-M5 - FAILURE OF TRIP CIRCUIT BREAKER TCB-5 2001/06/07 Page 101

Page 255: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-107

CE3-03-M2

CE3-03-M2-CB

CE3-03-M2-4

CE3-03-M2-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB26

1.5E-4

CE3-BSN-FO-TB2

CE3-03-M2-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB2

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB2

103

CE3-03-M2-S

FAILURE OF TRIPINITIATION CIRCUIT

K2

TRIP CIRCUITBREAKER TCB-2

FAILS

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-2

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

TRIP CIRCUITBREAKER TCB-2

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP DEVICEFAILS

TCB-2-TCB-6SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-03-M2 - FAILURE OF TRIP CIRCUIT BREAKER TCB-2 2001/06/07 Page 102

Page 256: Reliability Study: Combustion Engineering Reactor Protection

D-108

Appendix D

CE3-03-M2-S

131

CE3-26-MT2 CE3-03-M2-F

CE3-03-M2-1

CE3-03-M2-2

113

CE3-08-CHA-NOTM

129

CE3-24-M2LM

CE3-03-M2-3

130

CE3-25-M2LMATM

1.6E-2

CE3-RPS-TM-CHA

4.8E-6

CE3-RYT-CF-2OF4

1.2E-4

CE3-RYT-FF-ICK2

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPCONTACT INITIATOR

K2

LOGIC MATRIXRELAYS FOR K2FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K2

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K2SIGNAL FAIL

FAILURE OF TRIPINITIATION CIRCUIT

K2

FAILURE OF MANUALSWITCH 2

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK2 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-03-M2-S - FAILURE OF TRIP INITIATION CIRCUIT K2 2001/06/07 Page 103

Page 257: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-109

CE3-03-M6

103

CE3-03-M2-S CE3-03-M6-CB

CE3-03-M6-4

CE3-03-M6-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB26

1.5E-4

CE3-BSN-FO-TB6

CE3-03-M6-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB6

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB6

TRIP CIRCUITBREAKER TCB-6

FAILS

TRIP CIRCUITBREAKER TCB-6UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-6

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-6

COMMAND FAILURES

FAILURE OF TRIPINITIATION CIRCUIT

K2

FAILURE OF TRIPCIRCUIT BREAKER

TCB-6

TRIP CIRCUITBREAKER TCB-6

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-6UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-6

HARDWARE FAILURES

TCB-2-TCB-6SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-03-M6 - FAILURE OF TRIP CIRCUIT BREAKER TCB-6 2001/06/07 Page 104

Page 258: Reliability Study: Combustion Engineering Reactor Protection

D-110

Appendix D

CE3-04-M3

CE3-04-M3-CB

CE3-04-M3-4

CE3-04-M3-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB37

1.5E-4

CE3-BSN-FO-TB3

CE3-04-M3-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB3

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB3

106

CE3-04-M3-S

FAILURE OF TRIPINITIATION CIRCUIT

K3

TRIP CIRCUITBREAKER TCB-3

FAILS

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-3

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

TRIP CIRCUITBREAKER TCB-3

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP DEVICEFAILS

TCB-3-TCB-7SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-04-M3 - FAILURE OF TRIP CIRCUIT BREAKER TCB-3 2001/06/07 Page 105

Page 259: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-111

CE3-04-M3-S

145

CE3-40-MT3 CE3-04-M3-F

CE3-04-M3-1

CE3-04-M3-2

113

CE3-08-CHA-NOTM

132

CE3-27-M3LM

CE3-04-M3-3

133

CE3-28-M3LMATM

1.6E-2

CE3-RPS-TM-CHA

4.8E-6

CE3-RYT-CF-2OF4

1.2E-4

CE3-RYT-FF-ICK3

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL

(CH A NOT INT&M

FAILURE OF TRIPCONTACT INITIATOR

K3

LOGIC MATRIXRELAYS FOR K3FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K3

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K3SIGNAL FAIL

FAILURE OF TRIPINITIATION CIRCUIT

K3

FAILURE OF MANUALSWITCH 3

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK3 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-04-M3-S - FAILURE OF TRIP INITIATION CIRCUIT K3 2001/06/07 Page 106

Page 260: Reliability Study: Combustion Engineering Reactor Protection

D-112

Appendix D

CE3-04-M7

106

CE3-04-M3-S CE3-04-M7-CB

CE3-04-M7-4

CE3-04-M7-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB37

1.5E-4

CE3-BSN-FO-TB7

CE3-04-M7-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB7

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB7

TRIP CIRCUITBREAKER TCB-7

FAILS

TRIP CIRCUITBREAKER TCB-7UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-7

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-7

COMMAND FAILURES

FAILURE OF TRIPINITIATION CIRCUIT

K3

FAILURE OF TRIPCIRCUIT BREAKER

TCB-7

TRIP CIRCUITBREAKER TCB-7

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-7UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-7

HARDWARE FAILURES

TCB-3-TCB-7SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-04-M7 - FAILURE OF TRIP CIRCUIT BREAKER TCB-7 2001/06/07 Page 107

Page 261: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-113

CE3-05-M4

CE3-05-M4-CB

CE3-05-M4-4

CE3-05-M4-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB48

1.5E-4

CE3-BSN-FO-TB4

CE3-05-M4-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB4

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB4

109

CE3-05-M4-S

FAILURE OF TRIPINITIATION CIRCUIT

K4

TRIP CIRCUITBREAKER TCP-4

FAILS

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-4

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

TRIP CIRCUITBREAKER TCB-4

HARDWARE FAILURES

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP DEVICEFAILS

TCB-4-TCB-8SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-05-M4 - FAILURE OF TRIP CIRCUIT BREAKER TCB-4 2001/06/07 Page 108

Page 262: Reliability Study: Combustion Engineering Reactor Protection

D-114

Appendix D

CE3-05-M4-S

146

CE3-41-MT4 CE3-05-M4-F

CE3-05-M4-1

CE3-05-M4-2

113

CE3-08-CHA-NOTM

134

CE3-29-M4LM

CE3-05-M4-3

135

CE3-30-M4LMATM

1.6E-2

CE3-RPS-TM-CHA

4.8E-6

CE3-RYT-CF-2OF4

1.2E-4

CE3-RYT-FF-ICK4

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL

(CH A NOT IN T&M)

FAILURE OF TRIPCONTACT INITIATOR

K4

LOGIC MATRIXRELAYS FOR K4FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K4

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K4SIGNAL FAIL

FAILURE OF TRIPINITIATION CIRCUIT

K4

FAILURE OF MANUALSWITCH 4

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

TRIP CONTACTORK4 RELAY FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-05-M4-S - FAILURE OF TRIP INITIATION CIRCUIT K4 2001/06/07 Page 109

Page 263: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-115

CE3-05-M8

109

CE3-05-M4-S CE3-05-M8-CB

CE3-05-M8-4

CE3-05-M8-5

1.1E-5

CE3-BSN-CF-TB2OF8

2.5E-6

CE3-PWR-CF-TB2OF4

6.0E-5

CE3-PWR-FF-TB48

1.5E-4

CE3-BSN-FO-TB8

CE3-05-M8-6

5.4E-5

CE3-BUV-CF-TB2OF8

1.1E-3

CE3-BUV-FO-TB8

1.0E-6

CE3-BME-CF-TB2OF8

1.8E-5

CE3-BME-FO-TB8

TRIP CIRCUITBREAKER TCP-8

FAILS

TRIP CIRCUITBREAKER TCB-8UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-8

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-8

COMMAND FAILURES

FAILURE OF TRIPINITIATION CIRCUIT

K4

FAILURE OF TRIPCIRCUIT BREAKER

TCB-8

TRIP CIRCUITBREAKER TCB-8

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-8UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-8

HARDWARE FAILURES

TCB-4-TCB-8SHUNT TRIP DEVICE

DC POWER FAILS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKERS

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF SPECIFIC2 OF 8 TRIP CIRCUIT

BREAKER SHUNTTRIP DEVICE

CE3-05-M8 - FAILURE OF TRIP CIRCUIT BREAKER TCB-8 2001/06/07 Page 110

Page 264: Reliability Study: Combustion Engineering Reactor Protection

D-116

Appendix D

CE3-06-MT1

1.0E-2

CE3-XHE-XE-SCRAM

1.3E-4

CE3-MSW-FF-MT1

4.9E-6

CE3-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 1

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH1 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE3-06-MT1 - MANUAL TRIP 1 FAILS 2001/03/02 Page 111

Page 265: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-117

CE3-07-M1LM

CE3-07-M1LM-1

CE3-07-M1LM-AB

115

CE3-10-LMAB

2.6E-4

CE3-RYL-FF-LAB1

CE3-07-M1LM-AD

120

CE3-15-LMAD

2.6E-4

CE3-RYL-FF-LAD1

CE3-07-M1LM-BC

116

CE3-11-LMBC

2.6E-4

CE3-RYL-FF-LBC1

CE3-07-M1LM-BD

117

CE3-12-LMBD

2.6E-4

CE3-RYL-FF-LBD1

CE3-07-M1LM-CD

119

CE3-14-LMCD

2.6E-4

CE3-RYL-FF-LCD1

CE3-07-M1LMAC

118

CE3-13-LMAC

2.6E-4

CE3-RYL-FF-LAC1

2.0E-7

CE3-RYL-CF-1LM6OF6

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

LOGIC MATRIXAC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K1 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A NOT IN

T&M

AC OUTPUT RELAY1 FAILS

CD OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

AD OUTPUT RELAY1 FAILS

AB OUTPUT RELAY1 FAILS

CCF 6 OF 6 K1LOGIC MATRIC

RELAY OUTPUTS

CE3-07-M1LM - FAILURE OF LOGIC MATRIX RELAYS FOR K1 SIGNAL 2001/06/07 Page 112

Page 266: Reliability Study: Combustion Engineering Reactor Protection

D-118

Appendix D

CE3-08-CHA-NOTM

1.6E-2

CE3-RPS-TM-CHA

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

RPS CHANNELA IN TEST ANDMAINTENANCE

CE3-08-CHA-NOTM - RPS CHANNEL A NOT IN TEST AND MAINTENANCE 2001/03/02 Page 113

Page 267: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-119

CE3-09-M1LMATM

CE3-09-M1LM-1

CE3-09-M1LM-BC

136

CE3-31-LMBCATM

2.6E-4

CE3-RYL-FF-LBC1

CE3-09-M1LM-BD

137

CE3-32-LMBDATM

2.6E-4

CE3-RYL-FF-LBD1

CE3-09-M1LM-CD

138

CE3-33-LMCDATM

2.6E-4

CE3-RYL-FF-LCD1

4.7E-7

CE3-RYL-CF-1LM3OF3TM

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIX OUTPUTRELAYS FOR K1

SIGNAL FAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAY FOR K1SIGNAL (CH A IN T&M)

CCF 3 OF 3 K1LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

CE3-09-M1LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K1 SIGNAL (CH A T&M) 2001/06/07 Page 114

Page 268: Reliability Study: Combustion Engineering Reactor Protection

D-120

Appendix D

CE3-10-LMAB

CE3-10-LMAB-CA

121

CE3-16-CHAT

122

CE3-17-CHAP

CE3-10-LMAB-CB

123

CE3-18-CHBT

124

CE3-19-CHBP

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELB FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELA FAILS

INPUT TO LOGICMATRIX AB FAILS

CE3-10-LMAB - INPUT SIGNAL TO LOGIC MATRIX AB FAILS 2001/03/02 Page 115

Page 269: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-121

CE3-11-LMBC

CE3-11-LMBC-CB

123

CE3-18-CHBT

124

CE3-19-CHBP

CE3-11-LMBC-CC

125

CE3-20-CHCT

126

CE3-21-CHCP

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELB FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX BC FAILS

CE3-11-LMBC - INPUT SIGNAL TO LOGIC MATRIX BC FAILS 2001/03/02 Page 116

Page 270: Reliability Study: Combustion Engineering Reactor Protection

D-122

Appendix D

CE3-12-LMBD

CE3-12-LMBD-CB

123

CE3-18-CHBT

124

CE3-19-CHBP

CE3-12-LMBD-CD

127

CE3-22-CHDT

128

CE3-23-CHDP

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELB FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX BD FAILS

CE3-12-LMBD - INPUT SIGNAL TO LOGIC MATRIX BD FAILS 2001/03/02 Page 117

Page 271: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-123

CE3-13-LMAC

CE3-13-LMAC-CA

121

CE3-16-CHAT

122

CE3-17-CHAP

CE3-13-LMAC-CC

125

CE3-20-CHCT

126

CE3-21-CHCP

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELA FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX AC FAILS

CE3-13-LMAC - INPUT SIGNAL TO LOGIC MATRIX AC FAILS 2001/03/02 Page 118

Page 272: Reliability Study: Combustion Engineering Reactor Protection

D-124

Appendix D

CE3-14-LMCD

CE3-14-LMCD-CC

125

CE3-20-CHCT

126

CE3-21-CHCP

CE3-14-LMCD-CD

127

CE3-22-CHDT

128

CE3-23-CHDP

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELC FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX CD FAILS

CE3-14-LMCD - INPUT SIGNAL TO LOGIC MATRIX CD FAILS 2001/03/02 Page 119

Page 273: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-125

CE3-15-LMAD

CE3-15-LMAD-CA

121

CE3-16-CHAT

122

CE3-17-CHAP

CE3-15-LMAD-CD

127

CE3-22-CHDT

128

CE3-23-CHDP

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELA FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

INPUT TO LOGICMATRIX AD FAILS

CE3-15-LMAD - INPUT SIGNAL TO LOGIC MATRIX AD FAILS 2001/03/02 Page 120

Page 274: Reliability Study: Combustion Engineering Reactor Protection

D-126

Appendix D

CE3-16-CHAT

5.0E-4

CE3-CBI-FF-TA

7.2E-6

CE3-CBI-CF-T3OF4

2.7E-3

CE3-CPD-FF-TA

5.7E-5

CE3-CPD-CF-T3OF4

8.4E-4

CE3-CTP-FF-HTA

1.0E-5

CE3-CTP-CF-HT3OF4

8.4E-4

CE3-CTP-FF-CTA

1.0E-5

CE3-CTP-CF-CT3OF4

CHANNEL A TEMPERATUREBISTABLE FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CHANNEL A DIGITALCORE PROTECTIONCALCULATOR FAILS

CCF 3 OF 4TEMPERATURE

BISTABLES

CHANNEL A TEMPERATUREBISTABLE UNIT

FAILS

CE3-16-CHAT - CHANNEL A TEMPERATURE BISTABLE FAILS 2001/06/07 Page 121

Page 275: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-127

CE3-17-CHAP

5.0E-4

CE3-CBI-FF-PA

1.1E-4

CE3-CPR-FF-PA

1.5E-6

CE3-CPR-CF-P3OF4

7.2E-6

CE3-CBI-CF-P3OF4

CHANNEL A PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CHANNEL A PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CE3-17-CHAP - CHANNEL A PRESSURE BISTABLE FAILS 2001/03/02 Page 122

Page 276: Reliability Study: Combustion Engineering Reactor Protection

D-128

Appendix D

CE3-18-CHBT

7.2E-6

CE3-CBI-CF-T3OF4

5.7E-5

CE3-CPD-CF-T3OF4

1.0E-5

CE3-CTP-CF-HT3OF4

1.0E-5

CE3-CTP-CF-CT3OF4

5.0E-4

CE3-CBI-FF-TB

2.7E-3

CE3-CPD-FF-TB

8.4E-4

CE3-CTP-FF-HTB

8.4E-4

CE3-CTP-FF-CTB

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE3-18-CHBT - CHANNEL B TEMPERATURE BISTABLE FAILS 2001/06/07 Page 123

Page 277: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-129

CE3-19-CHBP

1.5E-6

CE3-CPR-CF-P3OF4

7.2E-6

CE3-CBI-CF-P3OF4

5.0E-4

CE3-CBI-FF-PB

1.1E-4

CE3-CPR-FF-PB

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE3-19-CHBP - CHANNEL B PRESSURE BISTABLE FAILS 2001/03/02 Page 124

Page 278: Reliability Study: Combustion Engineering Reactor Protection

D-130

Appendix D

CE3-20-CHCT

7.2E-6

CE3-CBI-CF-T3OF4

5.7E-5

CE3-CPD-CF-T3OF4

1.0E-5

CE3-CTP-CF-HT3OF4

1.0E-5

CE3-CTP-CF-CT3OF4

5.0E-4

CE3-CBI-FF-TC

2.7E-3

CE3-CPD-FF-TC

8.4E-4

CE3-CTP-FF-HTC

8.4E-4

CE3-CTP-FF-CTC

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL C TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE3-20-CHCT - CHANNEL C TEMPERATURE BISTABLE FAILS 2001/06/07 Page 125

Page 279: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-131

CE3-21-CHCP

1.5E-6

CE3-CPR-CF-P3OF4

7.2E-6

CE3-CBI-CF-P3OF4

5.0E-4

CE3-CBI-FF-PC

1.1E-4

CE3-CPR-FF-PC

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE3-21-CHCP - CHANNEL C PRESSURE BISTABLE FAILS 2001/03/02 Page 126

Page 280: Reliability Study: Combustion Engineering Reactor Protection

D-132

Appendix D

CE3-22-CHDT

7.2E-6

CE3-CBI-CF-T3OF4

5.7E-5

CE3-CPD-CF-T3OF4

1.0E-5

CE3-CTP-CF-HT3OF4

1.0E-5

CE3-CTP-CF-CT3OF4

5.0E-4

CE3-CBI-FF-TD

2.7E-3

CE3-CPD-FF-TD

8.4E-4

CE3-CTP-FF-HTD

8.4E-4

CE3-CTP-FF-CTD

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE3-22-CHDT - CHANNEL D TEMPERATURE BISTABLE FAILS 2001/06/07 Page 127

Page 281: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-133

CE3-23-CHDP

1.5E-6

CE3-CPR-CF-P3OF4

7.2E-6

CE3-CBI-CF-P3OF4

5.0E-4

CE3-CBI-FF-PD

1.1E-4

CE3-CPR-FF-PD

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE3-23-CHDP - CHANNEL D PRESSURE BISTABLE FAILS 2001/03/02 Page 128

Page 282: Reliability Study: Combustion Engineering Reactor Protection

D-134

Appendix D

CE3-24-M2LM

CE3-24-M2LM-1

CE3-24-M2LM-AB

115

CE3-10-LMAB

2.6E-4

CE3-RYL-FF-LAB2

CE3-24-M2LM-AD

120

CE3-15-LMAD

2.6E-4

CE3-RYL-FF-LAD2

CE3-24-M2LM-BC

116

CE3-11-LMBC

2.6E-4

CE3-RYL-FF-LBC2

CE3-24-M2LM-BD

117

CE3-12-LMBD

2.6E-4

CE3-RYL-FF-LBD2

CE3-24-M2LM-CD

119

CE3-14-LMCD

2.6E-4

CE3-RYL-FF-LCD2

CE3-24-M2LMAC

118

CE3-13-LMAC

2.6E-4

CE3-RYL-FF-LAC2

2.0E-7

CE3-RYL-CF-2LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A NOT IN

T&M

AC OUTPUT RELAY2 FAILS

CD OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

AD OUTPUT RELAY2 FAILS

AB OUTPUT RELAY2 FAILS

CCF 6 OF 6 K2LOGIC MATRIC

RELAY OUTPUTS

CE3-24-M2LM - FAILURE OF LOGIC MATRIX RELAYS FOR K2 SIGNAL 2001/06/07 Page 129

Page 283: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-135

CE3-25-M2LMATM

CE3-25-M2LM-1

CE3-25-M2LM-BC

136

CE3-31-LMBCATM

2.6E-4

CE3-RYL-FF-LBC2

CE3-25-M2LM-BD

137

CE3-32-LMBDATM

2.6E-4

CE3-RYL-FF-LBD2

CE3-25-M2LM-CD

138

CE3-33-LMCDATM

2.6E-4

CE3-RYL-FF-LCD2

4.7E-7

CE3-RYL-CF-2LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K2LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

CE3-25-M2LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K2 SIGNAL (CH A T&M) 2001/06/07 Page 130

Page 284: Reliability Study: Combustion Engineering Reactor Protection

D-136

Appendix D

CE3-26-MT2

1.0E-2

CE3-XHE-XE-SCRAM

4.9E-6

CE3-MSW-CF-2OF4

1.3E-4

CE3-MSW-FF-MT2

FAILURE OF MANUALSWITCH 2

MANUAL SWITCH2 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE3-26-MT2 - MANUAL TRIP 2 FAILS 2001/03/02 Page 131

Page 285: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-137

CE3-27-M3LM

CE3-27-M3LM-1

CE3-27-M3LM-AB

115

CE3-10-LMAB

2.6E-4

CE3-RYL-FF-LAB3

CE3-27-M3LM-AD

120

CE3-15-LMAD

2.6E-4

CE3-RYL-FF-LAD3

CE3-27-M3LM-BC

116

CE3-11-LMBC

2.6E-4

CE3-RYL-FF-LBC3

CE3-27-M3LM-BD

117

CE3-12-LMBD

2.6E-4

CE3-RYL-FF-LBD3

CE3-27-M3LM-CD

119

CE3-14-LMCD

2.6E-4

CE3-RYL-FF-LCD3

CE3-27-M3LMAC

118

CE3-13-LMAC

2.6E-4

CE3-RYL-FF-LAC3

2.0E-7

CE3-RYL-CF-3LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K3 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A NOT IN

T&M

AC OUTPUT RELAY3 FAILS

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

AD OUTPUT RELAY3 FAILS

AB OUTPUT RELAY3 FAILS

CCF 6 OF 6 K3LOGIC MATRIC

RELAY OUTPUTS

CE3-27-M3LM - FAILURE OF LOGIC MATRIX RELAYS FOR K3 SIGNAL 2001/06/07 Page 132

Page 286: Reliability Study: Combustion Engineering Reactor Protection

D-138

Appendix D

CE3-28-M3LMATM

CE3-28-M3LM-1

CE3-28-M3LM-BC

136

CE3-31-LMBCATM

2.6E-4

CE3-RYL-FF-LBC3

CE3-28-M3LM-BD

137

CE3-32-LMBDATM

2.6E-4

CE3-RYL-FF-LBD3

CE3-28-M3LM-CD

138

CE3-33-LMCDATM

2.6E-4

CE3-RYL-FF-LCD3

4.7E-7

CE3-RYL-CF-3LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K3 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A IN T&M)

CCF 3 OF 3 K3LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

CE3-28-M3LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K3 SIGNAL (CH A T&M) 2001/06/07 Page 133

Page 287: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-139

CE3-29-M4LM

CE3-29-M4LM-1

CE3-29-M4LM-AB

115

CE3-10-LMAB

2.6E-4

CE3-RYL-FF-LAB4

CE3-29-M4LM-AD

120

CE3-15-LMAD

2.6E-4

CE3-RYL-FF-LAD4

CE3-29-M4LM-BC

116

CE3-11-LMBC

2.6E-4

CE3-RYL-FF-LBC4

CE3-29-M4LM-BD

117

CE3-12-LMBD

2.6E-4

CE3-RYL-FF-LBD4

CE3-29-M4LM-CD

119

CE3-14-LMCD

2.6E-4

CE3-RYL-FF-LCD4

CE3-29-M4LMAC

118

CE3-13-LMAC

2.6E-4

CE3-RYL-FF-LAC4

2.0E-7

CE3-RYL-CF-4LM6OF6

LOGIC MATRIXAC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K4 SIGNAL

FAIL

INPUT TO LOGICMATRIX AD FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX AB FAILS

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A NOT IN

T&M

AC OUTPUT RELAY4 FAILS

CD OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

AD OUTPUT RELAY4 FAILS

AB OUTPUT RELAY4 FAILS

CCF 6 OF 6 K4LOGIC MATRIC

RELAY OUTPUTS

CE3-29-M4LM - FAILURE OF LOGIC MATRIX RELAYS FOR K4 SIGNAL 2001/06/07 Page 134

Page 288: Reliability Study: Combustion Engineering Reactor Protection

D-140

Appendix D

CE3-30-M4LMATM

CE3-30-M4LM-1

CE3-30-M4LM-BC

136

CE3-31-LMBCATM

2.6E-4

CE3-RYL-FF-LBC4

CE3-30-M4LM-BD

137

CE3-32-LMBDATM

2.6E-4

CE3-RYL-FF-LBD4

CE3-30-M4LM-CD

138

CE3-33-LMCDATM

2.6E-4

CE3-RYL-FF-LCD4

4.7E-7

CE3-RYL-CF-4LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K4 SIGNALFAIL (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

FAILURE OF LOGICMATRIX RELAY FOR K4SIGNAL (CH A IN T&M)

CCF 3 OF 3 K4 LOGICMATRIC RELAY

OUTPUTS (CH A T&M)

CD OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

CE3-30-M4LMATM - FAILURE OF LOGIC MATRIX RELAYS FOR K4 SIGNAL (CH A T&M) 2001/06/07 Page 135

Page 289: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-141

CE3-31-LMBCATM

CE3-31-LMBC-CB

139

CE3-34-CHBTATM

140

CE3-35-CHBPATM

CE3-31-LMBC-CC

141

CE3-36-CHCTATM

142

CE3-37-CHCPATM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

CE3-31-LMBCATM - INPUT SIGNAL TO LOGIC MATRIX BC FAILS (CH A T&M) 2001/08/06 Page 136

Page 290: Reliability Study: Combustion Engineering Reactor Protection

D-142

Appendix D

CE3-32-LMBDATM

CE3-32-LMBD-CB

139

CE3-34-CHBTATM

140

CE3-35-CHBPATM

CE3-32-LMBD-CD

143

CE3-38-CHDTATM

144

CE3-39-CHDPATM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL B

FAILS (CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

CE3-32-LMBDATM - INPUT SIGNAL TO LOGIC MATRIX BD FAILS (CH A T&M) 2001/08/06 Page 137

Page 291: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-143

CE3-33-LMCDATM

CE3-33-LMCD-CC

141

CE3-36-CHCTATM

142

CE3-37-CHCPATM

CE3-33-LMCD-CD

143

CE3-38-CHDTATM

144

CE3-39-CHDPATM

INPUT TO LOGIC MATRIXCD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXCD FROM CHANNEL C

FAILS (CH A T&M)

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CE3-33-LMCDATM - INPUT SIGNAL TO LOGIC MATRIX CD FAILS (CH A T&M) 2001/08/06 Page 138

Page 292: Reliability Study: Combustion Engineering Reactor Protection

D-144

Appendix D

CE3-34-CHBTATM

5.0E-4

CE3-CBI-FF-TB

2.7E-3

CE3-CPD-FF-TB

8.4E-4

CE3-CTP-FF-HTB

8.4E-4

CE3-CTP-FF-CTB

2.6E-7

CE3-CBI-CF-T2OF3TM

1.3E-4

CE3-CPD-CF-T2OF3TM

3.7E-5

CE3-CTP-CF-HT2OF3TM

3.7E-5

CE3-CTP-CF-CT2OF3TM

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CE3-34-CHBTATM - CHANNEL B TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 139

Page 293: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-145

CE3-35-CHBPATM

5.0E-4

CE3-CBI-FF-PB

1.1E-4

CE3-CPR-FF-PB

5.0E-6

CE3-CPR-CF-P2OF3TM

2.6E-7

CE3-CBI-CF-P2OF3TM

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CE3-35-CHBPATM - CHANNEL B PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 140

Page 294: Reliability Study: Combustion Engineering Reactor Protection

D-146

Appendix D

CE3-36-CHCTATM

5.0E-4

CE3-CBI-FF-TC

2.7E-3

CE3-CPD-FF-TC

8.4E-4

CE3-CTP-FF-HTC

8.4E-4

CE3-CTP-FF-CTC

2.6E-7

CE3-CBI-CF-T2OF3TM

1.3E-4

CE3-CPD-CF-T2OF3TM

3.7E-5

CE3-CTP-CF-HT2OF3TM

3.7E-5

CE3-CTP-CF-CT2OF3TM

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL C TEMPERATUREBISTABLE UNIT

FAILS

CE3-36-CHCTATM - CHANNEL C TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 141

Page 295: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-147

CE3-37-CHCPATM

5.0E-4

CE3-CBI-FF-PC

1.1E-4

CE3-CPR-FF-PC

5.0E-6

CE3-CPR-CF-P2OF3TM

2.6E-7

CE3-CBI-CF-P2OF3TM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE3-37-CHCPATM - CHANNEL C PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 142

Page 296: Reliability Study: Combustion Engineering Reactor Protection

D-148

Appendix D

CE3-38-CHDTATM

5.0E-4

CE3-CBI-FF-TD

2.7E-3

CE3-CPD-FF-TD

8.4E-4

CE3-CTP-FF-HTD

8.4E-4

CE3-CTP-FF-CTD

2.6E-7

CE3-CBI-CF-T2OF3TM

1.3E-4

CE3-CPD-CF-T2OF3TM

3.7E-5

CE3-CTP-CF-HT2OF3TM

3.7E-5

CE3-CTP-CF-CT2OF3TM

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CE3-38-CHDTATM - CHANNEL D TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 143

Page 297: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-149

CE3-39-CHDPATM

5.0E-4

CE3-CBI-FF-PD

1.1E-4

CE3-CPR-FF-PD

5.0E-6

CE3-CPR-CF-P2OF3TM

2.6E-7

CE3-CBI-CF-P2OF3TM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE3-39-CHDPATM - CHANNEL D PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 144

Page 298: Reliability Study: Combustion Engineering Reactor Protection

D-150

Appendix D

CE3-40-MT3

1.0E-2

CE3-XHE-XE-SCRAM

4.9E-6

CE3-MSW-CF-2OF4

1.3E-4

CE3-MSW-FF-MT3

FAILURE OF MANUALSWITCH 3

MANUAL SWITCH3 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE3-40-MT3 - FAILURE OF MANUAL SWITCH 3 2001/03/02 Page 145

Page 299: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-151

CE3-41-MT4

1.0E-2

CE3-XHE-XE-SCRAM

4.9E-6

CE3-MSW-CF-2OF4

1.3E-4

CE3-MSW-FF-MT4

FAILURE OF MANUALSWITCH 4

MANUAL SWITCH4 FAILS

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE3-41-MT4 - FAILURE OF MANUAL SWITCH 4 2001/03/02 Page 146

Page 300: Reliability Study: Combustion Engineering Reactor Protection

D-152

Appendix D

COMBUSTION ENGINEERING RPS GROUP 4 MODEL

Page 301: Reliability Study: Combustion Engineering Reactor Protection

CE4-01-RPS - REACTOR PROTECTION SYSTEM (RPS) FOR CE GROUP 4 TYPE FAILS 2001/06/07 Page 147

Appendix D

D-153

CE4-01-RPS

CE4-01-RPS1

CE4-01-RPS1-1

155

CE4-04-M3

151

CE4-02-M1

CE4-01-RPS1-2

157

CE4-05-M4

153

CE4-03-M2

149

CE4-01-RPS1-LMF-1

148

CE4-01-RPS1-BSF-1

8.4E-7

CE4-ROD-CF-RODS

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

REACTOR PROTECTIONSYSTEM (RPS)

FOR CE GROUP4 TYPE FAILS

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

COMMON CAUSEFAILURE OF LOGIC

MATRIX RELAYS

FAILURE OF TRIPCIRCUIT BREAKERTCB-2 AND TCB-4

FAILURE OF TRIPCIRCUIT BREAKERTCB-1 AND TCB-3

CEDM COIL POWERSUPPLY BUSES

FAIL TO DE-ENERGIZE

CCF OF 50% ORMORE CRD/RODS

FAIL TO INSERT

Page 302: Reliability Study: Combustion Engineering Reactor Protection

D-154

Appendix D

CE4-01-RPS1-BSF-1

CE4-01-RPS1-BSF-2

CE4-01-RPS1-BIF-4

161

CE4-08-CHA-NOTM

7.7E-7

CE4-CBI-CF-6OF8

CE4-01-RPS1-BICHATM

1.6E-2

CE4-RPS-TM-CHA

1.7E-6

CE4-CBI-CF-4OF6TM

150

CE4-01-RPS1-MT1-F

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF OF BISTABLETRIP UNITS DURING

CH A T&M

OPERATOR FAILSTO MANUAL TRIP

RPS

CCF OF BISTABLETRIP UNITS

CCF OF BISTABLETRIP UNITS (CHA NOT IN T&M)

COMMON CAUSEFAILURE OF BISTABLE

TRIP UNITS

CCF SPECIFIC4 OF 6 BISTABLETRIP UNITS (CH

A T&M)

CCF SPECIFIC6 OF 8 BISTABLE

TRIP UNITS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-01-RPS1-BSF-1 - COMMON CAUSE FAILURE OF BISTABLE TRIP UNITS 2001/03/02 Page 148

Page 303: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-155

CE4-01-RPS1-LMF-1

150

CE4-01-RPS1-MT1-F CE4-01-RPS1-LMF-2

CE4-01-RPS1-LMF-3

161

CE4-08-CHA-NOTM

4.3E-8

CE4-RYL-CF-LM12OF24

CE4-01-RPS1-CHATM

1.6E-2

CE4-RPS-TM-CHA

1.6E-7

CE4-RYL-CF-LM6OF12TM

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

CCF OF LOGICMATRIC RELAYS

CCF OF LOGICMATRIX RELAYS

DURING CH A T&M

CCF OF LOGICMATRIX RELAYS

(CH A NOT INT&M)

OPERATOR FAILSTO MANUAL TRIP

RPS

COMMON CAUSEFAILURE OF LOGIC

MATRIX RELAYS

CCF SPECIFIC6 OF 12 LOGIC

MATRIX OUTPUTRELAYS (CH A

T&M)

CCF SPECIFIC12 OF 24 LOGICMATRIX OUTPUT

RELAYS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-01-RPS1-LMF-1 - COMMON CAUSE FAILURE OF LOGIC MATRIX RELAYS 2001/03/02 Page 149

Page 304: Reliability Study: Combustion Engineering Reactor Protection

D-156

Appendix D

CE4-01-RPS1-MT1-F

CE4-01-RPS1-MT24-F

179

CE4-26-MT2

194

CE4-41-MT4

CE4-01-RPS1-MT13-F

159

CE4-06-MT1

193

CE4-40-MT3

FAILURE OF MANUALSWITCH 4

FAILURE OF MANUALSWITCH 3

FAILURE OF MANUALSWITCH 1

FAILURE OF MANUALSWITCH 2

OPERATOR FAILSTO MANUAL TRIP

RPS

MANUAL TRIP PATHS 1AND 3 FAIL

MANUAL TRIPPATHS 2 AND 4

FAIL

CE4-01-RPS1-MT1-F - OPERATOR FAILS TO MANUAL TRIP RPS 2001/08/06 Page 150

Page 305: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-157

CE4-02-M1

CE4-02-M1-CB

CE4-02-M1-4

CE4-02-M1-5

8.7E-6

CE4-BSN-CF-TB2OF4

2.5E-6

CE4-PWR-CF-TB2OF4

6.0E-5

CE4-PWR-FF-TB1

1.5E-4

CE4-BSN-FO-TB1

CE4-02-M1-6

3.7E-5

CE4-BUV-CF-TB2OF4

1.1E-3

CE4-BUV-FO-TB1

1.8E-5

CE4-BME-FO-TB1

7.1E-7

CE4-BME-CF-TB2OF4

152

CE4-02-M1-S

FAILURE OF TRIPINITIATION CIRCUIT

K1

TRIP CIRCUITBREAKER TCB-1

FAILS

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-1

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-1

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-1

SHUNT TRIP DEVICEDC POWER FAILS

TRIP CIRCUITBREAKER TCB-1UNDERVOLTAGE

DEVICE FAILS

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPDEVIC

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR UNDERVOLTAGEDEV

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CIRCUIT

BREAKERS

TRIP CIRCUITBREAKER TCB-1

HARDWARE FAILURES

CE4-02-M1 - FAILURE OF TRIP CIRCUIT BREAKER TCB-1 2001/06/07 Page 151

Page 306: Reliability Study: Combustion Engineering Reactor Protection

D-158

Appendix D

CE4-02-M1-S

159

CE4-06-MT1 CE4-02-M1-F

CE4-02-M1-1

CE4-02-M1-2

161

CE4-08-CHA-NOTM

160

CE4-07-M1LM

CE4-02-M1-3

162

CE4-09-M1LMATM

1.6E-2

CE4-RPS-TM-CHA

1.2E-4

CE4-RYT-FF-ICK1

4.8E-6

CE4-RYT-CF-2OF4

FAILURE OF TRIPINITIATION CIRCUIT

K1

LOGIC MATRIXRELAYS FOR K1FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K1

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K1SIGNAL FAIL

FAILURE OF TRIPCONTACT INITIATOR

K1

FAILURE OF MANUALSWITCH 1

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL

(CH A NOT INT&M)

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A IN T&M)

CCF 2 OF 4(1-OUT-OF-2 TWICE)TRIP CONTACTORS

TRIP CONTACTORK1 RELAY FAILS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-02-M1-S - FAILURE OF TRIP INITIATION CIRCUIT K1 2001/06/07 Page 152

Page 307: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-159

CE4-03-M2

CE4-03-M2-CB

CE4-03-M2-4

CE4-03-M2-5

8.7E-6

CE4-BSN-CF-TB2OF4

2.5E-6

CE4-PWR-CF-TB2OF4

6.0E-5

CE4-PWR-FF-TB2

1.5E-4

CE4-BSN-FO-TB2

CE4-03-M2-6

3.7E-5

CE4-BUV-CF-TB2OF4

1.1E-3

CE4-BUV-FO-TB2

7.1E-7

CE4-BME-CF-TB2OF4

1.8E-5

CE4-BME-FO-TB2

154

CE4-03-M2-S

FAILURE OF TRIPINITIATION CIRCUIT

K2

TRIP CIRCUITBREAKER TCB-2

FAILS

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-2

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-2

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-2

SHUNT TRIP DEVICEDC POWER FAILS

TRIP CIRCUITBREAKER TCB-2UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-2

HARDWARE FAILURES

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPDEVIC

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR UNDERVOLTAGEDEV

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CIRCUIT

BREAKERS

CE4-03-M2 - FAILURE OF TRIP CIRCUIT BREAKER TCB-2 2001/06/07 Page 153

Page 308: Reliability Study: Combustion Engineering Reactor Protection

D-160

Appendix D

CE4-03-M2-S

179

CE4-26-MT2 CE4-03-M2-F

CE4-03-M2-1

CE4-03-M2-2

177

CE4-24-M2LM

161

CE4-08-CHA-NOTM

CE4-03-M2-3

178

CE4-25-M2LMATM

1.6E-2

CE4-RPS-TM-CHA

4.8E-6

CE4-RYT-CF-2OF4

1.2E-4

CE4-RYT-FF-ICK2

FAILURE OF TRIPINITIATION CIRCUIT

K2

LOGIC MATRIXRELAYS FOR K2FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K2

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K2SIGNAL FAIL

FAILURE OF TRIPCONTACT INITIATOR

K2

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL

(CH A NOT IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

FAILURE OF MANUALSWITCH 2

TRIP CONTACTORK2 RELAY FAILS

CCF 2 OF 4(1-OUT-OF-2 TWICE)TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-03-M2-S - FAILURE OF TRIP INITIATION CIRCUIT K2 2001/06/07 Page 154

Page 309: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-161

CE4-04-M3

156

CE4-04-M3-S CE4-04-M3-CB

CE4-04-M3-4

CE4-04-M3-5

8.7E-6

CE4-BSN-CF-TB2OF4

2.5E-6

CE4-PWR-CF-TB2OF4

6.0E-5

CE4-PWR-FF-TB3

1.5E-4

CE4-BSN-FO-TB3

CE4-04-M3-6

3.7E-5

CE4-BUV-CF-TB2OF4

1.1E-3

CE4-BUV-FO-TB3

7.1E-7

CE4-BME-CF-TB2OF4

1.8E-5

CE4-BME-FO-TB3

TRIP CIRCUITBREAKER TCB-3

FAILS

FAILURE OF TRIPINITIATION CIRCUIT

K3

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-3

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-3

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-3

SHUNT TRIP DEVICEDC POWER FAILS

TRIP CIRCUITBREAKER TCB-3UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-3

HARDWARE FAILURES

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CIRCUIT

BREAKERS

CE4-04-M3 - FAILURE OF TRIP CIRCUIT BREAKER TCB-3 2001/06/07 Page 155

Page 310: Reliability Study: Combustion Engineering Reactor Protection

D-162

Appendix D

CE4-04-M3-S

CE4-04-M3-F

CE4-04-M3-1

CE4-04-M3-2

180

CE4-27-M3LM

161

CE4-08-CHA-NOTM

CE4-04-M3-3

181

CE4-28-M3LMATM

1.6E-2

CE4-RPS-TM-CHA

4.8E-6

CE4-RYT-CF-2OF4

1.2E-4

CE4-RYT-FF-ICK3

193

CE4-40-MT3

FAILURE OF TRIPINITIATION CIRCUIT

K3

FAILURE OF MANUALSWITCH 3

LOGIC MATRIXRELAYS FOR K3FAIL (CH A T&M)

LOGIC MATRIXRELAYS FOR K3

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K3SIGNAL FAIL

FAILURE OF TRIPCONTACT INITIATOR

K3

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL

(CH A NOT IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A IN T&M)

TRIP CONTACTORK3 RELAY FAILS

CCF 2 OF 4(1-OUT-OF-2 TWICE)TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-04-M3-S - FAILURE OF TRIP INITIATION CIRCUIT K3 2001/06/07 Page 156

Page 311: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-163

CE4-05-M4

CE4-05-M4-CB

CE4-05-M4-4

CE4-05-M4-5

8.7E-6

CE4-BSN-CF-TB2OF4

2.5E-6

CE4-PWR-CF-TB2OF4

6.0E-5

CE4-PWR-FF-TB4

1.5E-4

CE4-BSN-FO-TB4

CE4-05-M4-6

3.7E-5

CE4-BUV-CF-TB2OF4

1.1E-3

CE4-BUV-FO-TB4

7.1E-7

CE4-BME-CF-TB2OF4

1.8E-5

CE4-BME-FO-TB4

158

CE4-05-M4-S

FAILURE OF TRIPINITIATION CIRCUIT

K4

TRIP CIRCUITBREAKER TCP-4

FAILS

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGEDEVICE FAILURES

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP FAILURES

TRIP CIRCUITBREAKER TCB-4

COMMAND FAILURES

FAILURE OF TRIPCIRCUIT BREAKER

TCB-4

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP DEVICEFAILS

TRIP CIRCUITBREAKER TCB-4

SHUNT TRIP DEVICEDC POWER FAILS

TRIP CIRCUITBREAKER TCB-4UNDERVOLTAGE

DEVICE FAILS

TRIP CIRCUITBREAKER TCB-4

HARDWARE FAILURES

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPPOWER

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR SHUNT TRIPDEVICE

CCF 2 OF 4 (1-OF-2TWICE) TRIP CIRCUIT

BRKR UNDERVOLTAGEDEVICE

CCF 2 OF 4 (1-OUT-OF-2TWICE) TRIP CIRCUIT

BREAKERS

CE4-05-M4 - FAILURE OF TRIP CIRCUIT BREAKER TCB-4 2001/06/07 Page 157

Page 312: Reliability Study: Combustion Engineering Reactor Protection

D-164

Appendix D

CE4-05-M4-S

CE4-05-M4-F

CE4-05-M4-1

CE4-05-M4-2

182

CE4-29-M4LM

161

CE4-08-CHA-NOTM

CE4-05-M4-3

183

CE4-30-M4LMATM

1.6E-2

CE4-RPS-TM-CHA

4.8E-6

CE4-RYT-CF-2OF4

1.2E-4

CE4-RYT-FF-ICK4

194

CE4-41-MT4

FAILURE OF TRIPINITIATION CIRCUIT

K4

FAILURE OF MANUALSWITCH 4

LOGIC MATRIXRELAYS FOR K4FAIL (CHA A T&M)

LOGIC MATRIXRELAYS FOR K4

FAIL (NO RPST&M)

REACTOR TRIPLOGIC MATRIX

RELAYS FOR K4SIGNAL FAIL

FAILURE OF TRIPCONTACT INITIATOR

K4

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL

(CH A NOT IN T&M)

FAILURE OF LOGICMATRIX RELAYFOR K4 SIGNAL(CH A IN T&M)

TRIP CONTACTORK4 RELAY FAILS

CCF 2 OF 4(1-OUT-OF-2 TWICE)TRIP CONTACTORS

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-05-M4-S - FAILURE OF TRIP INITIATION CIRCUIT K4 2001/06/07 Page 158

Page 313: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-165

CE4-06-MT1

1.0E-2

CE4-XHE-XE-SCRAM

1.3E-4

CE4-MSW-FF-MT1

4.9E-6

CE4-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 1

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH1 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE4-06-MT1 - FAILURE OF MANUAL SWITCH 1 2001/03/02 Page 159

Page 314: Reliability Study: Combustion Engineering Reactor Protection

D-166

Appendix D

CE4-07-M1LM

CE4-07-M1LM-1

CE4-07-M1LM-AB

163

CE4-10-LMAB

2.6E-4

CE4-RYL-FF-LAB1

CE4-07-M1LM-BC

164

CE4-11-LMBC

2.6E-4

CE4-RYL-FF-LBC1

CE4-07-M1LM-BD

165

CE4-12-LMBD

2.6E-4

CE4-RYL-FF-LBD1

CE4-07-M1LMAC

166

CE4-13-LMAC

2.6E-4

CE4-RYL-FF-LAC1

CE4-07-M1LM-CD

167

CE4-14-LMCD

2.6E-4

CE4-RYL-FF-LCD1

CE4-07-M1LM-AD

168

CE4-15-LMAD

2.6E-4

CE4-RYL-FF-LAD1

2.0E-7

CE4-RYL-CF-1LM6OF6

LOGIC MATRIXAD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K1 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR K1 SIGNAL(CH A NOT IN

T&M

INPUT TO LOGICMATRIX AB FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AD FAILS

AD OUTPUT RELAY1 FAILS

CCF 6 OF 6 K1LOGIC MATRIC

RELAY OUTPUTS

CD OUTPUT RELAY1 FAILS

AC OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

AB OUTPUT RELAY1 FAILS

CE4-07-M1LM - FAILURE OF LOGIC MATRIX RELAY FOR K1 SIGNAL (CH A NOT INT&M) 2001/06/07 Page 160

Page 315: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-167

CE4-08-CHA-NOTM

1.6E-2

CE4-RPS-TM-CHA

RPS CHANNELA IS NOT IN TEST

AND MAINTENANCE

RPS CHANNELA IN TEST ANDMAINTENANCE

CE4-08-CHA-NOTM - RPS CHANNEL A IS NOT IN TEST AND MAINTENANCE 2001/03/02 Page 161

Page 316: Reliability Study: Combustion Engineering Reactor Protection

D-168

Appendix D

CE4-09-M1LMATM

CE4-09-M1LM-1

CE4-09-M1LM-BC

184

CE4-31-LMBCATM

2.6E-4

CE4-RYL-FF-LBC1

CE4-09-M1LM-BD

185

CE4-32-LMBDATM

2.6E-4

CE4-RYL-FF-LBD1

CE4-09-M1LM-CD

186

CE4-33-LMCDATM

2.6E-4

CE4-RYL-FF-LCD1

4.7E-7

CE4-RYL-CF-1LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K1 FAIL

LOGIC MATRIX OUTPUTRELAYS FOR K1 SIGNAL

FAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAY FOR K1SIGNAL (CH A IN T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CCF 3 OF 3 K1 LOGICMATRIC RELAY

OUTPUTS (CH A T&M)

CD OUTPUT RELAY1 FAILS

BD OUTPUT RELAY1 FAILS

BC OUTPUT RELAY1 FAILS

CE4-09-M1LMATM - FAILURE OF LOGIC MATRIX RELAY FOR K1 SIGNAL (CH A IN T&M) 2001/06/07 Page 162

Page 317: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-169

CE4-10-LMAB

CE4-10-LMAB-CA

170

CE4-17-CHAP

169

CE4-16-CHAT

CE4-10-LMAB-CB

172

CE4-19-CHBP

171

CE4-18-CHBT

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELB FAILS

INPUT SIGNALTO LOGIC MATRIX

AB FROM CHANNELA FAILS

INPUT TO LOGICMATRIX AB FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CE4-10-LMAB - INPUT TO LOGIC MATRIX AB FAILS 2001/03/02 Page 163

Page 318: Reliability Study: Combustion Engineering Reactor Protection

D-170

Appendix D

CE4-11-LMBC

CE4-11-LMBC-CB

172

CE4-19-CHBP

171

CE4-18-CHBT

CE4-11-LMBC-CC

174

CE4-21-CHCP

173

CE4-20-CHCT

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

BC FROM CHANNELB FAILS

INPUT TO LOGICMATRIX BC FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE4-11-LMBC - INPUT TO LOGIC MATRIX BC FAILS 2001/03/02 Page 164

Page 319: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-171

CE4-12-LMBD

CE4-12-LMBD-CB

172

CE4-19-CHBP

171

CE4-18-CHBT

CE4-12-LMBD-CD

176

CE4-23-CHDP

175

CE4-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

BD FROM CHANNELB FAILS

INPUT TO LOGICMATRIX BD FAILS

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE4-12-LMBD - INPUT TO LOGIC MATRIX BD FAILS 2001/03/02 Page 165

Page 320: Reliability Study: Combustion Engineering Reactor Protection

D-172

Appendix D

CE4-13-LMAC

CE4-13-LMAC-CA

170

CE4-17-CHAP

169

CE4-16-CHAT

CE4-13-LMAC-CC

174

CE4-21-CHCP

173

CE4-20-CHCT

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELC FAILS

INPUT SIGNALTO LOGIC MATRIX

AC FROM CHANNELA FAILS

INPUT TO LOGICMATRIX AC FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE4-13-LMAC - INPUT TO LOGIC MATRIX AC FAILS 2001/03/02 Page 166

Page 321: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-173

CE4-14-LMCD

CE4-14-LMCD-CC

174

CE4-21-CHCP

173

CE4-20-CHCT

CE4-14-LMCD-CD

176

CE4-23-CHDP

175

CE4-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

CD FROM CHANNELC FAILS

INPUT TO LOGICMATRIX CD FAILS

CHANNEL C TEMPERATUREBISTABLE FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE4-14-LMCD - INPUT TO LOGIC MATRIX CD FAILS 2001/03/02 Page 167

Page 322: Reliability Study: Combustion Engineering Reactor Protection

D-174

Appendix D

CE4-15-LMAD

CE4-15-LMAD-CA

170

CE4-17-CHAP

169

CE4-16-CHAT

CE4-15-LMAD-CD

176

CE4-23-CHDP

175

CE4-22-CHDT

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELD FAILS

INPUT SIGNALTO LOGIC MATRIX

AD FROM CHANNELA FAILS

INPUT TO LOGICMATRIX AD FAILS

CHANNEL A TEMPERATUREBISTABLE FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CHANNEL D TEMPERATUREBISTABLE FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE4-15-LMAD - INPUT TO LOGIC MATRIX AD FAILS 2001/03/02 Page 168

Page 323: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-175

CE4-16-CHAT

5.0E-4

CE4-CBI-FF-TA

7.2E-6

CE4-CBI-CF-T3OF4

2.7E-3

CE4-CPD-FF-TA

5.7E-5

CE4-CPD-CF-T3OF4

8.4E-4

CE4-CTP-FF-HTA

1.0E-5

CE4-CTP-CF-HT3OF4

8.4E-4

CE4-CTP-FF-CTA

1.0E-5

CE4-CTP-CF-CT3OF4

CHANNEL ATEMPERATUREBISTABLE FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CHANNEL A HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CHANNEL A DIGITALCORE PROTECTIONCALCULATOR FAILS

CCF 3 OF 4 TEMPERATUREBISTABLES

CHANNEL ATEMPERATURE

BISTABLE UNIT FAILS

CE4-16-CHAT - CHANNEL A TEMPERATURE BISTABLE FAILS 2001/06/07 Page 169

Page 324: Reliability Study: Combustion Engineering Reactor Protection

D-176

Appendix D

CE4-17-CHAP

5.0E-4

CE4-CBI-FF-PA

1.1E-4

CE4-CPR-FF-PA

1.5E-6

CE4-CPR-CF-P3OF4

7.2E-6

CE4-CBI-CF-P3OF4

CHANNEL A PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CHANNEL A PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL A PRESSUREBISTABLE FAILS

CE4-17-CHAP - CHANNEL A PRESSURE BISTABLE FAILS 2001/03/02 Page 170

Page 325: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-177

CE4-18-CHBT

7.2E-6

CE4-CBI-CF-T3OF4

5.7E-5

CE4-CPD-CF-T3OF4

1.0E-5

CE4-CTP-CF-HT3OF4

1.0E-5

CE4-CTP-CF-CT3OF4

5.0E-4

CE4-CBI-FF-TB

2.7E-3

CE4-CPD-FF-TB

8.4E-4

CE4-CTP-FF-HTB

8.4E-4

CE4-CTP-FF-CTB

CHANNEL B TEMPERATUREBISTABLE FAILS

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL BTEMPERATURE

BISTABLE UNIT FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE4-18-CHBT - CHANNEL B TEMPERATURE BISTABLE FAILS 2001/06/07 Page 171

Page 326: Reliability Study: Combustion Engineering Reactor Protection

D-178

Appendix D

CE4-19-CHBP

1.5E-6

CE4-CPR-CF-P3OF4

7.2E-6

CE4-CBI-CF-P3OF4

5.0E-4

CE4-CBI-FF-PB

1.1E-4

CE4-CPR-FF-PB

CHANNEL B PRESSUREBISTABLE FAILS

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE4-19-CHBP - CHANNEL B PRESSURE BISTABLE FAILS 2001/03/02 Page 172

Page 327: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-179

CE4-20-CHCT

7.2E-6

CE4-CBI-CF-T3OF4

5.7E-5

CE4-CPD-CF-T3OF4

1.0E-5

CE4-CTP-CF-HT3OF4

1.0E-5

CE4-CTP-CF-CT3OF4

5.0E-4

CE4-CBI-FF-TC

2.7E-3

CE4-CPD-FF-TC

8.4E-4

CE4-CTP-FF-HTC

8.4E-4

CE4-CTP-FF-CTC

CHANNEL CTEMPERATUREBISTABLE FAILS

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL CTEMPERATURE

BISTABLE UNIT FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE4-20-CHCT - CHANNEL C TEMPERATURE BISTABLE FAILS 2001/06/07 Page 173

Page 328: Reliability Study: Combustion Engineering Reactor Protection

D-180

Appendix D

CE4-21-CHCP

1.5E-6

CE4-CPR-CF-P3OF4

7.2E-6

CE4-CBI-CF-P3OF4

5.0E-4

CE4-CBI-FF-PC

1.1E-4

CE4-CPR-FF-PC

CHANNEL C PRESSUREBISTABLE FAILS

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE4-21-CHCP - CHANNEL C PRESSURE BISTABLE FAILS 2001/03/02 Page 174

Page 329: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-181

CE4-22-CHDT

7.2E-6

CE4-CBI-CF-T3OF4

5.7E-5

CE4-CPD-CF-T3OF4

1.0E-5

CE4-CTP-CF-HT3OF4

1.0E-5

CE4-CTP-CF-CT3OF4

5.0E-4

CE4-CBI-FF-TD

2.7E-3

CE4-CPD-FF-TD

8.4E-4

CE4-CTP-FF-HTD

8.4E-4

CE4-CTP-FF-CTD

CHANNEL DTEMPERATUREBISTABLE FAILS

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CCF 3 OF 4 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 3 OF 4 COREPROTECTION

CALCULATORS

CCF 3 OF 4TEMPERATURE

BISTABLES

CE4-22-CHDT - CHANNEL D TEMPERATURE BISTABLE FAILS 2001/06/07 Page 175

Page 330: Reliability Study: Combustion Engineering Reactor Protection

D-182

Appendix D

CE4-23-CHDP

1.5E-6

CE4-CPR-CF-P3OF4

7.2E-6

CE4-CBI-CF-P3OF4

5.0E-4

CE4-CBI-FF-PD

1.1E-4

CE4-CPR-FF-PD

CHANNEL D PRESSUREBISTABLE FAILS

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CCF 3 OF 4 PRESSUREBISTABLES

CCF 3 OF 4 PRESSURESENSORS/TRANSMITTERS

CE4-23-CHDP - CHANNEL D PRESSURE BISTABLE FAILS 2001/03/02 Page 176

Page 331: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-183

CE4-24-M2LM

CE4-24-M2LM-1

CE4-24-M2LM-AB

163

CE4-10-LMAB

2.6E-4

CE4-RYL-FF-LAB2

CE4-24-M2LM-BC

164

CE4-11-LMBC

2.6E-4

CE4-RYL-FF-LBC2

CE4-24-M2LM-BD

165

CE4-12-LMBD

2.6E-4

CE4-RYL-FF-LBD2

CE4-24-M2LMAC

166

CE4-13-LMAC

2.6E-4

CE4-RYL-FF-LAC2

CE4-24-M2LM-CD

167

CE4-14-LMCD

2.6E-4

CE4-RYL-FF-LCD2

CE4-24-M2LM-AD

168

CE4-15-LMAD

2.6E-4

CE4-RYL-FF-LAD2

2.0E-7

CE4-RYL-CF-2LM6OF6

INPUT TO LOGICMATRIX AB FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AD FAILS

LOGIC MATRIXAD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A NOT IN

T&M

CCF 6 OF 6 K2LOGIC MATRIC

RELAY OUTPUTS

AD OUTPUT RELAY2 FAILS

CD OUTPUT RELAY2 FAILS

AC OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

AB OUTPUT RELAY2 FAILS

CE4-24-M2LM - FAILURE OF LOGIC MATRIX RELAY FOR K2 SIGNAL (CH A NOT IN T&M 2001/06/07 Page 177

Page 332: Reliability Study: Combustion Engineering Reactor Protection

D-184

Appendix D

CE4-25-M2LMATM

CE4-25-M2LM-1

CE4-25-M2LM-BC

184

CE4-31-LMBCATM

2.6E-4

CE4-RYL-FF-LBC2

CE4-25-M2LM-BD

185

CE4-32-LMBDATM

2.6E-4

CE4-RYL-FF-LBD2

CE4-25-M2LM-CD

186

CE4-33-LMCDATM

2.6E-4

CE4-RYL-FF-LCD2

4.7E-7

CE4-RYL-CF-2LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K2 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K2 SIGNALFAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAYFOR K2 SIGNAL(CH A IN T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CCF 3 OF 3 K2LOGIC MATRIC

RELAY OUTPUTS(CH A T&M)

CD OUTPUT RELAY2 FAILS

BD OUTPUT RELAY2 FAILS

BC OUTPUT RELAY2 FAILS

CE4-25-M2LMATM - FAILURE OF LOGIC MATRIX RELAY FOR K2 SIGNAL (CH A IN T&M) 2001/06/07 Page 178

Page 333: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-185

CE4-26-MT2

1.0E-2

CE4-XHE-XE-SCRAM

1.3E-4

CE4-MSW-FF-MT2

4.9E-6

CE4-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 2

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH2 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE4-26-MT2 - FAILURE OF MANUAL SWITCH 2 2001/03/02 Page 179

Page 334: Reliability Study: Combustion Engineering Reactor Protection

D-186

Appendix D

CE4-27-M3LM

CE4-27-M3LM-1

CE4-27-M3LM-AB

163

CE4-10-LMAB

2.6E-4

CE4-RYL-FF-LAB3

CE4-27-M3LM-BC

164

CE4-11-LMBC

2.6E-4

CE4-RYL-FF-LBC3

CE4-27-M3LM-BD

165

CE4-12-LMBD

2.6E-4

CE4-RYL-FF-LBD3

CE4-27-M3LMAC

166

CE4-13-LMAC

2.6E-4

CE4-RYL-FF-LAC3

CE4-27-M3LM-CD

167

CE4-14-LMCD

2.6E-4

CE4-RYL-FF-LCD3

CE4-27-M3LM-AD

168

CE4-15-LMAD

2.6E-4

CE4-RYL-FF-LAD3

2.0E-7

CE4-RYL-CF-3LM6OF6

INPUT TO LOGICMATRIX AB FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AD FAILS

LOGIC MATRIXAD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K3 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAYFOR K3 SIGNAL(CH A NOT IN

T&M

CCF 6 OF 6 K3LOGIC MATRIC

RELAY OUTPUTS

AC OUTPUT RELAY3 FAILS

AD OUTPUT RELAY3 FAILS

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

AB OUTPUT RELAY3 FAILS

CE4-27-M3LM - FAILURE OF LOGIC MATRIX RELAY FOR K3 SIGNAL (CH A NOT IN T&M 2001/06/07 Page 180

Page 335: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-187

CE4-28-M3LMATM

CE4-28-M3LM-1

CE4-28-M3LM-BC

184

CE4-31-LMBCATM

2.6E-4

CE4-RYL-FF-LBC3

CE4-28-M3LM-BD

185

CE4-32-LMBDATM

2.6E-4

CE4-RYL-FF-LBD3

CE4-28-M3LM-CD

186

CE4-33-LMCDATM

2.6E-4

CE4-RYL-FF-LCD3

4.7E-7

CE4-RYL-CF-3LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K3 FAIL

LOGIC MATRIX OUTPUTRELAYS FOR K3 SIGNAL

FAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAY FOR K3SIGNAL (CH A IN T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CCF 3 OF 3 K3 LOGICMATRIC RELAY

OUTPUTS (CH A T&M)

CD OUTPUT RELAY3 FAILS

BD OUTPUT RELAY3 FAILS

BC OUTPUT RELAY3 FAILS

CE4-28-M3LMATM - FAILURE OF LOGIC MATRIX RELAY FOR K3 SIGNAL (CH A IN T&M) 2001/06/07 Page 181

Page 336: Reliability Study: Combustion Engineering Reactor Protection

D-188

Appendix D

CE4-29-M4LM

CE4-29-M4LM-1

CE4-29-M4LM-AB

163

CE4-10-LMAB

2.6E-4

CE4-RYL-FF-LAB4

CE4-29-M4LM-BC

164

CE4-11-LMBC

2.6E-4

CE4-RYL-FF-LBC4

CE4-29-M4LM-BD

165

CE4-12-LMBD

2.6E-4

CE4-RYL-FF-LBD4

CE4-29-M4LMAC

166

CE4-13-LMAC

2.6E-4

CE4-RYL-FF-LAC4

CE4-29-M4LM-CD

167

CE4-14-LMCD

2.6E-4

CE4-RYL-FF-LCD4

CE4-29-M4LM-AD

168

CE4-15-LMAD

2.6E-4

CE4-RYL-FF-LAD4

2.0E-7

CE4-RYL-CF-4LM6OF6

INPUT TO LOGICMATRIX AB FAILS

INPUT TO LOGICMATRIX BC FAILS

INPUT TO LOGICMATRIX BD FAILS

INPUT TO LOGICMATRIX AC FAILS

INPUT TO LOGICMATRIX CD FAILS

INPUT TO LOGICMATRIX AD FAILS

LOGIC MATRIXAD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXAB OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXOUTPUT RELAYSFOR K4 SIGNAL

FAIL

FAILURE OF LOGICMATRIX RELAY FOR

K4 SIGNAL (CH ANOT IN T&M)

CCF 6 OF 6 K4LOGIC MATRIC

RELAY OUTPUTS

AD OUTPUT RELAY4 FAILS

CD OUTPUT RELAY4 FAILS

AC OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

AB OUTPUT RELAY4 FAILS

CE4-29-M4LM - FAILURE OF LOGIC MATRIX RELAY FOR K4 SIGNAL (CH A NOT IN T&M 2001/06/07 Page 182

Page 337: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-189

CE4-30-M4LMATM

CE4-30-M4LM-1

CE4-30-M4LM-BC

184

CE4-31-LMBCATM

2.6E-4

CE4-RYL-FF-LBC4

CE4-30-M4LM-BD

185

CE4-32-LMBDATM

2.6E-4

CE4-RYL-FF-LBD4

CE4-30-M4LM-CD

186

CE4-33-LMCDATM

2.6E-4

CE4-RYL-FF-LCD4

4.7E-7

CE4-RYL-CF-4LM3OF3TM

LOGIC MATRIXCD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBD OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIXBC OUTPUT RELAYS

TO K4 FAIL

LOGIC MATRIX OUTPUTRELAYS FOR K4 SIGNAL

FAIL (CH A T&M)

FAILURE OF LOGICMATRIX RELAY FOR K4SIGNAL (CH A IN T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CCF 3 OF 3 K4 LOGICMATRIC RELAY

OUTPUTS (CH A T&M)

CD OUTPUT RELAY4 FAILS

BD OUTPUT RELAY4 FAILS

BC OUTPUT RELAY4 FAILS

CE4-30-M4LMATM - FAILURE OF LOGIC MATRIX RELAY FOR K4 SIGNAL (CH A IN T&M) 2001/06/07 Page 183

Page 338: Reliability Study: Combustion Engineering Reactor Protection

D-190

Appendix D

CE4-31-LMBCATM

CE4-31-LMBC-CB

188

CE4-35-CHBPATM

187

CE4-34-CHBTATM

CE4-31-LMBC-CC

190

CE4-37-CHCPATM

189

CE4-36-CHCTATM

INPUT TO LOGIC MATRIXBC FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBC FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BC FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CE4-31-LMBCATM - INPUT TO LOGIC MATRIX BC FAILS (CH A T&M) 2001/08/06 Page 184

Page 339: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-191

CE4-32-LMBDATM

CE4-32-LMBD-CB

188

CE4-35-CHBPATM

187

CE4-34-CHBTATM

CE4-32-LMBD-CD

192

CE4-39-CHDPATM

191

CE4-38-CHDTATM

INPUT TO LOGIC MATRIXBD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXBD FROM CHANNEL B

FAILS (CH A T&M)

INPUT TO LOGICMATRIX BD FAILS

(CH A T&M)

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CE4-32-LMBDATM - INPUT TO LOGIC MATRIX BD FAILS (CH A T&M) 2001/08/06 Page 185

Page 340: Reliability Study: Combustion Engineering Reactor Protection

D-192

Appendix D

CE4-33-LMCDATM

CE4-33-LMCD-CC

190

CE4-37-CHCPATM

189

CE4-36-CHCTATM

CE4-33-LMCD-CD

192

CE4-39-CHDPATM

191

CE4-38-CHDTATM

INPUT TO LOGIC MATRIXCD FROM CHANNEL D

FAILS (CH A T&M)

INPUT TO LOGIC MATRIXCD FROM CHANNEL C

FAILS (CH A T&M)

INPUT TO LOGICMATRIX CD FAILS

(CH A T&M)

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CE4-33-LMCDATM - INPUT TO LOGIC MATRIX CD FAILS (CH A T&M) 2001/08/06 Page 186

Page 341: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-193

CE4-34-CHBTATM

5.0E-4

CE4-CBI-FF-TB

2.7E-3

CE4-CPD-FF-TB

8.4E-4

CE4-CTP-FF-HTB

8.4E-4

CE4-CTP-FF-CTB

2.6E-7

CE4-CBI-CF-T2OF3TM

1.3E-4

CE4-CPD-CF-T2OF3TM

3.7E-5

CE4-CTP-CF-HT2OF3TM

3.7E-5

CE4-CTP-CF-CT2OF3TM

CHANNEL B TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION

CALCULATORS(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL B COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL B DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL B TEMPERATUREBISTABLE UNIT

FAILS

CE4-34-CHBTATM - CHANNEL B TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 187

Page 342: Reliability Study: Combustion Engineering Reactor Protection

D-194

Appendix D

CE4-35-CHBPATM

5.0E-4

CE4-CBI-FF-PB

1.1E-4

CE4-CPR-FF-PB

5.0E-6

CE4-CPR-CF-P2OF3TM

2.6E-7

CE4-CBI-CF-P2OF3TM

CHANNEL B PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL B PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL B PRESSUREBISTABLE FAILS

CE4-35-CHBPATM - CHANNEL B PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 188

Page 343: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-195

CE4-36-CHCTATM

5.0E-4

CE4-CBI-FF-TC

2.7E-3

CE4-CPD-FF-TC

8.4E-4

CE4-CTP-FF-HTC

8.4E-4

CE4-CTP-FF-CTC

2.6E-7

CE4-CBI-CF-T2OF3TM

1.3E-4

CE4-CPD-CF-T2OF3TM

3.7E-5

CE4-CTP-CF-HT2OF3TM

3.7E-5

CE4-CTP-CF-CT2OF3TM

CHANNEL C TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL C COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL C DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL CTEMPERATURE

BISTABLE UNIT FAILS

CE4-36-CHCTATM - CHANNEL C TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 189

Page 344: Reliability Study: Combustion Engineering Reactor Protection

D-196

Appendix D

CE4-37-CHCPATM

5.0E-4

CE4-CBI-FF-PC

1.1E-4

CE4-CPR-FF-PC

5.0E-6

CE4-CPR-CF-P2OF3TM

2.6E-7

CE4-CBI-CF-P2OF3TM

CHANNEL C PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL C PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL C PRESSUREBISTABLE FAILS

CE4-37-CHCPATM - CHANNEL C PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 190

Page 345: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-197

CE4-38-CHDTATM

5.0E-4

CE4-CBI-FF-TD

2.7E-3

CE4-CPD-FF-TD

8.4E-4

CE4-CTP-FF-HTD

8.4E-4

CE4-CTP-FF-CTD

2.6E-7

CE4-CBI-CF-T2OF3TM

1.3E-4

CE4-CPD-CF-T2OF3TM

3.7E-5

CE4-CTP-CF-HT2OF3TM

3.7E-5

CE4-CTP-CF-CT2OF3TM

CHANNEL D TEMPERATUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 COLDLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 HOTLEG TEMPERATURE

SENSORS/TRANSMITTERS

CCF 2 OF 3 COREPROTECTION CALCULATORS

(CH A T&M)

CCF 2 OF 3 TEMPERATUREBISTABLES (CH

A T&M)

CHANNEL D COLDLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D HOTLEG TEMPERATURE

SENSOR/TRANSMITTERFAILS

CHANNEL D DIGITALCORE PROTECTIONCALCULATOR FAILS

CHANNEL D TEMPERATUREBISTABLE UNIT

FAILS

CE4-38-CHDTATM - CHANNEL D TEMPERATURE BISTABLE FAILS (CH A T&M) 2001/06/07 Page 191

Page 346: Reliability Study: Combustion Engineering Reactor Protection

D-198

Appendix D

CE4-39-CHDPATM

5.0E-4

CE4-CBI-FF-PD

1.1E-4

CE4-CPR-FF-PD

5.0E-6

CE4-CPR-CF-P2OF3TM

2.6E-7

CE4-CBI-CF-P2OF3TM

CHANNEL D PRESSUREBISTABLE FAILS

(CH A T&M)

CCF 2 OF 3 PRESSUREBISTABLES (CH

A T&M)

CCF 2 OF 3 PRESSURESENSORS/TRANSMITTERS

(CH A T&M)

CHANNEL D PRESSURESENSOR/TRANSMITTER

FAILS

CHANNEL D PRESSUREBISTABLE FAILS

CE4-39-CHDPATM - CHANNEL D PRESSURE BISTABLE FAILS (CH A T&M) 2001/03/02 Page 192

Page 347: Reliability Study: Combustion Engineering Reactor Protection

A

ppendix D

D-199

CE4-40-MT3

1.0E-2

CE4-XHE-XE-SCRAM

1.3E-4

CE4-MSW-FF-MT3

4.9E-6

CE4-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 3

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH3 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE4-40-MT3 - FAILURE OF MANUAL SWITCH 3 2001/03/02 Page 193

Page 348: Reliability Study: Combustion Engineering Reactor Protection

D-200

Appendix D

CE4-41-MT4

1.0E-2

CE4-XHE-XE-SCRAM

1.3E-4

CE4-MSW-FF-MT4

4.9E-6

CE4-MSW-CF-2OF4

FAILURE OF MANUALSWITCH 4

CCF 2 OF 4 (1-OUT-OF-2TWICE) MANUAL

SWITCHES

MANUAL SWITCH4 FAILS

OPERATOR FAILSTO INITIATE MANUAL

SCRAM

CE4-41-MT4 - FAILURE OF MANUAL SWITCH 4 2001/03/02 Page 194

Page 349: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Common-Cause Failure Analysis

Page 350: Reliability Study: Combustion Engineering Reactor Protection
Page 351: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Appendix E

Common-Cause Failure Analysis

E-1. INTRODUCTION This appendix presents general information on common-cause failure (CCF) and special techniques

developed for the reactor protection system (RPS) study. Sections discuss background, methodology, the RPS CCF database, the prior, special software developed for this study, calculation of CCF basic event (BE) probabilities, and sensitivities. Throughout the section, component codes (e.g., CPR) are used when referring to components used in the RPS study. These codes are defined in the acronym list at the beginning of this report.

E-1.1 CCF Event Definition A CCF event consists of component failures that meet four criteria: (1) two or more individual

components fail or are degraded, including failures during demand, in-service testing, or deficiencies that would have resulted in a failure if a demand signal had been received; (2) components fail within a selected period of time, such that success of the probabilistic risk assessment (PRA) mission would be uncertain; (3) component failures result from a single shared cause and coupling mechanism; and (4) component failures are not due to failures of equipment outside the established component boundary.

Two data sources are used to select equipment failure reports to be reviewed for CCF event identification. The first is the Nuclear Plant Reliability Data System (NPRDS), which contains component failure information. The second one is the Sequence Coding and Search System (SCSS), which contains Licensee Event Reports (LERs).

The CCF event identification process includes review of failure data to identify CCF events and independent failure event counts. The identification process allows the analyst to consistently screen failures and identify CCF events. The CCF event coding process provides guidance for the analyst to consistently code CCF events. Sufficient information is recorded to ensure accuracy and consistency. Additionally, the CCF events are stored in a format that allows PRA analysts to review the events and develop understanding of CCF phenomenology.

E-1.2 Approach The calculation of a CCF BE probability is a multi-step process. The fault trees developed for the

RPS study identified CCF events that contributed to the possible failure of the RPS to successfully initiate a reactor trip. The data review and calculation of those CCF BE probabilities were driven by those needs. Figure E-1 shows a process flow diagram outlining the steps necessary to calculate a CCF BE probability. The step involving analysis of failure events is discussed in Appendices A and C. Fault tree development, defining CCF BE criteria, and component boundary definitions are discussed in Section 2 of the main body of this report.

This appendix presents a brief review of the CCF calculations to familiarize the reader with the terminology. More information can be found in the report Common-Cause Failure Database and Analysis System: Event Definition and Classification. E-1

E-1

Page 352: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

DATA SOURCE:

LERNPRDS

FAULT TREEDEVELOPMENT

CLASSIFYFAILUREEVENTS

CALCULATEIMPACT VECTORS

CCF

ANALYZEFAILUREEVENTS

MAP SELECTEDIMPACT VECTORS

TO TARGET GROUPCALCULATE

PRIOR

MLEPRIORDelta

CALCULATE ALPHAFACTORS (POINT

ESTIMATE)

BAYESIAN UPDATEWITH PRIOR

DEVELOP CCFBASIC EVENTEQUATIONS

EVALUATECCF BASIC EVENT PROBABILITY

IND

α 's

QT

Basic EventEquationCoefficients

DEFINE CCF BASICEVENT CRITERIA

ComponentFailure modesFailure criterion(k out of m)Target group size

ALL

DefineComponentBoundaries

SELECT IMPACTVECTORS

APPROPRIATE TOBASIC EVENT EQN

CLASSICALOR

BAYESIAN

Bayesian

Classicalα 's

Figure E-1. CCF process flow diagram.

E-2. CCF MODEL This section presents information on the type of CCF model used in this study and describes the

process of developing the CCF BE equation.

E-2.1 Alpha Model In order to estimate the probability of a common-cause event involving k specific components in a

common-cause component group (CCCG) of size m, a model needed to be selected from among the

E-2

Page 353: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

available models. Available models included the Basic Parameter model, the Beta model, the Multiple Greek Letter (MGL) model, and the Alpha Factor model.

The parametric Alpha Factor model was chosen because the alpha factor model (1) is multi-parameter and can handle any redundancy level, (2) is based on ratios of failure rates, which makes the assessment of its parameters easier when no statistical data are available, and (3) has a simpler statistical model, and produces more accurate point estimates, as well as uncertainty distributions, compared to other parametric models having the above two properties.

The alpha factor model estimates CCF frequencies from a set of ratios of failures and the total component failure rate. The parameters of the model are

QT ≡ total failure probability of each component (includes independent and common-cause events)

α(m)k ≡ fraction of the total probability of failure events that occur in the system involving the failure

of k components in a system of m components due to a common-cause.

E-2.2 CCF Basic Event Equation Development The CCF basic event probabilities are calculated using the alpha factor model. The alpha factor

model requires coefficients for each alpha factor k based on the number of combinations of k components that will fail the system of components and the total number of k out of m combinations. Variations of the logic in the RPS affect the number of combinations that will fail the system of components. The first type is any k of m combinations. A special case is one-out-of-two-twice logic. Another special case of any k of m is when more than one component in a channel must fail to fail the channel, called specific failure criterion.

E-2.2.1 Alpha Factor Model The form of the CCF BE equation for any k out of m components failing is given by Equation E-1

for staggered testing:

)()(

11

mi

m

kiT

mi

m

kiTCCF i

mQ

im

im

QQ αα ∑∑==

=

−−

= E-1

where:

α(µ)i = the ratio of i and only i CCF failures to total failures in a system of m components

m = the number of total components in the component group k = the failure criteria for a number of component failures in the component group QT = the random failure probability (total) QCCF = the failure probability of k and greater than k components due to CCF

The BE probability for a specific k failures out of a system of m components (assuming a staggered testing scheme) is shown in Equation E-2.

E-3

Page 354: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

∑=

−−

=m

ki

mi

iTCCF

imC

QQ )(

11

α E-2

where:

αi = the ratio of i and only i CCF failures to total failures m = the number of total rods in the component group k = the failure criteria for a number of rod failures in the component group QT = the random failure probability (total) QCCF = the failure probability of k and greater than k components due to CCF Ci ≡ number of combinations of k component failures that will fail the system

E-2.2.2 Any k of m Logic The failure criterion, any k of m, is used to represent system logic that requires k failures out of m

components to fail the component system. All combinations of k of m will fail the component system. An example of this in the RPS system is the simple sensor/transmitter logic where 3 of 4 pressure transmitters will fail the high pressure trip signal to the RPS channels. Another example is the rod failure criteria, in which the rods may fail in any combination of 20 percent, or more, and the rod insertion is considered failed. The failure criterion is described in shorthand as k/m. Equation E-1 is used for these types of logic.

E-2.2.3 One-Out-of-Two-Twice Logic An example of a one-out-of-two-twice logic failure criterion is shown in Figure E-2. This example

applies to the 2/4 BME CCF event used in the fault trees. In this example, the failure criterion is described in shorthand as 2/4. This is based on failure of two of two components to fail a channel and specific failure of one of two channels to fail a train. Some of the combinations of four component failures will fail two channels, but no trains (e.g., those combinations where two failures are in each of two trains). Some combinations of four will fail an entire train. An example is shown in the failure side of Figure E-2. The valid failure combinations are counted, and the sum becomes the Ci term in Equation E-2. When a component is taken out of service for maintenance, it is placed in a non-tripped (bypassed) status. The possible combinations are counted with the component always failed. This maintenance event is described in shorthand as 1/3 |4.

E-4

Page 355: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Channels2 of 4 failure criterion,one-of-two-twice logic

2 of 2 components to fail channel

Specific 1 of 2 channels to failtrain (system)

Note: Black ellipses => failureWhite ellipses => success

Trains

Components

Figure E-2. Example of a one-of-two-twice logic failure criterion for a 2-out-of-4 system.

E-2.2.4 Specific Failure Criterion

An example of a specific failure criterion is shown in Figure E-3. This example applies to the 6/8 CBI CCF event used in the fault trees. In this example, the failure criterion is described in shorthand as 6/8. This is based on specific criteria of failure of two of two components to fail a channel and failure of at least three of four channels to fail the system or function. Some of the combinations of six component failures will fail three channels, e.g., those combinations where two failures are in each of three channels). Some combinations of six will fail only two channels, e.g., those combinations that have less than two failures in a channel. The valid failure combinations are counted, and the sum becomes the Ci term in Equation E-2. When a channel is taken out of service for maintenance, it is placed in a non-tripped status. The criteria then become two of two components and two or more of the remaining three channels. This maintenance event is described in shorthand as 4/6 |8.

Channels

Components

6 of 8 failure criterion2 of 2 components to fail channel

3 of 4 channels to fail system

Note: Black ellipses => failureWhite ellipses => success

Figure E-3. Example of a specific failure criterion.

E-5

Page 356: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

A subset of specific failure criterion is unique failure criterion. Unique failure criteria are calculated according to Equation E-2 using terms Ci that are counted by hand to satisfy less obvious failure criteria. The failure criterion is described in shorthand as k/m U.

E-2.2.5 CCF BE Probability Equations Table E-1 shows the CCF BE probability equations used in the CE RPS study. All of the equations

are based on staggered testing.

Table E-1. Failure criteria and basic event equation table.

Failure Criteria

Channel or Train Level

Component (within channel or train)

Shorthand Criterion a Basic Event Probability Equations

1/2 2/2 2/4 b (α4 + 4α3/3 + 2α2/3) * QT 3/4 1/1 3/4 Equation E-1 3/4 1/1 2/3 |4 Equation E-1 1/4 2/2 2/8 b (α8 + 8α7/7 + 28α6/21 + 56α5/35 + 54α4/35 + 24α3/21 + 4α2/7) * QT 3/4 2/2 6/8 b (α8 + 8α7/7 + 4α6/21) * QT 3/4 2/2 4/6 |8 b (α8 + 8α7/7 + 16α6/21 + 12α5/35 + 3α4/35) * QT 6/6 1/1 6/6 (α6) * QT 6/6 1/1 3/3 |6 U c (α6 + 3α5/5 + 3α4/10 + 1α3/10) * QT 6/6 2/4 12/24 U c (α24 + 24α23/23 + 132α22/253 + 440α21/1771 + 990α20/8855 + 1584α19/33649

+ 1848α18/100947 + 1584α17/245157 + 990α16/490314 + 440α15/817190 + 132α14/1144066 + 24α13/1352078 + 2α12/1352078) * QT

6/6 2/4 6/12 |24 U c (α24 + 24α23/23 + 306α22/253 + 1632α21/1771 + 6120α20/8855 + 17136α19/33649 + 37128α18/100947 + 63648α17/245157 + 87516α16/490314 + 97240α15/817190 + 87516α14/1144066 + 63648α13/1352078 + 37128α12/1352078 + 17136α11/1144066 + 6120α10/817190 + 1632α9/490314 + 306α8/245157 + 36α7/100947 + 2α6/33649) * QT

7/36 1/1 7/36 Equation E-1 a. Shorthand criteria with the form x/y |z are maintenance events involving one channel or train taken out of service due to

maintenance. b. This criterion is based on the one-out-of-two logic described in Section E-2.2.3. c. This criterion is based on the specific failure criterion described in Section E-2.2.4.

E-3. CCF PARAMETER DEVELOPMENT

This section discusses in detail the parameters, tools, and treatments developed specifically for the RPS study. Specifically, it describes the development of a PWR RPS-specific prior, how CCF BE probabilities are calculated, application of the safety function knowledge, and special application of the Bayesian update process.

E-3.1 CCF Calculation Methodology Three techniques are discussed in this section. These techniques are used to facilitate the

estimation of plant-specific CCF probabilities from industry experience. One technique is the impact vector method, which is used to classify events according to the level of impact of common-cause events and the associated uncertainties in numerical terms. The second is impact vector specialization, in which

E-6

Page 357: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

impact vectors are modified to reflect the likelihood of the occurrence of the event in the specific system of interest. This technique is called mapping. The third technique is the estimation of alpha factors from the mapped impact vectors. Each technique is described briefly. More information on CCF methodology can be found in NUREG/CR-5485.E-2

E-3.1.1 Impact Vector An impact vector is a numerical representation of a CCF event. For a CCCG of size m, an impact

vector has m+1 elements. The k+1 element, denoted by Fk, equals one if failure of exactly k components occurred, and zero otherwise. This applies to those situations where the component degradation values equal 1.0 and the time delay and coupling strength are 1.0. For those cases where these parameters are less than 1.0, the following techniques are used to develop an impact vector.

E-3.1.1.1 Impact Vector Equations. The values of the different elements (Fk) of the impact vector can be calculated based on the possible combinations of failures and non-failures. Equation E-4 shows, in general, how an element of the impact vector is calculated based on a degraded component state:

E-4 ( ) (∏∑∏−

=

= =

−=km

jj

km

l

k

ii

mk ppF

00 0

)( 1 )

where:

m = the number of elements in the group k = the number of failures out of the group of m i = the failure elements of the lth combination of k out of m failures j = the non-failure elements of the lth combination of k out of m failures p = the weight or probability of the failure of each component (component degradation

value)

Two additional parameters are coded with each CCF event: q represents the timing factor, and c represents the shared cause factor. The impact vector is then modified to reflect these parameters in the following manner:

[ ][

[ ]0,,0,)1(),1)(1(

0,,0,)1(),1)(1(,,,

11

)()(1

)(0

1

K

K

K

M

mmc

c

mm

mmCCF

pcqpcqI

pcqpcqIcqFcqFcqFI

m −−−=

−−−==

] E-5

where:

c = shared cause factor q = timing factor

Finally, the average impact vector is obtained by adding ICCF and the Ic’s, element by element.

E-3.1.1.2 Treatment of Uncertainty in Determining the Loss of Component Safety Function. During the review of the NPRDS and LER data for the RPS study there was some uncertainty about whether the safety function of the piece of equipment under scrutiny was compromised due to the failure mechanism. The uncertainty in this judgment is due to either (1) unclear text in the

E-7

Page 358: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

event narrative, or (2) the component could be required to perform in different modes in the fault trees. For example, if a temperature detector fails high, it could either cause a spurious trip or contribute to preventing a trip, depending on the parameter being measured.

To document the safety function impact, an additional field (FM2) was added to the database. When the analyst was uncertain about the status of the safety function, UKN (unknown) was entered in this field. Otherwise the field was coded FS for a fail-safe failure mode or NFS for a non-fail-safe failure mode.

This information was used in estimating component failure rates or QT's in Appendix C. The method is to calculate a ratio (NFS Ratio) of the failures identified as NFS to those that are identified as either FS or NFS. The NFS ratio was then applied by multiplying the count of UKN events by the NFS ratio and adding that to the NFS count.

The CCF data were treated in a similar manner. The method chosen to implement this treatment is to multiply each element of the average impact vector (for those CCF events designated as UKN) by the NFS ratio the same as the treatment of coupling strength and time delay. This effectively provides consistency between the CCF alpha parameter calculation and the QT calculation. A list of the component-specific ratios is given in Table E-2.

0.15.0

+++=

FSNFSNFSRatioNFS

Table E-2. Component NFS ratios.

Component FS Count NFS Count NFS Ratio BME 255 37 0.13 BSN 15 19 0.56 BUV 71 91 0.56 CBI 448 583 0.57 CPR 234 287 0.55 CTP 199 226 0.53 RYT 20 13 0.40 RYL 20 5 0.21 ROD 1 12 0.89

E-3.1.2 Mapping of Data E-3.1.2.1 Exposed Population versus Component Group Size. There is a difference between the concepts of exposed population and the CCCG size. The exposed population is a data analysis concept, and CCCG size is a modeling concept. An example of the difference is provided in the context of the RPS study.

PWR plants contain up to 40 bistables in the RPS. In most cases, the actual number of installed bistables in a particular plant represents the exposed population. This would apply to failures due to design faults and setpoint drift. Table A-2 shows the installed population count basis used in this study. In some cases, the exposed population can be less than the installed population. This would apply to the failure of several bistables in one channel, due to inadequate cooling.

For a given trip scenario, one or more bistables are required to function in each channel. The CCCG size is the number of bistables required per channel times the number of channels. This varies as the number of modeled trip parameters changes, depending upon the channel design. Therefore, it is

E-8

Page 359: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

possible to have events with in-plant populations of up to 24 components, and the modeled events have a CCCG from two up to the exposed population.

An impact vector represents a CCF event in a specific group of components of exposed population size m. A collection of impact vectors used to calculate the CCF BE probability for a particular component may contain impact vectors of many different exposed population sizes (e.g., events that occur in different plants or different systems). In this case, the impact vectors are mapped to the CCCG size of interest.

E-3.1.2.2 Mapping Techniques. An impact vector will be mapped up, mapped down, or unchanged depending upon the relationship between the original system and the target system CCCG. The process for determining the equations for mapping has been written into a program to allow mapping from any size system to any other size system. The equations that describe the mapping process are discussed below.

There are three general routines for mapping, depending on the relationship between the original impact vectors and the system of interest. Mapping down is performed when the impact vector exposed population size is larger than the target group size, and mapping up is performed when the impact vector exposed population size is smaller than the target group size. In the special case where the impact vector has been coded as a "lethal shock," the impact vector for the new system of m components contains a 1.0 in the Fm position. To illustrate the mapping process, mapping down and mapping up equations are presented for CCCGs of three and five in Equations E-6 and E-7.

Mapping Down (5 ⇒ 3)

E-6 )5(

5)5(

4)5(

3)3(

3

)5(4

)5(3

)5(2

)3(2

)5(3

)5(2

)5(1

)3(1

5/210/1

5/35/310/3

10/35/35/3

FFFF

FFFF

FFFF

++=

++=

++=

Mapping Up (3 ⇒ 5)

E-7

)3(3

2)5(5

)3(3

1)3(2

2)5(4

)3(3

2)3(2

1)3(1

2)5(3

)3(2

2)3(1

1)5(2

)3(1

2)5(1

)1(2

)1()1(2

)1()1(3/7

)1(3/5

FF

FFF

FFFF

FFF

FF

ρρρρ

ρρρρρρρ

ρ

=

−+=

−+−+=

−+−=

−=

The parameter ρ in Equation E-7 is called the mapping up parameter. It is the probability that the non-lethal shock or cause would have failed a single component added to the system. One equation for estimating ρ is given by Equation E-8E-3

=

=

−= m

ii

m

ii

fim

fii

1

1

)()1(

)1(ρ E-8

E-9

Page 360: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

where

m = the number of elements in the group (CCCG) fi = the ith element of the generic impact vector.

This method works well when the system sizes are close to one another (e.g., mapping from size 2 to size 3 or 4) or when at least one of the component degradation values is less than 1.0. When all of the component degradation values are equal to 1.0, ρ is also equal to 1.0. When used in the mapping up equations for the RPS data, this method tends to overestimate the probability that components added to a system will exhibit the same lethal shock-like behavior. Examination of trends in the unmapped RPS data shows that as the number of components in a system increases, the likelihood of lethal behavior in that group of components decreases rapidly. Based on these observed trends and empirical studies, a value of 0.85 was established for ρ.

E-3.1.3 Estimation of CCF Alpha Factors Once the impact vectors are calculated for the target group, the number of events in each impact

category (nk, Equation E-9) can be calculated by adding the corresponding elements of the impact vectors. That is, with n CCF events,

E-9 ∑=

=n

jkk jFn

1)(

where:

Fk(i) = the kth element of the impact vector for event i.

The parameters of the alpha-factor model, Equation E-10, can be estimated using the following maximum likelihood estimators (MLE):

∑=

= m

kk

km

n

nk

1

)(α E-10

E-3.2 Development of an RPS-Specific Prior Distribution E-3.2.1 Background

The Bayesian approach utilizes the concept of a prior distribution. The prior reflects the analyst's the current evidence about the parameter before the data are collected. In this study, the prior distribution is developed using a generic data set that is combined in a given way to produce the prior distribution. This prior is then updated with the specific component CCF data. The updated distribution is known as the posterior distribution. The posterior represents the best knowledge about the parameter after incorporating the current evidence.

E-3.2.2 PWR RPS CCF Prior Event Population For this study, prior distributions were developed based on the common-cause data collected

during the course of the RPS studies. The resultant priors represent generic data, which are updated with component specific evidence in the Bayesian update.

The RPS prior uses components from the PWR vendors. Thus, there is a large variation in the group sizes. These group sizes range from 2 to 130 with the average group size equal to 23.7.

E-10

Page 361: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

The Combustion Engineering CCF data set contains 65 events, which is sufficient to build a prior. However, the prior built from these few events, did not exhibit enough smoothness to be used with small amounts of specific data. Therefore, the Babcock & Wilcox, Combustion Engineering, and Westinghouse RPS CCF events were pooled together and used in the estimation of the prior distributions for this study. This pooled, PWR, RPS data set contains 366 CCF events.

E-3.2.3 Prior Distribution Mean Values The Babcock & Wilcox, Combustion Engineering, and Westinghouse CCF data were mapped to a

CCCG of size 2. This data set was then used to estimate the prior distributions for this CCCG size. This process was continued for CCCG sizes of 3 to 24 and 36. Table E-3 shows the sums of each element (nk) of the impact vectors for each CCCG, which are the results of the mapping. Table E-4 shows the maximum likelihood estimators (MLE) for each component CCCG size. The MLE is estimated by Equation E-11:

∑=

= m

jj

ii

n

nMLE

1

E-11

where

m = CCCG nj = the sum of the jth element of the impact vector, over all events n1 = sum of the first element and the Adjusted Independent Adjusted Independent = (Ind. Event Count * Mapped CCCG)/Average CCCG.

The CCF prior distributions for RPS system, derived from the complete set of Babcock & Wilcox, Combustion Engineering, and Westinghouse RPS data, provide initial estimates for each α(m)

k by mapping the data to each CCCG of interest, summing the impact vector elements for each CCF event, adding the number of independent events for the CCCG being considered to the α(m)

1 term, and normalizing across the alphas for the CCCG so that they add up to one. These estimates are taken to be the mean values for each prior distribution.

E-11

Page 362: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Tab

le E

-3.

PWR

RPS

prio

r, su

ms o

f im

pact

vec

tor e

lem

ents

.

Gro

up

Size

A

djus

ted

Inde

pend

ents

Pr

ior Σ

n k V

ecto

r

2 14

4.2

[6.0

1e+0

1, 5

.80e

+00]

3

216.

2 [7

.91e

+01,

1.1

2e+0

1, 1

.96e

+00]

4

288.

3 [9

.56e

+01,

1.5

2e+0

1, 4

.36e

+00,

9.3

4e-0

1]

5 36

0.4

[1.1

0e+0

2, 2

.00e

+01,

5.7

5e+0

0, 2

.01e

+00,

6.8

8e-0

1]

6 43

2.5

[1.2

2e+0

2, 2

.42e

+01,

7.9

9e+0

0, 2

.52e

+00,

1.2

2e+0

0, 5

.55e

-01]

7

504.

5 [1

.33e

+02,

2.8

4e+0

1, 9

.58e

+00,

3.7

4e+0

0, 1

.43e

+00,

8.8

1e-0

1, 4

.60e

-01]

8

576.

6 [1

.43e

+02,

3.2

4e+0

1, 1

.11e

+01,

5.0

5e+0

0, 1

.81e

+00,

1.0

2e+0

0, 6

.96e

-01,

3.8

5e-0

1]

9 64

8.7

[1.5

1e+0

2, 3

.66e

+01,

1.2

5e+0

1, 5

.81e

+00,

2.6

8e+0

0, 1

.20e

+00,

7.9

5e-0

1, 5

.80e

-01,

3.2

5e-0

1]

10

720.

8 [1

.59e

+02,

4.0

8e+0

1, 1

.40e

+01,

6.6

7e+0

0, 3

.31e

+00,

1.6

2e+0

0, 8

.95e

-01,

6.5

0e-0

1, 5

.00e

-01,

2.7

4e-0

1]

11

792.

9 [1

.66e

+02,

4.4

8e+0

1, 1

.54e

+01,

7.6

1e+0

0, 3

.85e

+00,

2.0

5e+0

0, 1

.10e

+00,

7.1

5e-0

1, 5

.52e

-01,

4.4

1e-0

1, 2

.33e

-01]

12

86

4.9

[1.7

3e+0

2, 4

.89e

+01,

1.6

6e+0

1, 8

.63e

+00,

4.3

8e+0

0, 2

.46e

+00,

1.3

5e+0

0, 8

.36e

-01,

5.9

2e-0

1, 4

.82e

-01,

3.9

4e-0

1, 1

.97e

-01]

13

93

7.0

[1.7

9e+0

2, 5

.17e

+01,

1.8

4e+0

1, 9

.20e

+00,

5.1

5e+0

0, 2

.89e

+00,

1.5

9e+0

0, 1

.00e

+00,

6.6

8e-0

1, 5

.04e

-01,

4.3

3e-0

1, 3

.55e

-01,

1.6

8e-0

1]

14

1009

.1

[1.8

5e+0

2, 5

.44e

+01,

2.0

0e+0

1, 9

.83e

+00,

5.7

1e+0

0, 3

.49e

+00,

1.8

0e+0

0, 1

.19e

+00,

7.8

1e-0

1, 5

.52e

-01,

4.4

0e-0

1, 3

.96e

-01,

3.2

1e-0

1, 1

.42e

-01]

15

10

81.2

[1.9

1e+0

2, 5

.71e

+01,

2.1

6e+0

1, 1

.06e

+01,

5.9

5e+0

0, 4

.28e

+00,

2.0

0e+0

0, 1

.36e

+00,

9.1

6e-0

1, 6

.31e

-01,

4.6

8e-0

1, 3

.93e

-01,

3.6

7e-0

1, 2

.90e

-01,

1.2

1e-0

1]

16

1153

.3

[1.9

7e+0

2, 5

.94e

+01,

2.3

0e+0

1, 1

.15e

+01,

6.5

9e+0

0, 4

.35e

+00,

2.5

6e+0

0, 1

.51e

+00,

1.0

6e+0

0, 7

.31e

-01,

5.2

3e-0

1, 4

.06e

-01,

3.6

0e-0

1, 3

.43e

-01,

2.6

2e-0

1,

24

1729

.9

[2.3

5e+0

2, 7

.38e

+01,

3.2

8e+0

1, 1

.78e

+01,

1.0

7e+0

1, 7

.35e

+00,

4.9

7e+0

0, 3

.29e

+00,

2.2

5e+0

0, 1

.64e

+00,

1.2

6e+0

0, 9

.82e

-01,

7.6

4e-0

1, 5

.84e

-01,

4.4

6e-0

1,

3.47

e-01

, 2.7

8e-0

1, 2

.35e

-01,

2.2

5e-0

1, 2

.43e

-01,

2.5

2e-0

1, 2

.04e

-01,

1.0

9e-0

1, 2

.80e

-02]

36

27

02.7

[2.7

8e+0

2, 1

.00e

+02,

4.8

3e+0

1, 2

.78e

+01,

1.7

8e+0

1, 1

.26e

+01,

9.3

7e+0

0, 7

.29e

+00,

5.8

4e+0

0, 4

.41e

+00,

3.2

5e+0

0, 2

.39e

+00,

1.7

8e+0

0, 1

.36e

+00,

1.0

9e+0

0,

9.10

e-01

, 7.8

1e-0

1, 6

.70e

-01,

5.6

2e-0

1, 4

.58e

-01,

3.6

5e-0

1, 2

.94e

-01,

2.4

4e-0

1, 2

.09e

-01,

1.8

1e-0

1, 1

.54e

-01,

1.3

4e-0

1, 1

.30e

-01,

1.4

7e-0

1, 1

.76e

-01,

1.9

5e-0

1,

1.81

e-01

, 1.3

1e-0

1, 6

.96e

-02,

2.3

9e-0

2, 3

.98e

-03]

E-12

Page 363: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-4.

PWR

RPS

prio

r, m

axim

um li

kelih

ood

estim

ator

s of α

k. (C

ontin

ued)

Gro

up

Size

M

LE V

ecto

r

2 [9

.72e

-01,

2.7

6e-0

2]

3 [9

.57e

-01,

3.6

4e-0

2, 6

.36e

-03]

4

[9.4

9e-0

1, 3

.77e

-02,

1.0

8e-0

2, 2

.31e

-03]

5

[9.4

3e-0

1, 4

.01e

-02,

1.1

5e-0

2, 4

.02e

-03,

1.3

8e-0

3]

6 [9

.38e

-01,

4.1

0e-0

2, 1

.35e

-02,

4.2

6e-0

3, 2

.06e

-03,

9.3

9e-0

4]

7 [9

.35e

-01,

4.1

7e-0

2, 1

.41e

-02,

5.4

8e-0

3, 2

.09e

-03,

1.2

9e-0

3, 6

.74e

-04]

8

[9.3

2e-0

1, 4

.20e

-02,

1.4

4e-0

2, 6

.55e

-03,

2.3

5e-0

3, 1

.32e

-03,

9.0

1e-0

4, 4

.99e

-04]

9

[9.3

0e-0

1, 4

.26e

-02,

1.4

6e-0

2, 6

.75e

-03,

3.1

2e-0

3, 1

.40e

-03,

9.2

3e-0

4, 6

.74e

-04,

3.7

7e-0

4]

10

[9.2

8e-0

1, 4

.30e

-02,

1.4

7e-0

2, 7

.03e

-03,

3.4

9e-0

3, 1

.71e

-03,

9.4

3e-0

4, 6

.85e

-04,

5.2

7e-0

4, 2

.89e

-04]

11

[9

.26e

-01,

4.3

3e-0

2, 1

.48e

-02,

7.3

5e-0

3, 3

.72e

-03,

1.9

8e-0

3, 1

.06e

-03,

6.9

0e-0

4, 5

.32e

-04,

4.2

6e-0

4, 2

.25e

-04]

12

[9

.24e

-01,

4.3

6e-0

2, 1

.48e

-02,

7.6

9e-0

3, 3

.90e

-03,

2.1

9e-0

3, 1

.21e

-03,

7.4

5e-0

4, 5

.27e

-04,

4.3

0e-0

4, 3

.51e

-04,

1.7

6e-0

4]

13

[9.2

4e-0

1, 4

.28e

-02,

1.5

2e-0

2, 7

.61e

-03,

4.2

7e-0

3, 2

.39e

-03,

1.3

2e-0

3, 8

.30e

-04,

5.5

3e-0

4, 4

.17e

-04,

3.5

8e-0

4, 2

.94e

-04,

1.3

9e-0

4]

14

[9.2

3e-0

1, 4

.21e

-02,

1.5

5e-0

2, 7

.60e

-03,

4.4

1e-0

3, 2

.70e

-03,

1.3

9e-0

3, 9

.16e

-04,

6.0

4e-0

4, 4

.27e

-04,

3.4

0e-0

4, 3

.06e

-04,

2.4

8e-0

4, 1

.10e

-04]

15

[9

.23e

-01,

4.1

4e-0

2, 1

.57e

-02,

7.7

0e-0

3, 4

.32e

-03,

3.1

0e-0

3, 1

.45e

-03,

9.8

3e-0

4, 6

.65e

-04,

4.5

8e-0

4, 3

.40e

-04,

2.8

5e-0

4, 2

.66e

-04,

2.1

0e-0

4, 8

.78e

-05]

16

[9

.23e

-01,

4.0

6e-0

2, 1

.57e

-02,

7.8

9e-0

3, 4

.50e

-03,

2.9

7e-0

3, 1

.75e

-03,

1.0

3e-0

3, 7

.22e

-04,

5.0

0e-0

4, 3

.58e

-04,

2.7

7e-0

4, 2

.46e

-04,

2.3

4e-0

4, 1

.79e

-04,

7.0

3e-0

5]

24

[9.2

4e-0

1, 3

.47e

-02,

1.5

4e-0

2, 8

.35e

-03,

5.0

5e-0

3, 3

.46e

-03,

2.3

4e-0

3, 1

.55e

-03,

1.0

6e-0

3, 7

.71e

-04,

5.9

2e-0

4, 4

.62e

-04,

3.5

9e-0

4, 2

.75e

-04,

2.1

0e-0

4, 1

.63e

-04,

1.3

1e-0

4, 1

.11e

-04,

1.

06e-

04, 1

.15e

-04,

1.1

8e-0

4, 9

.62e

-05,

5.1

3e-0

5, 1

.32e

-05]

36

[9

.23e

-01,

3.1

0e-0

2, 1

.50e

-02,

8.6

1e-0

3, 5

.51e

-03,

3.9

0e-0

3, 2

.90e

-03,

2.2

6e-0

3, 1

.81e

-03,

1.3

7e-0

3, 1

.00e

-03,

7.4

0e-0

4, 5

.52e

-04,

4.2

2e-0

4, 3

.37e

-04,

2.8

2e-0

4, 2

.42e

-04,

2.0

7e-0

4,

1.74

e-04

, 1.4

2e-0

4, 1

.13e

-04,

9.0

9e-0

5, 7

.55e

-05,

6.4

8e-0

5, 5

.60e

-05,

4.7

8e-0

5, 4

.16e

-05,

4.0

4e-0

5, 4

.56e

-05,

5.4

6e-0

5, 6

.03e

-05,

5.5

9e-0

5, 4

.06e

-05,

2.1

6e-0

5, 7

.40e

-06,

1.2

3e-0

6]

E-13

A

ppendix E

Page 364: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

E-3.2.4 Uncertainty Distribution To characterize the uncertainty in the common-cause alpha factors for the RPS, a distribution was

associated with each alpha factor in the equation used to estimate each CCF basic event probability (Table E-1). To complete the uncertainty analysis, distributions were needed for the alpha factors, α(m)

k,…α(m)m.

In accordance with the methods explained in Section A-2.1.2.1, the prior distributions of the α(m)k

are assumed to be beta distributions. When α(m)k has a beta prior distribution for the probability of an

occurrence, and occurrence data are generated from a binomial distribution with this probability, the posterior distribution from a Bayesian update is also a beta distribution. Thus, beta distributions are conjugate prior distributions for binomial data, and are a natural choice for the uncertainty in the CCF alpha factors.

E-3.2.4.1 Uncertainty in the Prior Alpha Factors. The particular beta distribution for each alpha factor remains to be determined. With the means based on MLE estimates from the data, just a single beta distribution parameter remains to be determined for each α(m)

k. Beta distributions are typically characterized by two parameters, α and β. The mean is α/(α + β). In the remaining subsections, we focus on estimating the parameter δ ≡ α + β, for each α(m)

k. As δ increases, the variance of the uncertainty distribution decreases. The following three-step approach was used to estimate the prior distribution δ parameters.

E-3.2.4.2 Constrained Noninformative Distributions for CCF Factors. The first step was to fit a constrained noninformative (CN) prior distribution for each α(m)

k, for k = 2, …, m. In this step, the variance of the selected beta distribution maximizes the entropy, subject to the constraint that the mean matches the estimated probability of loss of k of m components by common-cause. In practice, knowledge of the constrained mean leads to an estimate of the alpha parameter of the desired beta distribution. Figure E-4 shows the relationship between the fixed mean and the alpha parameter of the beta distribution about the mean.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

PMean

Alp

ha P

aram

eter

s of

Bet

a D

istr

ibut

ion

Figure E-4. Constrained non-informative prior alpha calculation.

E-14

Page 365: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

When the fixed mean is very small (i.e., less than 0.001), the alpha parameter of the fitted CN distribution is approximately 0.50. Given an α parameter, δ = α/mean. Further details of the method are found in the “Alternate Method” subsection of Section A-2.1.2.1.

The application of the CN distribution assumes that the α(m)k are statistically independent. It results

in a different δ parameter for each CCF α(m)k. However, the sum of the α(m)

k from 1 to m equals 1.0, and they are not statistically independent.

E-3.2.4.3 Dirichlet Distributions for CCF Factors. In this step of the procedure to estimate the prior distributions, we use the Dirichlet distribution. The Dirichlet distribution provides a convenient framework that reflects the dependence and uses a common δ value. The Dirichlet distribution is a multinominal counterpart to a beta distribution function. The marginal distribution for each parameter is a beta distribution. Equation E-12 shows the Dirichlet density function:

( ) ( )( ) ( )

112

11

1

21 21

1

,,, −−−

ΓΓ+++Γ= m

m

Am

AA

m

m xxxAA

AAAxx KK

KKπ E-12

In this equation, the x1,…,xm act like multinomial distribution probabilities and are required to sum to 1 (for example, if m = 2 then x1 could be the probability of an event occurring and x2 would be the probability of it not occurring). The Ak’s [k = 1,…, m] are the parameters of the distribution and act like the count of events in each of the m categories of the multinomial distribution.

When Equation E-12 is applied to the CCF data, the {α(m)k }, for k = 1,…, m are substituted for the

xk. The set of alpha parameters { α(m)k } is taken to have a joint Dirichlet distribution. In this case, for any

single α(m)k, the marginal distribution is a beta distribution with parameters αk = Ak and βk = the sum of the

remaining Ai, i = 1,…,m, with i not equal to k. As above, δk ≡ (αk + βk). Thus, the δ is constant for each of the α(m)

k with the Dirichlet distribution since in each case δk = δ = Σ Ak.

The mean of each common-cause α(m)k, factor is αk/δ. Given the mean values and δ, the parameters

of the uncertainty distributions are thus determined. As above, the smaller the value of δ, the greater the uncertainty.

E-3.2.4.4 Calculation of a Common Delta Parameter. A reasonable choice for the common value of δ is the geometric mean of the δk parameters computed in step one. If the magnitudes between the estimated CCF alphas are not large, the geometric mean will result in uncertainty distributions that are not too skewed. Since the prior common-cause mean is αk /δ, the beta distribution alpha parameter αk is the mean times δ. From Figure E-4, low mean values lead to CN αk parameters around 0.5. Since the chosen δ was calculated from the CN δ's, the resulting αk parameters will center about 0.5, which is generally not too small. Small values for the alpha parameter of a beta distribution must be avoided, since they result in extremely skewed distributions. The results of the calculation of the δ for the prior distribution are shown in Table E-5.

E-3.2.5 Updating the Prior Distributions with the Data The resulting prior distributions can now be estimated with the specific RPS CCF data. The mean

of the posterior uncertainty distribution (E-13) that results from updating a beta prior distribution with the observed data is a weighted average of the mean of the prior distribution and the maximum likelihood estimate (fk/d) from the data, as follows:

δδ

δαα+

++

=d

ddf

dk

iorm

kPostm

k **Pr)()( E-13

E-15

Page 366: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

where:

α(m)k Post = posterior alpha factor for exactly k failures among m components in one event

α(m)k Prior = prior alpha factor for exactly k failures among m components in one event

δ ≡ the prior distribution common delta parameter fk = the sum of the kth impact vector elements for the component, CCCG (m), and degree

of CCF loss (k) under consideration d = the sum of all the impact vector elements for the CCCG (m) and component under

consideration

E-3.2.6 Data Selection Component failure data were selected from the RPS CCF database to match the criteria of each

defined CCF basic event used in the fault trees. Data for the component of interest included events in which the Safety Function is either NFS or UKN. The associated component independent failure count was extracted from the database as outlined in Appendix C. In those cases where the independent failure data were pooled across selected PWR vendors, the CCF data were pooled using the same vendor criteria.

E-3.3 CCF Basic Event Probability Results E-3.3.1 Bayesian Update Results

Table E-6 shows the results of the CCF BE calculations updated with the beta prior for those components modeled in the fault trees. The Failure Criterion designation for each component points to an equation in Table E-1.

Table E-7 shows the lognormal uncertainty parameters for the CCF BEs. Error propagation using the equations in Table E-1, the beta distributions described in Section E-3.2.4.1, and the lognormal uncertainty distribution for QT leads to lognormal uncertainty distributions on the estimated BE probabilities. The process, leading to lognormal distributions, is explained in Section A-2.2.

E-3.3.2 Classical Results The classical or no prior influence results are of no interest for Combustion Engineering. With

little or no CCF data for most of the components, all classical results are << 1.0E-10.

E-16

Page 367: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-5.

RPS

prio

r, co

nstra

ined

non

info

rmat

ive δ

and

the

aver

age

of δ

.

E-17

Appendix E

Gro

up

Size

D

elta

Vec

tor

Del

ta

Ave

rage

D

elta

G

eom

etric

M

ean

2 [1

.69e

+01,

1.6

9e+0

1]

16.9

16.9

3

[9.8

9e+0

0, 1

.23e

+01,

7.7

1e+0

1]

33.1

21.1

4

[7.8

7e+0

0, 1

.19e

+01,

4.3

6e+0

1, 2

.15e

+02]

69.6

30.6

5

[7.2

1e+0

0, 1

.04e

+01,

4.0

9e+0

1, 1

.22e

+02,

3.6

0e+0

2]

108.

3 42

.3

6 [6

.21e

+00,

1.0

2e+0

1, 3

.51e

+01,

1.1

6e+0

2, 2

.41e

+02,

5.3

2e+0

2]

156.

7 56

.7

7 [5

.97e

+00,

1.0

1e+0

1, 3

.38e

+01,

8.9

7e+0

1, 2

.37e

+02,

3.8

5e+0

2, 7

.41e

+02]

214.

6 74

.2

8 [5

.80e

+00,

1.0

0e+0

1, 3

.30e

+01,

7.4

8e+0

1, 2

.11e

+02,

3.7

6e+0

2, 5

.55e

+02,

1.0

0e+0

3]

283.

3 94

.4

9 [5

.19e

+00,

9.9

1e+0

0, 3

.27e

+01,

7.2

6e+0

1, 1

.59e

+02,

3.5

7e+0

2, 5

.41e

+02,

7.4

1e+0

2, 1

.32e

+03]

360.

2 11

5.6

10

[5.0

9e+0

0, 9

.84e

+00,

3.2

4e+0

1, 6

.94e

+01,

1.4

2e+0

2, 2

.92e

+02,

5.3

0e+0

2, 7

.29e

+02,

9.4

7e+0

2, 1

.72e

+03]

448.

1 14

0.2

11

[5.0

1e+0

0, 9

.78e

+00,

3.2

1e+0

1, 6

.65e

+01,

1.3

3e+0

2, 2

.52e

+02,

4.6

7e+0

2, 7

.24e

+02,

9.3

8e+0

2, 1

.17e

+03,

2.2

2e+0

3]

547.

4 16

7.4

12

[4.9

4e+0

0, 9

.73e

+00,

3.2

1e+0

1, 6

.36e

+01,

1.2

7e+0

2, 2

.26e

+02,

4.1

2e+0

2, 6

.71e

+02,

9.4

7e+0

2, 1

.16e

+03,

1.4

2e+0

3, 2

.84e

+03]

659.

3 19

7.2

13

[4.9

2e+0

0, 9

.87e

+00,

3.1

4e+0

1, 6

.42e

+01,

1.1

6e+0

2, 2

.07e

+02,

3.7

7e+0

2, 6

.02e

+02,

9.0

3e+0

2, 1

.20e

+03,

1.3

9e+0

3, 1

.70e

+03,

78

4.6

229.

5 14

[4

.89e

+00,

1.0

0e+0

1, 3

.09e

+01,

6.4

3e+0

1, 1

.12e

+02,

1.8

4e+0

2, 3

.57e

+02,

5.4

6e+0

2, 8

.27e

+02,

1.1

7e+0

3, 1

.47e

+03,

1.6

3e+0

3, 2

.01e

+03,

4.5

3e+0

3]

924.

8 26

4.5

15

[4.8

8e+0

0, 1

.01e

+01,

3.0

5e+0

1, 6

.35e

+01,

1.1

4e+0

2, 1

.59e

+02,

3.4

3e+0

2, 5

.08e

+02,

7.5

1e+0

2, 1

.09e

+03,

1.4

7e+0

3, 1

.75e

+03,

1.8

8e+0

3, 2

.37e

+03,

5.

68e+

03]

1081

.4

302.

3

16

[4.8

7e+0

0, 1

.03e

+01,

3.0

4e+0

1, 6

.20e

+01,

1.1

0e+0

2, 1

.67e

+02,

2.8

5e+0

2, 4

.82e

+02,

6.9

2e+0

2, 9

.99e

+02,

1.3

9e+0

3, 1

.80e

+03,

2.0

3e+0

3, 2

.13e

+03,

2.

78e+

03, 7

.09e

+03]

1254

.4

342.

1

24

[4.9

4e+0

0, 1

.28e

+01,

3.1

0e+0

1, 5

.83e

+01,

9.7

1e+0

1, 1

.43e

+02,

2.1

2e+0

2, 3

.22e

+02,

4.7

0e+0

2, 6

.48e

+02,

8.4

3e+0

2, 1

.08e

+03,

1.3

9e+0

3, 1

.81e

+03,

2.

38e+

03, 3

.06e

+03,

3.8

2e+0

3, 4

.51e

+03,

4.7

1e+0

3, 4

.35e

+03,

4.2

1e+0

3, 5

.18e

+03,

9.7

2e+0

3, 3

.78e

+04]

3621

.3

763.

9

36

[4.8

7e+0

0, 1

.41e

+01,

3.1

9e+0

1, 5

.66e

+01,

8.9

2e+0

1, 1

.27e

+02,

1.7

1e+0

2, 2

.20e

+02,

2.7

5e+0

2, 3

.64e

+02,

4.9

5e+0

2, 6

.75e

+02,

9.0

5e+0

2, 1

.18e

+03,

1.

48e+

03, 1

.77e

+03,

2.0

6e+0

3, 2

.40e

+03,

2.8

6e+0

3, 3

.52e

+03,

4.4

1e+0

3, 5

.49e

+03,

6.6

1e+0

3, 7

.70e

+03,

8.9

1e+0

3, 1

.04e

+04,

1.2

0e+0

4, 1

.24e

+04,

1.

09e+

04, 9

.13e

+03,

8.2

6e+0

3, 8

.92e

+03,

1.2

3e+0

4, 2

.31e

+04,

6.7

4e+0

4, 4

.04e

+05]

1752

2.5

1708

.9

Page 368: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

Pr

obab

ility

Upd

ated

Alp

ha V

ecto

r Ev

ent D

escr

iptio

n

CE

Gro

up 1

C

E1-C

BI-

CF-

4OF6

TM

4/6

|85.

00E-

041.

72E-

06

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

4 O

F 6

BIS

TAB

LE T

RIP

UN

ITS

(CH

A

T&M

) C

E1-C

BI-

CF-

6OF8

6/8

5.00

E-04

7.

66E-

07

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

6 O

F 8

BIS

TAB

LE T

RIP

UN

ITS

CE1

-CB

I-C

F-P2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

PRES

SUR

E B

ISTA

BLE

S (C

H A

T&

M)

CE1

-CB

I-C

F-P3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

PRES

SUR

E B

ISTA

BLE

S

CE1

-CB

I-C

F-T2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

TEM

PER

ATU

RE

BIS

TAB

LES

(CH

A T

&M

)

CE1

-CB

I-C

F-T3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

OF

3 O

F 4

TEM

PER

ATU

RE

BIS

TAB

LES

CE1

-CPA

-CF-

T2O

F3TM

2/

3 |4

7.

60E-

03

3.77

E-04

[9

.54e

-01,

2.7

9e-0

2, 1

.13e

-02,

6.6

2e-0

3]

CC

F 2

OF

3 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

(CH

A

T&M

) C

E1-C

PA-C

F-T3

OF4

3/4

7.60

E-03

1.

65E-

04

[9.5

4e-0

1, 2

.79e

-02,

1.1

3e-0

2, 6

.62e

-03]

C

CF

3 O

F 4

CO

RE

PRO

TEC

TIO

N C

ALC

ULA

TOR

S

CE1

-CPR

-CF-

P2O

F3TM

2/

3 |4

1.

10E-

04

5.03

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 2

OF

3 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S (C

H

A T

&M

) C

E1-C

PR-C

F-P3

OF4

3/4

1.10

E-04

1.

51E-

06

[9.5

7e-0

1, 3

.19e

-02,

8.8

9e-0

3, 1

.90e

-03]

C

CF

3 O

F 4

PRES

SUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE1

-CTP

-CF-

CT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE1

-CTP

-CF-

CT3

OF4

3/4

8.40

E-04

1.

02E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE1

-CTP

-CF-

HT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE1

-CTP

-CF-

HT3

OF4

3/4

8.40

E-04

1.

02E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE1

-RO

D-C

F-R

OD

S

7/

36

1.70

E-05

8.

40E-

07

[9.2

3e-0

1, 3

.10e

-02,

1.4

9e-0

2, 8

.60e

-03,

5.5

1e-0

3, 3

.90e

-03,

2.

90e-

03, 2

.26e

-03,

1.8

1e-0

3, 1

.37e

-03,

1.0

0e-0

3, 7

.40e

-04,

5.

52e-

04, 4

.22e

-04,

3.3

7e-0

4, 2

.82e

-04,

2.4

2e-0

4, 2

.07e

-04,

1.

74e-

04, 1

.42e

-04,

1.1

3e-0

4, 9

.09e

-05,

7.5

4e-0

5, 6

.47e

-05,

5.

60e-

05, 4

.78e

-05,

4.1

6e-0

5, 4

.03e

-05,

4.5

6e-0

5, 5

.46e

-05,

6.

03e-

05, 5

.59e

-05,

4.0

6e-0

5, 2

.15e

-05,

7.4

0e-0

6, 1

.23e

-06]

CC

F 20

% O

R M

OR

E C

RD

/RO

DS

FAIL

TO

INSE

RT

CE1

-RY

L-C

F-1L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

M1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE1

-RY

L-C

F-1L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

M1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

E-18

Page 369: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-19

Appendix E

Prob

abili

ty

CE1

-RY

L-C

F-2L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

M2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE1

-RY

L-C

F-2L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

M2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE1

-RY

L-C

F-3L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

M3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE1

-RY

L-C

F-3L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

M3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE1

-RY

L-C

F-4L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

M4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE1

-RY

L-C

F-4L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

M4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE1

-RY

L-C

F-LM

12O

F24

12/2

4 U

2.60

E-04

4.29

E-08

[9.2

6e-0

1, 3

.42e

-02,

1.5

2e-0

2, 8

.22e

-03,

4.9

8e-0

3, 3

.40e

-03,

2.

30e-

03, 1

.52e

-03,

1.0

4e-0

3, 7

.59e

-04,

5.8

3e-0

4, 4

.55e

-04,

3.

54e-

04, 2

.71e

-04,

2.0

6e-0

4, 1

.61e

-04,

1.2

9e-0

4, 1

.09e

-04,

1.

04e-

04, 1

.13e

-04,

1.1

7e-0

4, 9

.47e

-05,

5.0

5e-0

5, 1

.30e

-05]

CC

F SP

ECIF

IC 1

2 O

F 24

LO

GIC

MA

TRIX

OU

TPU

T R

ELA

YS

CE1

-RY

L-C

F-LM

6OF1

2TM

6/

12 2

4 U

2.

60E-

04

1.58

E-07

[9

.26e

-01,

3.4

2e-0

2, 1

.52e

-02,

8.2

2e-0

3, 4

.98e

-03,

3.4

0e-0

3,

2.30

e-03

, 1.5

2e-0

3, 1

.04e

-03,

7.5

9e-0

4, 5

.83e

-04,

4.5

5e-0

4,

3.54

e-04

, 2.7

1e-0

4, 2

.06e

-04,

1.6

1e-0

4, 1

.29e

-04,

1.0

9e-0

4,

1.04

e-04

, 1.1

3e-0

4, 1

.17e

-04,

9.4

7e-0

5, 5

.05e

-05,

1.3

0e-0

5]

CC

F SP

ECIF

IC 6

OF

12 L

OG

IC M

ATR

IX O

UTP

UT

REL

AY

S (C

H A

T&

M)

CE1

-RY

T-C

F-2O

F42/

41.

20E-

04

4.78

E-06

[9

.52e

-01,

3.5

9e-0

2, 1

.03e

-02,

2.2

0e-0

3]

CC

F 2

OF

4 (1

-OU

T-O

F-2

TWIC

E) T

RIP

CO

NTA

CTO

RS

CE

Gro

up 2

C

E2-B

ME-

CF-

TB2O

F82/

81.

80E-

059.

97E-

07[9

.35e

-01,

4.0

4e-0

2, 1

.38e

-02,

6.2

8e-0

3, 2

.25e

-03,

1.2

7e-0

3,

8.65

e-04

, 4.7

9e-0

4]

CC

F SP

ECIF

IC 2

OF

8 TR

IP C

IRC

UIT

BR

EAK

ERS

CE2

-BSN

-CF-

TB2O

F82/

81.

50E-

041.

06E-

05[9

.25e

-01,

4.0

1e-0

2, 1

.38e

-02,

1.6

4e-0

2, 2

.24e

-03,

1.2

6e-0

3,

8.60

e-04

, 4.7

6e-0

4]

CC

F SP

ECIF

IC 2

OF

8 TR

IP C

IRC

UIT

BR

EAK

ER S

HU

NT

TRIP

DEV

ICE

CE2

-BU

V-C

F-TB

2OF8

2/8

1.10

E-03

5.43

E-05

[9.4

2e-0

1, 3

.60e

-02,

1.2

3e-0

2, 5

.60e

-03,

2.0

1e-0

3, 1

.13e

-03,

7.

71e-

04, 4

.27e

-04]

C

CF

SPEC

IFIC

2 O

F 8

TRIP

CIR

CU

IT B

REA

KER

U

ND

ERV

OLT

AG

E D

EVIC

E C

E2-C

BI-

CF-

4OF6

TM4/

6|8

5.00

E-04

1.72

E-06

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

4 O

F 6

BIS

TAB

LE T

RIP

UN

ITS

(CH

A

T&M

) C

E2-C

BI-

CF-

6OF8

6/8

5.00

E-04

7.

66E-

07

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

6 O

F 8

BIS

TAB

LE T

RIP

UN

ITS

CE2

-CB

I-C

F-P2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

PRES

SUR

E B

ISTA

BLE

S (C

H A

T&

M)

CE2

-CB

I-C

F-P3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

PRES

SUR

E B

ISTA

BLE

S

Page 370: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-20

Prob

abili

ty

CE2

-CB

I-C

F-T2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

TEM

PER

ATU

RE

BIS

TAB

LES

(CH

A T

&M

)

CE2

-CB

I-C

F-T3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

TEM

PER

ATU

RE

BIS

TAB

LES

CE2

-CPA

-CF-

T2O

F3TM

2/

3 |4

7.

60E-

03

3.77

E-04

[9

.54e

-01,

2.7

9e-0

2, 1

.13e

-02,

6.6

2e-0

3]

CC

F 2

OF

3 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

(CH

A

T&M

) C

E2-C

PA-C

F-T3

OF4

3/

4 7.

60E-

03

1.65

E-04

[9

.54e

-01,

2.7

9e-0

2, 1

.13e

-02,

6.6

2e-0

3]

CC

F 3

OF

4 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

CE2

-CPR

-CF-

P2O

F3TM

2/

3 |4

1.

10E-

04

5.03

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 2

OF

3 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S (C

H

A T

&M

) C

E2-C

PR-C

F-P3

OF4

3/

4 1.

10E-

04

1.51

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 3

OF

4 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S

CE2

-CTP

-CF-

CT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE2

-CTP

-CF-

CT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE2

-CTP

-CF-

HT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE2

-CTP

-CF-

HT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE2

-MSW

-CF-

2OF4

2/

4 1.

34E-

04

4.95

E-06

[9

.55e

-01,

3.3

3e-0

2, 9

.53e

-03,

2.0

4e-0

3]

CC

F 2

OF

4 (1

-OU

T-O

F-2

TWIC

E) M

AN

UA

L SW

ITC

HES

CE2

-PW

R-C

F-TB

2OF4

2/

4 6.

00E-

05

2.51

E-06

[9

.49e

-01,

3.7

7e-0

2, 1

.08e

-02,

2.3

1e-0

3]

CC

F 2

OF

4 (1

-OF-

2 TW

ICE)

TR

IP C

IRC

UIT

BR

KR

SH

UN

T TR

IP P

OW

ER

CE2

-RO

D-C

F-R

OD

S7/

361.

70E-

05

8.40

E-07

[9.2

3e-0

1, 3

.10e

-02,

1.4

9e-0

2, 8

.60e

-03,

5.5

1e-0

3, 3

.90e

-03,

2.

90e-

03, 2

.26e

-03,

1.8

1e-0

3, 1

.37e

-03,

1.0

0e-0

3, 7

.40e

-04,

5.

52e-

04, 4

.22e

-04,

3.3

7e-0

4, 2

.82e

-04,

2.4

2e-0

4, 2

.07e

-04,

1.

74e-

04, 1

.42e

-04,

1.1

3e-0

4, 9

.09e

-05,

7.5

4e-0

5, 6

.47e

-05,

5.

60e-

05, 4

.78e

-05,

4.1

6e-0

5, 4

.03e

-05,

4.5

6e-0

5, 5

.46e

-05,

6.

03e-

05, 5

.59e

-05,

4.0

6e-0

5, 2

.15e

-05,

7.4

0e-0

6, 1

.23e

-06]

CC

F 20

% O

R M

OR

E C

RD

/RO

DS

FAIL

TO

INSE

RT

CE2

-RY

L-C

F-1L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE2

-RY

L-C

F-1L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE2

-RY

L-C

F-2L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE2

-RY

L-C

F-2L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

Page 371: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-21

Appendix E

Prob

abili

ty

CE2

-RY

L-C

F-3L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE2

-RY

L-C

F-3L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE2

-RY

L-C

F-4L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE2

-RY

L-C

F-4L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE2

-RY

L-C

F-LM

12O

F24

12/2

4 U

2.60

E-04

4.29

E-08

[9.2

6e-0

1, 3

.42e

-02,

1.5

2e-0

2, 8

.22e

-03,

4.9

8e-0

3, 3

.40e

-03,

2.

30e-

03, 1

.52e

-03,

1.0

4e-0

3, 7

.59e

-04,

5.8

3e-0

4, 4

.55e

-04,

3.

54e-

04, 2

.71e

-04,

2.0

6e-0

4, 1

.61e

-04,

1.2

9e-0

4, 1

.09e

-04,

1.

04e-

04, 1

.13e

-04,

1.1

7e-0

4, 9

.47e

-05,

5.0

5e-0

5, 1

.30e

-05]

CC

F O

F 12

OF

24 L

OG

IC M

ATR

IX O

UTP

UT

REL

AY

S

CE2

-RY

L-C

F-LM

6OF1

2TM

6/

12 2

4 U

2.

60E-

04

1.58

E-07

[9

.26e

-01,

3.4

2e-0

2, 1

.52e

-02,

8.2

2e-0

3, 4

.98e

-03,

3.4

0e-0

3,

2.30

e-03

, 1.5

2e-0

3, 1

.04e

-03,

7.5

9e-0

4, 5

.83e

-04,

4.5

5e-0

4,

3.54

e-04

, 2.7

1e-0

4, 2

.06e

-04,

1.6

1e-0

4, 1

.29e

-04,

1.0

9e-0

4,

1.04

e-04

, 1.1

3e-0

4, 1

.17e

-04,

9.4

7e-0

5, 5

.05e

-05,

1.3

0e-0

5]

CC

F O

F 6

OF

12 L

OG

IC M

ATR

IX O

UTP

UT

REL

AY

S (C

H

A T

&M

)

CE2

-RY

T-C

F-2O

F4

2/4

1.20

E-04

4.

78E-

06

[9.5

2e-0

1, 3

.59e

-02,

1.0

3e-0

2, 2

.20e

-03]

C

CF

2 O

F 4

(1-O

UT-

OF-

2 TW

ICE)

K R

ELA

YS

CE

Gro

up 3

C

E3-B

ME-

CF-

TB2O

F82/

81.

80E-

059.

97E-

07[9

.35e

-01,

4.0

4e-0

2, 1

.38e

-02,

6.2

8e-0

3, 2

.25e

-03,

1.2

7e-0

3,

8.65

e-04

, 4.7

9e-0

4]

CC

F SP

ECIF

IC 2

OF

8 TR

IP C

IRC

UIT

BR

EAK

ERS

CE3

-BSN

-CF-

TB2O

F82/

81.

50E-

041.

06E-

05[9

.25e

-01,

4.0

1e-0

2, 1

.38e

-02,

1.6

4e-0

2, 2

.24e

-03,

1.2

6e-0

3,

8.60

e-04

, 4.7

6e-0

4]

CC

F SP

ECIF

IC 2

OF

8 TR

IP C

IRC

UIT

BR

EAK

ER S

HU

NT

TRIP

DEV

ICE

CE3

-BU

V-C

F-TB

2OF8

2/8

1.10

E-03

5.43

E-05

[9.4

2e-0

1, 3

.60e

-02,

1.2

3e-0

2, 5

.60e

-03,

2.0

1e-0

3, 1

.13e

-03,

7.

71e-

04, 4

.27e

-04]

C

CF

SPEC

IFIC

2 O

F 8

TRIP

CIR

CU

IT B

REA

KER

U

ND

ERV

OLT

AG

E D

EVIC

E C

E3-C

BI-

CF-

4OF6

TM4/

6|8

5.00

E-04

1.72

E-06

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

4 O

F 6

BIS

TAB

LE T

RIP

UN

ITS

(CH

A

T&M

) C

E3-C

BI-

CF-

6OF8

6/8

5.00

E-04

7.

66E-

07

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

6 O

F 8

BIS

TAB

LE T

RIP

UN

ITS

CE3

-CB

I-C

F-P2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

PRES

SUR

E B

ISTA

BLE

S (C

H A

T&

M)

CE3

-CB

I-C

F-P3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

PRES

SUR

E B

ISTA

BLE

S

CE3

-CB

I-C

F-T2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

TEM

PER

ATU

RE

BIS

TAB

LES

(CH

A T

&M

)

CE3

-CB

I-C

F-T3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

TEM

PER

ATU

RE

BIS

TAB

LES

Page 372: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-22

Prob

abili

ty

CE3

-CPD

-CF-

T2O

F3TM

2/

3 |4

2.

70E-

03

1.35

E-04

[9

.55e

-01,

2.8

7e-0

2, 1

.53e

-02,

8.1

4e-0

4]

CC

F 2

OF

3 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

(CH

A

T&M

) C

E3-C

PD-C

F-T3

OF4

3/

4 2.

70E-

03

5.73

E-05

[9

.55e

-01,

2.8

7e-0

2, 1

.53e

-02,

8.1

4e-0

4]

CC

F 3

OF

4 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

CE3

-CPR

-CF-

P2O

F3TM

2/

3 |4

1.

10E-

04

5.03

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 2

OF

3 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S (C

H

A T

&M

) C

E3-C

PR-C

F-P3

OF4

3/

4 1.

10E-

04

1.51

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 3

OF

4 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S

CE3

-CTP

-CF-

CT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE3

-CTP

-CF-

CT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE3

-CTP

-CF-

HT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE3

-CTP

-CF-

HT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE3

-MSW

-CF-

2OF4

2/

4 1.

34E-

04

4.95

E-06

[9

.55e

-01,

3.3

3e-0

2, 9

.53e

-03,

2.0

4e-0

3]

CC

F 2

OF

4 (1

-OU

T-O

F-2

TWIC

E) M

AN

UA

L SW

ITC

HES

CE3

-PW

R-C

F-TB

2OF4

2/

4 6.

00E-

05

2.51

E-06

[9

.49e

-01,

3.7

7e-0

2, 1

.08e

-02,

2.3

1e-0

3]

CC

F 2

OF

4 (1

-OF-

2 TW

ICE)

TR

IP C

IRC

UIT

BR

KR

SH

UN

T TR

IP P

OW

ER

CE3

-RO

D-C

F-R

OD

S7/

361.

70E-

05

8.40

E-07

[9.2

3e-0

1, 3

.10e

-02,

1.4

9e-0

2, 8

.60e

-03,

5.5

1e-0

3, 3

.90e

-03,

2.

90e-

03, 2

.26e

-03,

1.8

1e-0

3, 1

.37e

-03,

1.0

0e-0

3, 7

.40e

-04,

5.

52e-

04, 4

.22e

-04,

3.3

7e-0

4, 2

.82e

-04,

2.4

2e-0

4, 2

.07e

-04,

1.

74e-

04, 1

.42e

-04,

1.1

3e-0

4, 9

.09e

-05,

7.5

4e-0

5, 6

.47e

-05,

5.

60e-

05, 4

.78e

-05,

4.1

6e-0

5, 4

.03e

-05,

4.5

6e-0

5, 5

.46e

-05,

6.

03e-

05, 5

.59e

-05,

4.0

6e-0

5, 2

.15e

-05,

7.4

0e-0

6, 1

.23e

-06]

CC

F 20

% O

R M

OR

E C

RD

/RO

DS

FAIL

TO

INSE

RT

CE3

-RY

L-C

F-1L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE3

-RY

L-C

F-1L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE3

-RY

L-C

F-2L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE3

-RY

L-C

F-2L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE3

-RY

L-C

F-3L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE3

-RY

L-C

F-3L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

Page 373: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-23

Appendix E

Prob

abili

ty

CE3

-RY

L-C

F-4L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE3

-RY

L-C

F-4L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE3

-RY

L-C

F-LM

12O

F24

12/2

4 U

2.60

E-04

4.29

E-08

[9.2

6e-0

1, 3

.42e

-02,

1.5

2e-0

2, 8

.22e

-03,

4.9

8e-0

3, 3

.40e

-03,

2.

30e-

03, 1

.52e

-03,

1.0

4e-0

3, 7

.59e

-04,

5.8

3e-0

4, 4

.55e

-04,

3.

54e-

04, 2

.71e

-04,

2.0

6e-0

4, 1

.61e

-04,

1.2

9e-0

4, 1

.09e

-04,

1.

04e-

04, 1

.13e

-04,

1.1

7e-0

4, 9

.47e

-05,

5.0

5e-0

5, 1

.30e

-05]

CC

F SP

ECIF

IC 1

2 O

F 24

LO

GIC

MA

TRIX

OU

TPU

T R

ELA

YS

CE3

-RY

L-C

F-LM

6OF1

2TM

6/

12 2

4 U

2.

60E-

04

1.58

E-07

[9

.26e

-01,

3.4

2e-0

2, 1

.52e

-02,

8.2

2e-0

3, 4

.98e

-03,

3.4

0e-0

3,

2.30

e-03

, 1.5

2e-0

3, 1

.04e

-03,

7.5

9e-0

4, 5

.83e

-04,

4.5

5e-0

4,

3.54

e-04

, 2.7

1e-0

4, 2

.06e

-04,

1.6

1e-0

4, 1

.29e

-04,

1.0

9e-0

4,

1.04

e-04

, 1.1

3e-0

4, 1

.17e

-04,

9.4

7e-0

5, 5

.05e

-05,

1.3

0e-0

5]

CC

F SP

ECIF

IC 6

OF

12 L

OG

IC M

ATR

IX O

UTP

UT

REL

AY

S (C

H A

T&

M)

CE3

-RY

T-C

F-2O

F4

2/4

1.20

E-04

4.

78E-

06

[9.5

2e-0

1, 3

.59e

-02,

1.0

3e-0

2, 2

.20e

-03]

C

CF

2 O

F 4

(1-O

UT-

OF-

2 TW

ICE)

K R

ELA

YS

CE

Gro

up 4

C

E4-B

ME-

CF-

TB2O

F4

2/4

1.80

E-05

7.

07E-

07

[9.5

2e-0

1, 3

.54e

-02,

1.0

1e-0

2, 2

.17e

-03]

C

CF

2 O

F 4

(1-O

UT-

OF-

2 TW

ICE)

TR

IP C

IRC

UIT

B

REA

KER

S C

E4-B

SN-C

F-TB

2OF4

2/

4 1.

50E-

04

8.73

E-06

[9

.31e

-01,

5.0

0e-0

2, 1

.67e

-02,

2.5

5e-0

3]

CC

F 2

OF

4 (1

-OF-

2 TW

ICE)

TR

IP C

IRC

UIT

BR

KR

SH

UN

T TR

IP D

EVIC

C

E4-B

UV

-CF-

TB2O

F4

2/4

1.10

E-03

3.

65E-

05

[9.6

0e-0

1, 2

.99e

-02,

8.5

5e-0

3, 1

.83e

-03]

C

CF

2 O

F 4

(1-O

F-2

TWIC

E) T

RIP

CIR

CU

IT B

RK

R

UN

DER

VO

LTA

GE

DEV

C

E4-C

BI-

CF-

4OF6

TM4/

6|8

5.00

E-04

1.72

E-06

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

4 O

F 6

BIS

TAB

LE T

RIP

UN

ITS

(CH

A

T&M

) C

E4-C

BI-

CF-

6OF8

6/8

5.00

E-04

7.

66E-

07

[9.3

3e-0

1, 4

.18e

-02,

1.4

3e-0

2, 6

.17e

-03,

2.1

0e-0

3, 1

.15e

-03,

7.

75e-

04, 4

.29e

-04]

C

CF

SPEC

IFIC

6 O

F 8

BIS

TAB

LE T

RIP

UN

ITS

CE4

-CB

I-C

F-P2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

PRES

SUR

E B

ISTA

BLE

S (C

H A

T&

M)

CE4

-CB

I-C

F-P3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

PRES

SUR

E B

ISTA

BLE

S

CE4

-CB

I-C

F-T2

OF3

TM

2/3

|4

5.00

E-04

2.

55E-

05

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

2 O

F 3

TEM

PER

ATU

RE

BIS

TAB

LES

(CH

A T

&M

)

CE4

-CB

I-C

F-T3

OF4

3/4

5.00

E-04

7.

21E-

06

[9.5

2e-0

1, 3

.66e

-02,

9.4

1e-0

3, 1

.87e

-03]

C

CF

3 O

F 4

TEM

PER

ATU

RE

BIS

TAB

LES

CE4

-CPD

-CF-

T2O

F3TM

2/

3 |4

2.

70E-

03

1.35

E-04

[9

.55e

-01,

2.8

7e-0

2, 1

.53e

-02,

8.1

4e-0

4]

CC

F 2

OF

3 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

(CH

A

T&M

) C

E4-C

PD-C

F-T3

OF4

3/

4 2.

70E-

03

5.73

E-05

[9

.55e

-01,

2.8

7e-0

2, 1

.53e

-02,

8.1

4e-0

4]

CC

F 3

OF

4 C

OR

E PR

OTE

CTI

ON

CA

LCU

LATO

RS

Page 374: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-24

Prob

abili

ty

CE4

-CPR

-CF-

P2O

F3TM

2/

3 |4

1.

10E-

04

5.03

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 2

OF

3 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S (C

H

A T

&M

) C

E4-C

PR-C

F-P3

OF4

3/

4 1.

10E-

04

1.51

E-06

[9

.57e

-01,

3.1

9e-0

2, 8

.89e

-03,

1.9

0e-0

3]

CC

F 3

OF

4 PR

ESSU

RE

SEN

SOR

S/TR

AN

SMIT

TER

S

CE4

-CTP

-CF-

CT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE4

-CTP

-CF-

CT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

CO

LD L

EG T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE4

-CTP

-CF-

HT2

OF3

TM

2/3

|4

8.40

E-04

3.

73E-

05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

2 O

F 3

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE4

-CTP

-CF-

HT3

OF4

3/4

8.40

E-04

1.02

E-05

[9.5

8e-0

1, 3

.23e

-02,

7.8

6e-0

3, 1

.68e

-03]

C

CF

3 O

F 4

HO

T LE

G T

EMPE

RA

TUR

E SE

NSO

RS/

TRA

NSM

ITTE

RS

CE4

-MSW

-CF-

2OF4

2/

4 1.

34E-

04

4.95

E-06

[9

.55e

-01,

3.3

3e-0

2, 9

.53e

-03,

2.0

4e-0

3]

CC

F 2

OF

4 (1

-OU

T-O

F-2

TWIC

E) M

AN

UA

L SW

ITC

HES

CE4

-PW

R-C

F-TB

2OF4

2/

4 6.

00E-

05

2.51

E-06

[9

.49e

-01,

3.7

7e-0

2, 1

.08e

-02,

2.3

1e-0

3]

CC

F 2

OF

4 (1

-OF-

2 TW

ICE)

TR

IP C

IRC

UIT

BR

KR

SH

UN

T TR

IP P

OW

ER

CE4

-RO

D-C

F-R

OD

S7/

361.

70E-

05

8.40

E-07

[9.2

3e-0

1, 3

.10e

-02,

1.4

9e-0

2, 8

.60e

-03,

5.5

1e-0

3, 3

.90e

-03,

2.

90e-

03, 2

.26e

-03,

1.8

1e-0

3, 1

.37e

-03,

1.0

0e-0

3, 7

.40e

-04,

5.

52e-

04, 4

.22e

-04,

3.3

7e-0

4, 2

.82e

-04,

2.4

2e-0

4, 2

.07e

-04,

1.

74e-

04, 1

.42e

-04,

1.1

3e-0

4, 9

.09e

-05,

7.5

4e-0

5, 6

.47e

-05,

5.

60e-

05, 4

.78e

-05,

4.1

6e-0

5, 4

.03e

-05,

4.5

6e-0

5, 5

.46e

-05,

6.

03e-

05, 5

.59e

-05,

4.0

6e-0

5, 2

.15e

-05,

7.4

0e-0

6, 1

.23e

-06]

CC

F O

F 20

% O

R M

OR

E C

RD

/RO

DS

FAIL

TO

INSE

RT

CE4

-RY

L-C

F-1L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE4

-RY

L-C

F-1L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K1

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE4

-RY

L-C

F-2L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE4

-RY

L-C

F-2L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K2

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE4

-RY

L-C

F-3L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE4

-RY

L-C

F-3L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K3

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

CE4

-RY

L-C

F-4L

M3O

F3TM

3/

3 6

U

2.60

E-04

4.

66E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

3 O

F 3

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

(CH

A

T&

M)

CE4

-RY

L-C

F-4L

M6O

F6

6/6

2.60

E-04

2.

02E-

07

[9.4

9e-0

1, 3

.38e

-02,

1.1

2e-0

2, 3

.51e

-03,

1.7

0e-0

3, 7

.75e

-04]

C

CF

6 O

F 6

K4

LOG

IC M

ATR

IC R

ELA

Y O

UTP

UTS

Page 375: Reliability Study: Combustion Engineering Reactor Protection

Tab

le E

-6.

Bay

esia

n up

date

CC

F ba

sic

even

t res

ults

. (C

ontin

ued)

Bas

ic E

vent

Nam

e Fa

ilure

C

riter

ion

QT

Mea

n C

CF

Bas

ic E

vent

Fa

ilure

U

pdat

ed A

lpha

Vec

tor

Even

t Des

crip

tion

E-25

Appendix E

Prob

abili

ty

CE4

-RY

L-C

F-LM

12O

F24

12

/24

U2.

60E-

044.

29E-

08[9

.26e

-01,

3.4

2e-0

2, 1

.52e

-02,

8.2

2e-0

3, 4

.98e

-03,

3.4

0e-0

3,

2.30

e-03

, 1.5

2e-0

3, 1

.04e

-03,

7.5

9e-0

4, 5

.83e

-04,

4.5

5e-0

4,

3.54

e-04

, 2.7

1e-0

4, 2

.06e

-04,

1.6

1e-0

4, 1

.29e

-04,

1.0

9e-0

4,

1.04

e-04

, 1.1

3e-0

4, 1

.17e

-04,

9.4

7e-0

5, 5

.05e

-05,

1.3

0e-0

5]

CC

F SP

ECIF

IC 1

2 O

F 24

LO

GIC

MA

TRIX

OU

TPU

T R

ELA

YS

CE4

-RY

L-C

F-LM

6OF1

2TM

6/

12 2

4 U

2.

60E-

04

1.58

E-07

[9

.26e

-01,

3.4

2e-0

2, 1

.52e

-02,

8.2

2e-0

3, 4

.98e

-03,

3.4

0e-0

3,

2.30

e-03

, 1.5

2e-0

3, 1

.04e

-03,

7.5

9e-0

4, 5

.83e

-04,

4.5

5e-0

4,

3.54

e-04

, 2.7

1e-0

4, 2

.06e

-04,

1.6

1e-0

4, 1

.29e

-04,

1.0

9e-0

4,

1.04

e-04

, 1.1

3e-0

4, 1

.17e

-04,

9.4

7e-0

5, 5

.05e

-05,

1.3

0e-0

5]

CC

F SP

ECIF

IC 6

OF

12 L

OG

IC M

ATR

IX O

UTP

UT

REL

AY

S (C

H A

T&

M)

CE4

-RY

T-C

F-2O

F4

2/4

1.20

E-04

4.

78E-

06

[9.5

2e-0

1, 3

.59e

-02,

1.0

3e-0

2, 2

.20e

-03]

C

CF

2 O

F 4

(1-O

UT-

OF-

2 TW

ICE)

K R

ELA

YS

CE

Sens

itivi

ty

CEX

-CB

I-C

F-6O

F9TM

6/9

|12

5.00

E-04

5.44

E-07

[9.2

5e-0

1, 4

.30e

-02,

1.5

0e-0

2, 7

.77e

-03,

3.8

2e-0

3, 2

.03e

-03,

1.

09e-

03, 6

.69e

-04,

4.7

3e-0

4, 3

.86e

-04,

3.1

5e-0

4, 1

.58e

-04]

C

CF

Spec

ific

6 O

F 9

BIS

TAB

LES

Thre

e tri

p pa

ram

eter

s

CEX

-CB

I-C

F-9O

F12

9/12

5.00

E-04

2.

99E-

07

[9.2

5e-0

1, 4

.30e

-02,

1.5

0e-0

2, 7

.77e

-03,

3.8

2e-0

3, 2

.03e

-03,

1.

09e-

03, 6

.69e

-04,

4.7

3e-0

4, 3

.86e

-04,

3.1

5e-0

4, 1

.58e

-04]

C

CF

Spec

ific

9 O

F 12

BIS

TAB

LES

Thre

e tri

p pa

ram

eter

s

Page 376: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Table E-7. Lognormal uncertainty distributions for CCF events.

Basic Event Name Median EF CCF Failure Probability Low

CE1-CBI-CF-4OF6TM 4.95E-07 13.39 3.70E-08 CE1-CBI-CF-6OF8 1.44E-07 20.28 7.08E-09 CE1-CBI-CF-P2OF3TM 1.00E-05 9.46 1.06E-06 CE1-CBI-CF-P3OF4 1.94E-06 14.35 1.35E-07 CE1-CBI-CF-T2OF3TM 1.00E-05 9.46 1.06E-06 CE1-CBI-CF-T3OF4 1.94E-06 14.35 1.35E-07 CE1-CPA-CF-T2OF3TM 2.38E-04 4.84 4.93E-05 CE1-CPA-CF-T3OF4 8.65E-05 6.47 1.34E-05 CE1-CPR-CF-P2OF3TM 2.33E-06 7.67 3.04E-07 CE1-CPR-CF-P3OF4 4.81E-07 12.07 3.99E-08 CE1-CTP-CF-CT2OF3TM 2.80E-05 3.50 7.99E-06 CE1-CTP-CF-CT3OF4 5.13E-06 6.89 7.45E-07 CE1-CTP-CF-HT2OF3TM 2.80E-05 3.50 7.99E-06 CE1-CTP-CF-HT3OF4 5.13E-06 6.89 7.45E-07 CE1-ROD-CF-RODS 2.41E-07 13.47 1.79E-08 CE1-RYL-CF-1LM3OF3TM 9.22E-08 19.32 4.77E-09 CE1-RYL-CF-1LM6OF6 2.42E-08 29.58 8.18E-10 CE1-RYL-CF-2LM3OF3TM 9.22E-08 19.32 4.77E-09 CE1-RYL-CF-2LM6OF6 2.42E-08 29.58 8.18E-10 CE1-RYL-CF-3LM3OF3TM 9.22E-08 19.32 4.77E-09 CE1-RYL-CF-3LM6OF6 2.42E-08 29.58 8.18E-10 CE1-RYL-CF-4LM3OF3TM 9.22E-08 19.32 4.77E-09 CE1-RYL-CF-4LM6OF6 2.42E-08 29.58 8.18E-10 CE1-RYL-CF-LM12OF24 9.38E-09 17.58 5.34E-10 CE1-RYL-CF-LM6OF12TM 5.36E-08 11.27 4.75E-09 CE1-RYT-CF-2OF4 2.92E-06 5.12 5.71E-07 CE2-BME-CF-TB2OF8 7.13E-07 3.85 1.85E-07 CE2-BSN-CF-TB2OF8 3.94E-06 10.12 3.89E-07 CE2-BUV-CF-TB2OF8 3.03E-05 5.90 5.14E-06 CE2-CBI-CF-4OF6TM 4.95E-07 13.39 3.70E-08 CE2-CBI-CF-6OF8 1.44E-07 20.28 7.08E-09 CE2-CBI-CF-P2OF3TM 1.00E-05 9.46 1.06E-06 CE2-CBI-CF-P3OF4 1.94E-06 14.35 1.35E-07 CE2-CBI-CF-T2OF3TM 1.00E-05 9.46 1.06E-06 CE2-CBI-CF-T3OF4 1.94E-06 14.35 1.35E-07 CE2-CPA-CF-T2OF3TM 2.38E-04 4.84 4.93E-05 CE2-CPA-CF-T3OF4 8.65E-05 6.47 1.34E-05 CE2-CPR-CF-P2OF3TM 2.33E-06 7.67 3.04E-07 CE2-CPR-CF-P3OF4 4.81E-07 12.07 3.99E-08 CE2-CTP-CF-CT2OF3TM 2.80E-05 3.50 7.99E-06 CE2-CTP-CF-CT3OF4 5.13E-06 6.89 7.45E-07 CE2-CTP-CF-HT2OF3TM 2.80E-05 3.50 7.99E-06 CE2-CTP-CF-HT3OF4 5.13E-06 6.89 7.45E-07 CE2-MSW-CF-2OF4 3.28E-06 4.45 7.38E-07 CE2-PWR-CF-TB2OF4 1.37E-06 6.07 2.27E-07 CE2-ROD-CF-RODS 2.41E-07 13.47 1.79E-08 CE2-RYL-CF-1LM3OF3TM 9.22E-08 19.32 4.77E-09

E-26

(Continued)

CCF Mean Failure Probability

CCF Failure Probability Upper

1.72E-06 6.63E-067.66E-07 2.91E-062.55E-05 9.49E-057.21E-06 2.79E-052.55E-05 9.49E-057.21E-06 2.79E-053.77E-04 1.15E-031.65E-04 5.60E-045.03E-06 1.79E-051.51E-06 5.81E-063.73E-05 9.78E-051.02E-05 3.53E-053.73E-05 9.78E-051.02E-05 3.53E-058.40E-07 3.24E-064.66E-07 1.78E-062.02E-07 7.15E-074.66E-07 1.78E-062.02E-07 7.15E-074.66E-07 1.78E-062.02E-07 7.15E-074.66E-07 1.78E-062.02E-07 7.15E-074.29E-08 1.65E-071.58E-07 6.04E-074.78E-06 1.49E-059.97E-07 2.74E-061.06E-05 3.98E-055.43E-05 1.79E-041.72E-06 6.63E-067.66E-07 2.91E-062.55E-05 9.49E-057.21E-06 2.79E-052.55E-05 9.49E-057.21E-06 2.79E-053.77E-04 1.15E-031.65E-04 5.60E-045.03E-06 1.79E-051.51E-06 5.81E-063.73E-05 9.78E-051.02E-05 3.53E-053.73E-05 9.78E-051.02E-05 3.53E-054.95E-06 1.46E-052.51E-06 8.34E-068.40E-07 3.24E-064.66E-07 1.78E-06

Page 377: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Table E-7. Lognormal uncertainty distributions for CCF events. (Continued)

Basic Event Name Median EF CCF Failure Probability Low

CCF Mean Failure Probability

CCF Failure Probability Upper

CE2-RYL-CF-1LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE2-RYL-CF-2LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE2-RYL-CF-2LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE2-RYL-CF-3LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE2-RYL-CF-3LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE2-RYL-CF-4LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE2-RYL-CF-4LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE2-RYL-CF-LM12OF24 9.38E-09 17.58 5.34E-10 4.29E-08 1.65E-07CE2-RYL-CF-LM6OF12TM 5.36E-08 11.27 4.75E-09 1.58E-07 6.04E-07CE2-RYT-CF-2OF4 2.92E-06 5.12 5.71E-07 4.78E-06 1.49E-05CE3-BME-CF-TB2OF8 7.13E-07 3.85 1.85E-07 9.97E-07 2.74E-06CE3-BSN-CF-TB2OF8 3.94E-06 10.12 3.89E-07 1.06E-05 3.98E-05CE3-BUV-CF-TB2OF8 3.03E-05 5.90 5.14E-06 5.43E-05 1.79E-04CE3-CBI-CF-4OF6TM 4.95E-07 13.39 3.70E-08 1.72E-06 6.63E-06CE3-CBI-CF-6OF8 1.44E-07 20.28 7.08E-09 7.66E-07 2.91E-06CE3-CBI-CF-P2OF3TM 1.00E-05 9.46 1.06E-06 2.55E-05 9.49E-05CE3-CBI-CF-P3OF4 1.94E-06 14.35 1.35E-07 7.21E-06 2.79E-05CE3-CBI-CF-T2OF3TM 1.00E-05 9.46 1.06E-06 2.55E-05 9.49E-05CE3-CBI-CF-T3OF4 1.94E-06 14.35 1.35E-07 7.21E-06 2.79E-05CE3-CPD-CF-T2OF3TM 9.29E-05 4.13 2.25E-05 1.35E-04 3.83E-04CE3-CPD-CF-T3OF4 3.40E-05 5.38 6.32E-06 5.73E-05 1.83E-04CE3-CPR-CF-P2OF3TM 2.33E-06 7.67 3.04E-07 5.03E-06 1.79E-05CE3-CPR-CF-P3OF4 4.81E-07 12.07 3.99E-08 1.51E-06 5.81E-06CE3-CTP-CF-CT2OF3TM 2.80E-05 3.50 7.99E-06 3.73E-05 9.78E-05CE3-CTP-CF-CT3OF4 5.13E-06 6.89 7.45E-07 1.02E-05 3.53E-05CE3-CTP-CF-HT2OF3TM 2.80E-05 3.50 7.99E-06 3.73E-05 9.78E-05CE3-CTP-CF-HT3OF4 5.13E-06 6.89 7.45E-07 1.02E-05 3.53E-05CE3-MSW-CF-2OF4 3.28E-06 4.45 7.38E-07 4.95E-06 1.46E-05CE3-PWR-CF-TB2OF4 1.37E-06 6.07 2.27E-07 2.51E-06 8.34E-06CE3-ROD-CF-RODS 2.41E-07 13.47 1.79E-08 8.40E-07 3.24E-06CE3-RYL-CF-1LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE3-RYL-CF-1LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE3-RYL-CF-2LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE3-RYL-CF-2LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE3-RYL-CF-3LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE3-RYL-CF-3LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE3-RYL-CF-4LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE3-RYL-CF-4LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE3-RYL-CF-LM12OF24 9.38E-09 17.58 5.34E-10 4.29E-08 1.65E-07CE3-RYL-CF-LM6OF12TM 5.36E-08 11.27 4.75E-09 1.58E-07 6.04E-07CE3-RYT-CF-2OF4 2.92E-06 5.12 5.71E-07 4.78E-06 1.49E-05CE4-BME-CF-TB2OF4 4.24E-07 5.28 8.03E-08 7.07E-07 2.24E-06CE4-BSN-CF-TB2OF4 2.89E-06 11.53 2.51E-07 8.73E-06 3.33E-05CE4-BUV-CF-TB2OF4 1.71E-05 7.59 2.25E-06 3.65E-05 1.30E-04CE4-CBI-CF-4OF6TM 4.95E-07 13.39 3.70E-08 1.72E-06 6.63E-06CE4-CBI-CF-6OF8 1.44E-07 20.28 7.08E-09 7.66E-07 2.91E-06CE4-CBI-CF-P2OF3TM 1.00E-05 9.46 1.06E-06 2.55E-05 9.49E-05

E-27

Page 378: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

Table E-7. Lognormal uncertainty distributions for CCF events. (Continued)

Basic Event Name Median EF CCF Failure Probability Low

CCF Mean Failure Probability

CCF Failure Probability Upper

CE4-CBI-CF-P3OF4 1.94E-06 14.35 1.35E-07 7.21E-06 2.79E-05CE4-CBI-CF-T2OF3TM 1.00E-05 9.46 1.06E-06 2.55E-05 9.49E-05CE4-CBI-CF-T3OF4 1.94E-06 14.35 1.35E-07 7.21E-06 2.79E-05CE4-CPD-CF-T2OF3TM 9.29E-05 4.13 2.25E-05 1.35E-04 3.83E-04CE4-CPD-CF-T3OF4 3.40E-05 5.38 6.32E-06 5.73E-05 1.83E-04CE4-CPR-CF-P2OF3TM 2.33E-06 7.67 3.04E-07 5.03E-06 1.79E-05CE4-CPR-CF-P3OF4 4.81E-07 12.07 3.99E-08 1.51E-06 5.81E-06CE4-CTP-CF-CT2OF3TM 2.80E-05 3.50 7.99E-06 3.73E-05 9.78E-05CE4-CTP-CF-CT3OF4 5.13E-06 6.89 7.45E-07 1.02E-05 3.53E-05CE4-CTP-CF-HT2OF3TM 2.80E-05 3.50 7.99E-06 3.73E-05 9.78E-05CE4-CTP-CF-HT3OF4 5.13E-06 6.89 7.45E-07 1.02E-05 3.53E-05CE4-MSW-CF-2OF4 3.28E-06 4.45 7.38E-07 4.95E-06 1.46E-05CE4-PWR-CF-TB2OF4 1.37E-06 6.07 2.27E-07 2.51E-06 8.34E-06CE4-ROD-CF-RODS 2.41E-07 13.47 1.79E-08 8.40E-07 3.24E-06CE4-RYL-CF-1LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE4-RYL-CF-1LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE4-RYL-CF-2LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE4-RYL-CF-2LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE4-RYL-CF-3LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE4-RYL-CF-3LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE4-RYL-CF-4LM3OF3TM 9.22E-08 19.32 4.77E-09 4.66E-07 1.78E-06CE4-RYL-CF-4LM6OF6 2.42E-08 29.58 8.18E-10 2.02E-07 7.15E-07CE4-RYL-CF-LM12OF24 9.38E-09 17.58 5.34E-10 4.29E-08 1.65E-07CE4-RYL-CF-LM6OF12TM 5.36E-08 11.27 4.75E-09 1.58E-07 CE4-RYT-CF-2OF4 2.92E-06 5.12 5.71E-07 4.78E-06 1.49E-05CEX-CBI-CF-6OF9TM 1.31E-07 16.05 8.16E-09 5.44E-07 2.10E-06CEX-CBI-CF-9OF12 5.12E-08 21.96 2.33E-09 2.99E-07 1.12E-06

6.04E-07

E-28

Page 379: Reliability Study: Combustion Engineering Reactor Protection

Appendix E

REFERENCES

E-1. F. M. Marshall et. al., Common-Cause Failure Database and Analysis System: Event Definition

and Classification, NUREG/CR-6268, Vol. 2, June 1998.

E-2. U.S. NRC, Guidelines on Modeling Common-Cause Failures in Probabilistic Risk Assessment, NUREG/CR-5485, Nov. 1998.

E-3. Kvam, Paul, Estimation Techniques for Common Cause Failure Data with Different System Sizes, Technometrics, Volume 38, No. 4, pages 382-388, 1996.

E-29

Page 380: Reliability Study: Combustion Engineering Reactor Protection

Appendix F Fault Tree Quantification Results

Page 381: Reliability Study: Combustion Engineering Reactor Protection
Page 382: Reliability Study: Combustion Engineering Reactor Protection

F-1

Appendix F Fault Tree Quantification Results

F. Introduction

This appendix presents the SAPHIRE cut sets, importance rankings, and basic event reports from the quantification of the Combustion Engineering RPS fault trees. Two separate cases of results are presented for each RPS design group. The first case assumes that the basic event value for the operator failing to initiate a scram (CEx-XHE-HE-SCRAM) is TRUE (i.e., failure probability is 1.0). The second case assumes that the basic event value for the operator failing to initiate a scram (CEx-XHE-XE-SCRAM) is 0.01. The RPS fault tree cut sets were generated with no truncation level specified. The cut sets contain some basic events with a “/” in front of them. A “/” as the first character in a basic event name indicates a complemented event (Success = 1-Failure). For example, the basic event for reactor low water level trip signal channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.6E-2). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.8E-1). The event description for complemented events remains the same as the description used for the failure event. Table F-1. RPS CE Group 1 top 50 cutsets (no manual scram). ............................................................ F-3 Table F-2. Importance measures sorted on Fussell-Vesely for case (CE Group 1, no manual scram). . F-6 Table F-3. Importance measures sorted on Risk Increase for case (CE Group 1, no manual scram). ... F-8 Table F-4. Importance measures sorted on Birnbaum for case (CE Group 1, no manual scram). ....... F-10 Table F-5. RPS CE Group 1 top 50 cutsets (manual scram). ............................................................... F-12 Table F-6. Importance measures sorted on Fussell-Vesely for case (CE Group 1, manual scram). .... F-16 Table F-7. Importance measures sorted on Risk Increase for case (CE Group 1, manual scram). ...... F-18 Table F-8. Importance measures sorted on Birnbaum for case (CE Group 1, manual scram). ............ F-20 Table F-9. RPS CE Group 2 top 50 cutsets (no manual scram). .......................................................... F-22 Table F-10. Importance measures sorted on Fussell-Vesely for case (CE Group 2, no manual scram).F-25 Table F-11. Importance measures sorted on Risk Increase for case (CE Group 2, no manual scram). F-27 Table F-12. Importance measures sorted on Birnbaum for case (CE Group 2, no manual scram). ..... F-29 Table F-13. RPS CE Group 2 top 50 cutsets (manual scram). ............................................................. F-31 Table F-14. Importance measures sorted on Fussell-Vesely for case (CE Group 2, manual scram). .. F-34 Table F-15. Importance measures sorted on Risk Increase for (CE Group 2, manual scram). ............ F-36 Table F-16. Importance measures sorted on Birnbaum for case (CE Group 2, manual scram). .......... F-38 Table F-17. RPS CE Group 3 top 50 cutsets (no manual scram). ........................................................ F-40 Table F-18. Importance measures sorted on Fussell-Vesely for case (CE Group 3, no manual scram).F-43 Table F-19. Importance measures sorted on Risk Increase for case (CE Group 3, no manual scram). F-45 Table F-20. Importance measures sorted on Birnbaum for case (CE Group 3, no manual scram). ..... F-47 Table F-21. RPS CE Group 3 top 50 cutsets (manual scram). ............................................................. F-49 Table F-22. Importance measures sorted on Fussell-Vesely for case (CE Group 3, manual scram). .. F-52 Table F-23. Importance measures sorted on Risk Increase for case (CE Group 3, manual scram). .... F-54 Table F-24. Importance measures sorted on Birnbaum for case (CE Group 3, manual scram). .......... F-56 Table F-25. RPS CE Group 4 top 50 cutsets (no manual scram). ........................................................ F-58 Table F-26. Importance measures sorted on Fussell-Vesely for case (CE Group 4, no manual scram).F-61 Table F-27. Importance measures sorted on Risk Increase for case (CE Group 4, no manual scram). F-63 Table F-28. Importance measures sorted on Birnbaum for case (CE Group 4, no manual scram). ..... F-65 Table F-29. RPS CE Group 4 top 50 cutsets (manual scram). ............................................................. F-67 Table F-30. Importance measures sorted on Fussell-Vesely for case (CE Group 4, manual scram). .. F-70 Table F-31. Importance measures sorted on Risk Increase for case (CE Group 4, manual scram). .... F-72 Table F-32. Importance measures sorted on Birnbaum for case (CE Group 4, manual scram). .......... F-74

Page 383: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-2

Page 384: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-3

Table F-1. RPS CE Group 1 top 50 cutsets (no manual scram).

Table F-1. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 73.8 4.80E-06 CE1-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-062 13 8.40E-07 CE1-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-073 11.6 7.50E-07 CE1-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-014 0.7 4.20E-08 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

CE1-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-085 0.4 2.80E-08 CE1-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-026 0.2 1.40E-08 CE1-RYT-FF-ICM1 TRIP CONTACTOR M1 RELAY FAILS 1.20E-04

CE1-RYT-FF-ICM2 TRIP CONTACTOR M2 RELAY FAILS 1.20E-047 0.2 1.40E-08 CE1-RYT-FF-ICM3 TRIP CONTACTOR M3 RELAY FAILS 1.20E-04

CE1-RYT-FF-ICM4 TRIP CONTACTOR M4 RELAY FAILS 1.20E-048 0 2.50E-09 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

CE1-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A T&M)

1.60E-07

9 0 1.20E-09 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

10 0 2.50E-10 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

11 0 7.20E-11 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

12 0 7.20E-11 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

13 0 5.10E-11 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CBI-CF-T3OF4 CCF OF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

14 0 3.00E-11 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

15 0 2.40E-11 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-1LM6OF6 CCF 6 OF 6 M1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM2 TRIP CONTACTOR M2 RELAY FAILS 1.20E-04

16 0 2.40E-11 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-2LM6OF6 CCF 6 OF 6 M2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM1 TRIP CONTACTOR M1 RELAY FAILS 1.20E-04

17 0 2.40E-11 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-3LM6OF6 CCF 6 OF 6 M3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM4 TRIP CONTACTOR M4 RELAY FAILS 1.20E-04

18 0 2.40E-11 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-4LM6OF6 CCF 6 OF 6 M4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM3 TRIP CONTACTOR M3 RELAY FAILS 1.20E-04

19 0 1.50E-11 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

20 0 1.50E-11 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

21 0 1.10E-11 CE1-CBI-CF-T3OF4 CCF OF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

22 0 4.70E-12 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

23 0 4.70E-12 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

24 0 4.70E-12 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

Page 385: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-4

Table F-1. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

25 0 3.10E-12 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

26 0 3.10E-12 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

27 0 3.10E-12 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

28 0 3.10E-12 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

29 0 3.00E-12 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-CF-CT2OF3TM CCF 2 OF 3 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

30 0 3.00E-12 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-CF-HT2OF3TM CCF 2 OF 3 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

31 0 1.50E-12 CE1-CBI-CF-P2OF3TM CCF 2 OF 3 PRESSURE BISTABLES (CH A T&M) 2.60E-07 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

32 0 1.50E-12 CE1-CBI-FF-PB CHANNEL B PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PC CHANNEL C PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

33 0 1.50E-12 CE1-CBI-FF-PB CHANNEL B PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PD CHANNEL D PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

34 0 1.50E-12 CE1-CBI-FF-PC CHANNEL C PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PD CHANNEL D PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

35 0 9.00E-13 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-1LM3OF3TM CCF 3 OF 3 M1 LOGIC MATRIC RELAY OUTPUTS (CH A T&M) 4.70E-07 CE1-RYT-FF-ICM2 TRIP CONTACTOR M2 RELAY FAILS 1.20E-04

36 0 9.00E-13 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-2LM3OF3TM CCF 3 OF 3 M2 LOGIC MATRIC RELAY OUTPUTS (CH A T&M) 4.70E-07 CE1-RYT-FF-ICM1 TRIP CONTACTOR M1 RELAY FAILS 1.20E-04

37 0 9.00E-13 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-3LM3OF3TM CCF 3 OF 3 M3 LOGIC MATRIC RELAY OUTPUTS (CH A T&M) 4.70E-07 CE1-RYT-FF-ICM4 TRIP CONTACTOR M4 RELAY FAILS 1.20E-04

38 0 9.00E-13 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-4LM3OF3TM CCF 3 OF 3 M4 LOGIC MATRIC RELAY OUTPUTS (CH A T&M) 4.70E-07 CE1-RYT-FF-ICM3 TRIP CONTACTOR M3 RELAY FAILS 1.20E-04

39 0 6.50E-13 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

40 0 6.50E-13 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

41 0 6.50E-13 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

Page 386: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-5

Table F-1. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

42 0 6.50E-13 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

43 0 5.10E-13 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-CTC CHANNEL C COLD LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0244 0 5.10E-13 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-CTD CHANNEL D COLD LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0245 0 5.10E-13 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-HTC CHANNELC HOT LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0246 0 5.10E-13 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-HTD CHANNELD HOT LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0247 0 5.10E-13 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-CTB CHANNEL B COLD LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0248 0 5.10E-13 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-CTD CHANNEL D COLD LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0249 0 5.10E-13 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-HTB CHANNEL B HOT LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-0250 0 5.10E-13 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-FF-HTD CHANNELD HOT LEG TEMPERATURE SENSOR/TRANSMITTER

FAILS 8.40E-04

CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for

channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event

Page 387: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-6

Table F-2. Importance measures sorted on Fussell-Vesely for case (CE Group 1, no manual scram).

Table F-2. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYT-CF-2OF4 4.78E-06 7.38E-01 3.82E+00 1.54E+05 1.00E+00CE1-ROD-CF-RODS 8.40E-07 1.30E-01 1.15E+00 1.54E+05 1.00E+00CE1-CBI-CF-6OF8 7.66E-07 1.16E-01 1.13E+00 1.52E+05 9.84E-01CE1-RYL-CF-LM12OF24 4.29E-08 6.52E-03 1.01E+00 1.52E+05 9.84E-01CE1-CBI-CF-4OF6TM 1.72E-06 4.25E-03 1.00E+00 2.47E+03 1.60E-02CE1-RPS-TM-CHA 1.60E-02 2.65E-03 1.00E+00 1.16E+00 1.07E-06CE1-RYT-FF-ICM1 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM2 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM3 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM4 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYL-CF-LM6OF12TM 1.58E-07 3.90E-04 1.00E+00 2.47E+03 1.60E-02CE1-CPA-CF-T3OF4 1.65E-04 2.19E-04 1.00E+00 2.33E+00 8.58E-06CE1-CBI-CF-P3OF4 7.21E-06 2.15E-04 1.00E+00 3.08E+01 1.93E-04CE1-CPR-CF-P3OF4 1.51E-06 4.50E-05 1.00E+00 3.08E+01 1.93E-04CE1-CTP-CF-HT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CTP-CF-CT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CBI-CF-T3OF4 7.21E-06 9.55E-06 1.00E+00 2.33E+00 8.58E-06CE1-CPR-CF-P2OF3TM 5.03E-06 9.18E-06 1.00E+00 2.83E+00 1.18E-05CE1-CPA-CF-T2OF3TM 3.77E-04 5.96E-06 1.00E+00 1.02E+00 1.02E-07CE1-CPA-FF-TC 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TD 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TB 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-RYL-CF-1LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-2LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-3LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-4LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-CPA-FF-TA 7.60E-03 2.89E-06 1.00E+00 1.00E+00 2.46E-09CE1-CBI-FF-PC 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PB 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PD 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CTP-CF-CT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CTP-CF-HT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CTP-FF-CTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-CF-P2OF3TM 2.55E-07 4.66E-07 1.00E+00 2.83E+00 1.18E-05CE1-CBI-FF-TB 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TD 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TC 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CTP-FF-CTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CBI-FF-TA 5.00E-04 1.88E-07 1.00E+00 1.00E+00 2.44E-09CE1-CPR-FF-PB 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PC 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PD 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-RYL-CF-2LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-1LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-3LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-4LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-CBI-FF-PA 5.00E-04 1.47E-08 1.00E+00 1.00E+00 1.90E-10CE1-CBI-CF-T2OF3TM 2.55E-07 3.79E-09 1.00E+00 1.02E+00 9.66E-08CE1-CPR-FF-PA 1.10E-04 2.06E-09 1.00E+00 1.00E+00 1.22E-10CE1-RYL-FF-LBC1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 388: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-7

Table F-2. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYL-FF-LBC3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 389: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-8

Table F-3. Importance measures sorted on Risk Increase for case (CE Group 1, no manual scram).

Table F-3. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYT-CF-2OF4 4.78E-06 7.38E-01 3.82E+00 1.54E+05 1.00E+00CE1-ROD-CF-RODS 8.40E-07 1.30E-01 1.15E+00 1.54E+05 1.00E+00CE1-CBI-CF-6OF8 7.66E-07 1.16E-01 1.13E+00 1.52E+05 9.84E-01CE1-RYL-CF-LM12OF24 4.29E-08 6.52E-03 1.01E+00 1.52E+05 9.84E-01CE1-CBI-CF-4OF6TM 1.72E-06 4.25E-03 1.00E+00 2.47E+03 1.60E-02CE1-RYL-CF-LM6OF12TM 1.58E-07 3.90E-04 1.00E+00 2.47E+03 1.60E-02CE1-CBI-CF-P3OF4 7.21E-06 2.15E-04 1.00E+00 3.08E+01 1.93E-04CE1-CPR-CF-P3OF4 1.51E-06 4.50E-05 1.00E+00 3.08E+01 1.93E-04CE1-RYT-FF-ICM1 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM2 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM3 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM4 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYL-CF-1LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-2LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-3LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-4LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-CPR-CF-P2OF3TM 5.03E-06 9.18E-06 1.00E+00 2.83E+00 1.18E-05CE1-CBI-CF-P2OF3TM 2.55E-07 4.66E-07 1.00E+00 2.83E+00 1.18E-05CE1-CPA-CF-T3OF4 1.65E-04 2.19E-04 1.00E+00 2.33E+00 8.58E-06CE1-CTP-CF-HT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CTP-CF-CT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CBI-CF-T3OF4 7.21E-06 9.55E-06 1.00E+00 2.33E+00 8.58E-06CE1-RYL-CF-2LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-1LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-3LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-4LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RPS-TM-CHA 1.60E-02 2.65E-03 1.00E+00 1.16E+00 1.07E-06CE1-CPA-CF-T2OF3TM 3.77E-04 5.96E-06 1.00E+00 1.02E+00 1.02E-07CE1-CTP-CF-CT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CTP-CF-HT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CBI-CF-T2OF3TM 2.55E-07 3.79E-09 1.00E+00 1.02E+00 9.66E-08CE1-CPA-FF-TC 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TD 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TB 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TA 7.60E-03 2.89E-06 1.00E+00 1.00E+00 2.46E-09CE1-CBI-FF-PC 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PB 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PD 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CTP-FF-CTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TB 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TD 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TC 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CTP-FF-CTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CBI-FF-TA 5.00E-04 1.88E-07 1.00E+00 1.00E+00 2.44E-09CE1-CPR-FF-PB 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PC 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PD 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CBI-FF-PA 5.00E-04 1.47E-08 1.00E+00 1.00E+00 1.90E-10CE1-CPR-FF-PA 1.10E-04 2.06E-09 1.00E+00 1.00E+00 1.22E-10CE1-RYL-FF-LBC1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 390: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-9

Table F-3. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYL-FF-LBC3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 391: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-10

Table F-4. Importance measures sorted on Birnbaum for case (CE Group 1, no manual scram).

Table F-4. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYT-CF-2OF4 4.78E-06 7.38E-01 3.82E+00 1.54E+05 1.00E+00CE1-ROD-CF-RODS 8.40E-07 1.30E-01 1.15E+00 1.54E+05 1.00E+00CE1-CBI-CF-6OF8 7.66E-07 1.16E-01 1.13E+00 1.52E+05 9.84E-01CE1-RYL-CF-LM12OF24 4.29E-08 6.52E-03 1.01E+00 1.52E+05 9.84E-01CE1-CBI-CF-4OF6TM 1.72E-06 4.25E-03 1.00E+00 2.47E+03 1.60E-02CE1-RPS-TM-CHA 1.60E-02 2.65E-03 1.00E+00 1.16E+00 1.07E-06CE1-RYT-FF-ICM1 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM2 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM3 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYT-FF-ICM4 1.20E-04 2.23E-03 1.00E+00 1.96E+01 1.20E-04CE1-RYL-CF-LM6OF12TM 1.58E-07 3.90E-04 1.00E+00 2.47E+03 1.60E-02CE1-CPA-CF-T3OF4 1.65E-04 2.19E-04 1.00E+00 2.33E+00 8.58E-06CE1-CBI-CF-P3OF4 7.21E-06 2.15E-04 1.00E+00 3.08E+01 1.93E-04CE1-CPR-CF-P3OF4 1.51E-06 4.50E-05 1.00E+00 3.08E+01 1.93E-04CE1-CTP-CF-HT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CTP-CF-CT3OF4 1.02E-05 1.35E-05 1.00E+00 2.33E+00 8.58E-06CE1-CBI-CF-T3OF4 7.21E-06 9.55E-06 1.00E+00 2.33E+00 8.58E-06CE1-CPR-CF-P2OF3TM 5.03E-06 9.18E-06 1.00E+00 2.83E+00 1.18E-05CE1-CPA-CF-T2OF3TM 3.77E-04 5.96E-06 1.00E+00 1.02E+00 1.02E-07CE1-CPA-FF-TC 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TD 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-CPA-FF-TB 7.60E-03 4.97E-06 1.00E+00 1.00E+00 4.23E-09CE1-RYL-CF-1LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-2LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-3LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-RYL-CF-4LM6OF6 2.02E-07 3.69E-06 1.00E+00 1.93E+01 1.18E-04CE1-CPA-FF-TA 7.60E-03 2.89E-06 1.00E+00 1.00E+00 2.46E-09CE1-CBI-FF-PC 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PB 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CBI-FF-PD 5.00E-04 8.41E-07 1.00E+00 1.00E+00 1.09E-08CE1-CTP-CF-CT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CTP-CF-HT2OF3TM 3.73E-05 5.90E-07 1.00E+00 1.02E+00 1.02E-07CE1-CTP-FF-CTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTB 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-CTD 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTC 8.40E-04 5.45E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-CF-P2OF3TM 2.55E-07 4.66E-07 1.00E+00 2.83E+00 1.18E-05CE1-CBI-FF-TB 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TD 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CBI-FF-TC 5.00E-04 3.24E-07 1.00E+00 1.00E+00 4.20E-09CE1-CTP-FF-HTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CTP-FF-CTA 8.40E-04 3.17E-07 1.00E+00 1.00E+00 2.44E-09CE1-CBI-FF-TA 5.00E-04 1.88E-07 1.00E+00 1.00E+00 2.44E-09CE1-CPR-FF-PB 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PC 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-CPR-FF-PD 1.10E-04 1.82E-07 1.00E+00 1.00E+00 1.07E-08CE1-RYL-CF-2LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-1LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-3LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-RYL-CF-4LM3OF3TM 4.66E-07 1.39E-07 1.00E+00 1.30E+00 1.93E-06CE1-CBI-FF-PA 5.00E-04 1.47E-08 1.00E+00 1.00E+00 1.90E-10CE1-CBI-CF-T2OF3TM 2.55E-07 3.79E-09 1.00E+00 1.02E+00 9.66E-08CE1-CPR-FF-PA 1.10E-04 2.06E-09 1.00E+00 1.00E+00 1.22E-10CE1-RYL-FF-LBC1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 392: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-11

Table F-4. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE1-RYL-FF-LBC3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBC4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LBD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD1 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD2 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD3 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11CE1-RYL-FF-LCD4 2.60E-04 9.26E-10 1.00E+00 1.00E+00 2.31E-11

Page 393: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-12

Table F-5. RPS CE Group 1 top 50 cutsets (manual scram).

Table F-5. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 84.5 4.80E-06 CE1-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-062 14.9 8.40E-07 CE1-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-073 0.3 1.40E-08 CE1-RYT-FF-ICM1 TRIP CONTACTOR M1 RELAY FAILS 1.20E-04

CE1-RYT-FF-ICM2 TRIP CONTACTOR M2 RELAY FAILS 1.20E-044 0.3 1.40E-08 CE1-RYT-FF-ICM3 TRIP CONTACTOR M3 RELAY FAILS 1.20E-04

CE1-RYT-FF-ICM4 TRIP CONTACTOR M4 RELAY FAILS 1.20E-045 0.1 7.50E-09 CE1-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

6 0 4.20E-10 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

7 0 2.80E-10 CE1-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

8 0 9.80E-11 CE1-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

9 0 9.80E-11 CE1-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

10 0 2.50E-11 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A

T&M) 1.60E-07

CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-0211 0 1.20E-11 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06

CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

12 0 5.50E-12 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08

13 0 5.50E-12 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08

14 0 3.60E-12 CE1-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

15 0 3.60E-12 CE1-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

16 0 2.50E-12 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

17 0 7.20E-13 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

18 0 7.20E-13 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

19 0 5.10E-13 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CBI-CF-T3OF4 CCF OF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

20 0 3.30E-13 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A

T&M) 1.60E-07

21 0 3.30E-13 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A 1.60E-07

Page 394: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-13

Table F-5. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

T&M) 22 0 3.00E-13 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04

CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

23 0 2.40E-13 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-1LM6OF6 CCF 6 OF 6 M1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM2 TRIP CONTACTOR M2 RELAY FAILS 1.20E-04 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

24 0 2.40E-13 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-2LM6OF6 CCF 6 OF 6 M2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM1 TRIP CONTACTOR M1 RELAY FAILS 1.20E-04 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

25 0 2.40E-13 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-3LM6OF6 CCF 6 OF 6 M3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM4 TRIP CONTACTOR M4 RELAY FAILS 1.20E-04 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

26 0 2.40E-13 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-RYL-CF-4LM6OF6 CCF 6 OF 6 M4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE1-RYT-FF-ICM3 TRIP CONTACTOR M3 RELAY FAILS 1.20E-04 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

27 0 1.50E-13 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

28 0 1.50E-13 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

29 0 1.50E-13 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

30 0 1.50E-13 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

31 0 1.10E-13 CE1-CBI-CF-T3OF4 CCF OF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

32 0 4.70E-14 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

33 0 4.70E-14 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

34 0 4.70E-14 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

35 0 3.20E-14 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

36 0 3.20E-14 CE1-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE1-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

37 0 3.10E-14 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03

Page 395: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-14

Table F-5. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

38 0 3.10E-14 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

39 0 3.10E-14 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TA CHANNEL A ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

40 0 3.10E-14 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CPA-FF-TB CHANNEL B ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TC CHANNELC ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 CE1-CPA-FF-TD CHANNELD ANALOG CORE PROTECTION CALCULATOR FAILS 7.60E-03 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

41 0 3.00E-14 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-CF-CT2OF3TM CCF 2 OF 3 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

42 0 3.00E-14 CE1-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE1-CTP-CF-HT2OF3TM CCF 2 OF 3 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

43 0 1.50E-14 CE1-CBI-CF-P2OF3TM CCF 2 OF 3 PRESSURE BISTABLES (CH A T&M) 2.60E-07 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

44 0 1.50E-14 CE1-CBI-FF-PB CHANNEL B PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PC CHANNEL C PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

45 0 1.50E-14 CE1-CBI-FF-PB CHANNEL B PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PD CHANNEL D PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

46 0 1.50E-14 CE1-CBI-FF-PC CHANNEL C PRESSURE BISTABLE FAILS 5.00E-04 CE1-CBI-FF-PD CHANNEL D PRESSURE BISTABLE FAILS 5.00E-04 CE1-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04 CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE1-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

47 0 9.40E-15 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

48 0 9.40E-15 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

49 0 9.40E-15 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 CE1-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

50 0 9.40E-15 CE1-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE1-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 CE1-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 /CE1-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in

Page 396: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-15

T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event

Page 397: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-16

Table F-6. Importance measures sorted on Fussell-Vesely for case (CE Group 1, manual scram).

Table F-6. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09

Page 398: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-17

Table F-6. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 399: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-18

Table F-7. Importance measures sorted on Risk Increase for case (CE Group 1, manual scram).

Table F-7. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 400: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-19

Table F-7. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 401: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-20

Table F-8. Importance measures sorted on Birnbaum for case (CE Group 1, manual scram).

Table F-8. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 402: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-21

Table F-8. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 403: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-22

Table F-9. RPS CE Group 2 top 50 cutsets (no manual scram).

Table F-9. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 63.8 4.80E-06 CE2-RYT-CF-2OF4 CCF OF 2 OF 4 TRIP CONTACTORS 4.80E-062 13.3 1.00E-06 CE2-BME-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKERS 1.00E-063 11.2 8.40E-07 CE2-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-074 10.1 7.50E-07 CE2-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-015 0.6 4.20E-08 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

CE2-RYL-CF-LM12OF24 CCF OF 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-086 0.4 2.80E-08 CE2-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06

CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-027 0.2 1.40E-08 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-048 0.2 1.40E-08 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-049 0 2.50E-09 CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

CE2-RYL-CF-LM6OF12TM CCF OF 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A T&M) 1.60E-0710 0 2.20E-09 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-0411 0 2.20E-09 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-0412 0 2.20E-09 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-0413 0 2.20E-09 CE2-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-0414 0 2.20E-09 CE2-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-0415 0 2.20E-09 CE2-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-0416 0 2.20E-09 CE2-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-0417 0 2.20E-09 CE2-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-0418 0 1.20E-09 CE2-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06

CE2-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

19 0 5.80E-10 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

20 0 4.00E-10 CE2-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE2-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 2.50E-06 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

21 0 3.20E-10 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05

22 0 3.20E-10 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

23 0 3.20E-10 CE2-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05

24 0 3.20E-10 CE2-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

25 0 1.40E-10 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

26 0 7.20E-11 CE2-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE2-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

27 0 7.20E-11 CE2-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE2-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

28 0 5.10E-11 CE2-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE2-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

29 0 5.00E-11 CE2-CPA-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 3.80E-04

Page 404: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-23

Table F-9. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE2-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 8.20E-06 CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

30 0 2.50E-11 CE2-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 2.50E-06 CE2-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

31 0 2.50E-11 CE2-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 2.50E-06 CE2-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

32 0 2.40E-11 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-RYL-CF-1LM6OF6 CCF 6 OF 6 K1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

33 0 2.40E-11 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-RYL-CF-2LM6OF6 CCF 6 OF 6 K2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

34 0 2.40E-11 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-RYL-CF-3LM6OF6 CCF 6 OF 6 K3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

35 0 2.40E-11 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-RYL-CF-4LM6OF6 CCF 6 OF 6 K4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

36 0 2.00E-11 CE2-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

37 0 2.00E-11 CE2-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

38 0 2.00E-11 CE2-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

39 0 2.00E-11 CE2-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

40 0 2.00E-11 CE2-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

41 0 2.00E-11 CE2-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

42 0 2.00E-11 CE2-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

43 0 2.00E-11 CE2-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

44 0 1.80E-11 CE2-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 CE2-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 2.50E-06 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

45 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

46 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

47 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

48 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

49 0 7.90E-12 CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-FF-TB15 TCB-1-TCB-5 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

50 0 7.90E-12 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

Page 405: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-24

Table F-9. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE2-PWR-FF-TB26 TCB-2-TCB-6 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

50 0 1.50E-11 CE2-CBI-CF-P2OF3TM CCF 2 OF 3 PRESSURE BISTABLES (CH A T&M) 2.50E-05 CE2-CTP-CF-HT2OF3TM CCF 2 OF 3 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event.

Page 406: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-25

Table F-10. Importance measures sorted on Fussell-Vesely for case (CE Group 2, no manual scram).

Table F-10. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE2-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE2-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE2-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE2-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE2-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE2-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE2-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-CPA-CF-T3OF4 1.65E-04 2.10E-04 1.00E+00 2.27E+00 9.54E-06CE2-CBI-CF-P3OF4 7.21E-06 1.86E-04 1.00E+00 2.68E+01 1.93E-04CE2-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE2-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.05E+00 6.04E-05CE2-CPR-CF-P3OF4 2.48E-06 6.39E-05 1.00E+00 2.68E+01 1.93E-04CE2-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.05E+00 6.04E-05CE2-CPR-CF-P2OF3TM 8.23E-06 1.30E-05 1.00E+00 2.58E+00 1.18E-05CE2-CTP-CF-CT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CTP-CF-HT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CBI-CF-T3OF4 7.21E-06 9.17E-06 1.00E+00 2.27E+00 9.54E-06CE2-CPA-CF-T2OF3TM 3.77E-04 7.73E-06 1.00E+00 1.02E+00 1.54E-07CE2-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-CPA-FF-TB 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TC 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TD 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-CPA-FF-TA 7.60E-03 2.78E-06 1.00E+00 1.00E+00 2.74E-09CE2-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07

Page 407: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-26

Table F-10. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-CTP-CF-CT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CTP-CF-HT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CBI-FF-PD 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PB 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PC 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CTP-FF-HTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CBI-CF-P2OF3TM 2.55E-07 4.02E-07 1.00E+00 2.58E+00 1.18E-05CE2-CBI-FF-TB 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TC 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TD 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CTP-FF-CTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CTP-FF-HTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CBI-FF-TA 5.00E-04 1.80E-07 1.00E+00 1.00E+00 2.70E-09CE2-CPR-FF-PB 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PC 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PD 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-CBI-FF-PA 5.00E-04 1.27E-08 1.00E+00 1.00E+00 1.90E-10CE2-CBI-CF-T2OF3TM 2.55E-07 5.01E-09 1.00E+00 1.02E+00 1.48E-07CE2-CPR-FF-PA 1.10E-04 1.78E-09 1.00E+00 1.00E+00 1.22E-10CE2-RYL-FF-LCD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11

Page 408: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-27

Table F-11. Importance measures sorted on Risk Increase for case (CE Group 2, no manual scram).

Table F-11. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE2-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE2-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE2-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE2-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE2-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE2-CBI-CF-P3OF4 7.21E-06 1.86E-04 1.00E+00 2.68E+01 1.93E-04CE2-CPR-CF-P3OF4 2.48E-06 6.39E-05 1.00E+00 2.68E+01 1.93E-04CE2-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.05E+00 6.04E-05CE2-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.05E+00 6.04E-05CE2-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE2-CPR-CF-P2OF3TM 8.23E-06 1.30E-05 1.00E+00 2.58E+00 1.18E-05CE2-CBI-CF-P2OF3TM 2.55E-07 4.02E-07 1.00E+00 2.58E+00 1.18E-05CE2-CPA-CF-T3OF4 1.65E-04 2.10E-04 1.00E+00 2.27E+00 9.54E-06CE2-CTP-CF-CT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CTP-CF-HT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CBI-CF-T3OF4 7.21E-06 9.17E-06 1.00E+00 2.27E+00 9.54E-06CE2-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE2-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-CPA-CF-T2OF3TM 3.77E-04 7.73E-06 1.00E+00 1.02E+00 1.54E-07CE2-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-CTP-CF-CT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CTP-CF-HT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CBI-CF-T2OF3TM 2.55E-07 5.01E-09 1.00E+00 1.02E+00 1.48E-07CE2-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08

Page 409: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-28

Table F-11. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-CPA-FF-TB 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TC 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TD 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TA 7.60E-03 2.78E-06 1.00E+00 1.00E+00 2.74E-09CE2-CBI-FF-PD 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PB 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PC 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CTP-FF-HTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CBI-FF-TB 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TC 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TD 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CTP-FF-CTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CTP-FF-HTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CBI-FF-TA 5.00E-04 1.80E-07 1.00E+00 1.00E+00 2.70E-09CE2-CPR-FF-PB 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PC 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PD 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CBI-FF-PA 5.00E-04 1.27E-08 1.00E+00 1.00E+00 1.90E-10CE2-CPR-FF-PA 1.10E-04 1.78E-09 1.00E+00 1.00E+00 1.22E-10CE2-RYL-FF-LCD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11

Page 410: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-29

Table F-12. Importance measures sorted on Birnbaum for case (CE Group 2, no manual scram).

Table F-12. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE2-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE2-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE2-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE2-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE2-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE2-CBI-CF-P3OF4 7.21E-06 1.86E-04 1.00E+00 2.68E+01 1.93E-04CE2-CPR-CF-P3OF4 2.48E-06 6.39E-05 1.00E+00 2.68E+01 1.93E-04CE2-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE2-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE2-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE2-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.05E+00 6.04E-05CE2-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.05E+00 6.04E-05CE2-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE2-CPR-CF-P2OF3TM 8.23E-06 1.30E-05 1.00E+00 2.58E+00 1.18E-05CE2-CBI-CF-P2OF3TM 2.55E-07 4.02E-07 1.00E+00 2.58E+00 1.18E-05CE2-CPA-CF-T3OF4 1.65E-04 2.10E-04 1.00E+00 2.27E+00 9.54E-06CE2-CTP-CF-CT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CTP-CF-HT3OF4 1.02E-05 1.30E-05 1.00E+00 2.27E+00 9.54E-06CE2-CBI-CF-T3OF4 7.21E-06 9.17E-06 1.00E+00 2.27E+00 9.54E-06CE2-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE2-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE2-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE2-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE2-CPA-CF-T2OF3TM 3.77E-04 7.73E-06 1.00E+00 1.02E+00 1.54E-07CE2-CTP-CF-CT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CTP-CF-HT2OF3TM 3.73E-05 7.65E-07 1.00E+00 1.02E+00 1.54E-07CE2-CBI-CF-T2OF3TM 2.55E-07 5.01E-09 1.00E+00 1.02E+00 1.48E-07CE2-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08

Page 411: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-30

Table F-12. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE2-CBI-FF-PD 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PB 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CBI-FF-PC 5.00E-04 7.27E-07 1.00E+00 1.00E+00 1.09E-08CE2-CPR-FF-PB 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PC 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPR-FF-PD 1.10E-04 1.57E-07 1.00E+00 1.00E+00 1.07E-08CE2-CPA-FF-TB 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TC 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CPA-FF-TD 7.60E-03 5.59E-06 1.00E+00 1.00E+00 5.51E-09CE2-CTP-FF-HTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTC 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-CTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTB 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CTP-FF-HTD 8.40E-04 6.15E-07 1.00E+00 1.00E+00 5.49E-09CE2-CBI-FF-TB 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TC 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CBI-FF-TD 5.00E-04 3.64E-07 1.00E+00 1.00E+00 5.46E-09CE2-CPA-FF-TA 7.60E-03 2.78E-06 1.00E+00 1.00E+00 2.74E-09CE2-CTP-FF-CTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CTP-FF-HTA 8.40E-04 3.05E-07 1.00E+00 1.00E+00 2.72E-09CE2-CBI-FF-TA 5.00E-04 1.80E-07 1.00E+00 1.00E+00 2.70E-09CE2-CBI-FF-PA 5.00E-04 1.27E-08 1.00E+00 1.00E+00 1.90E-10CE2-CPR-FF-PA 1.10E-04 1.78E-09 1.00E+00 1.00E+00 1.22E-10CE2-RYL-FF-LCD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LCD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD4 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBD1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC3 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC2 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11CE2-RYL-FF-LBC1 2.60E-04 8.00E-10 1.00E+00 1.00E+00 2.31E-11

Page 412: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-31

Table F-13. RPS CE Group 2 top 50 cutsets (manual scram).

Table F-13. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 52.6 1.00E-06 CE2-BME-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKERS 1.00E-062 44.3 8.40E-07 CE2-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-073 2.5 4.80E-08 CE2-RYT-CF-2OF4 CCF OF 2 OF 4 TRIP CONTACTORS 4.80E-06

CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-024 0.4 7.50E-09 CE2-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

5 0 5.80E-10 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

6 0 4.20E-10 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-RYL-CF-LM12OF24 CCF OF 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

7 0 3.20E-10 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05

8 0 3.20E-10 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

9 0 3.20E-10 CE2-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05

10 0 3.20E-10 CE2-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE2-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

11 0 2.80E-10 CE2-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

12 0 1.40E-10 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

13 0 1.40E-10 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

14 0 1.40E-10 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

15 0 2.50E-11 CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE2-RYL-CF-LM6OF12TM CCF OF 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A T&M) 1.60E-07 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

16 0 2.40E-11 CE2-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06 CE2-RYT-CF-2OF4 CCF OF 2 OF 4 TRIP CONTACTORS 4.80E-06

17 0 2.20E-11 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

18 0 2.20E-11 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

19 0 2.20E-11 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

20 0 2.20E-11 CE2-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

21 0 2.20E-11 CE2-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

22 0 2.20E-11 CE2-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

23 0 2.20E-11 CE2-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

24 0 2.20E-11 CE2-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05 CE2-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

Page 413: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-32

Table F-13. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-0225 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP

DEVICE 1.10E-05

CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

26 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

27 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

28 0 1.30E-11 CE2-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE2-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

29 0 1.20E-11 CE2-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE2-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

30 0 4.00E-12 CE2-CPA-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 1.70E-04 CE2-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 2.50E-06 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE2-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

31 0 3.70E-12 CE2-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07 CE2-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06 /CE2-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

32 0 3.00E-12 CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

33 0 3.00E-12 CE2-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

34 0 3.00E-12 CE2-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

35 0 3.00E-12 CE2-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

36 0 3.00E-12 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

37 0 3.00E-12 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03

38 0 3.00E-12 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

39 0 3.00E-12 CE2-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

40 0 3.00E-12 CE2-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

41 0 3.00E-12 CE2-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03

42 0 3.00E-12 CE2-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

43 0 3.00E-12 CE2-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05 CE2-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04

Page 414: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-33

Table F-13. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE2-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-0344 0 1.20E-12 CE2-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04

CE2-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

45 0 1.20E-12 CE2-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

46 0 1.20E-12 CE2-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

47 0 1.20E-12 CE2-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE2-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

48 0 1.20E-12 CE2-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE2-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-FF-TB26 TCB-2-TCB-6 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

49 0 1.20E-12 CE2-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE2-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-FF-TB15 TCB-1-TCB-5 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

50 0 1.20E-12 CE2-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE2-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE2-PWR-FF-TB48 TCB-4-TCB-8 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05 CE2-PWR-FF-TB15 TCB-1-TCB-5 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event

Page 415: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-34

Table F-14. Importance measures sorted on Fussell-Vesely for case (CE Group 2, manual scram).

Table F-14. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09

Page 416: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-35

Table F-14. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 417: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-36

Table F-15. Importance measures sorted on Risk Increase for (CE Group 2, manual scram).

Table F-15. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 418: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-37

Table F-15. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 419: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-38

Table F-16. Importance measures sorted on Birnbaum for case (CE Group 2, manual scram).

Table F-16. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE2-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE2-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE2-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE2-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE2-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE2-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE2-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE2-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE2-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE2-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE2-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE2-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE2-CBI-CF-P3OF4 7.21E-06 7.33E-06 1.00E+00 2.02E+00 1.93E-06CE2-CPR-CF-P3OF4 2.48E-06 2.52E-06 1.00E+00 2.02E+00 1.93E-06CE2-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE2-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE2-CPR-CF-P2OF3TM 8.23E-06 5.03E-07 1.00E+00 1.06E+00 1.16E-07CE2-CBI-CF-P2OF3TM 2.55E-07 1.35E-08 1.00E+00 1.05E+00 1.00E-07CE2-CPA-CF-T3OF4 1.65E-04 8.30E-06 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-CT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CTP-CF-HT3OF4 1.02E-05 5.13E-07 1.00E+00 1.05E+00 9.54E-08CE2-CBI-CF-T3OF4 7.21E-06 3.63E-07 1.00E+00 1.05E+00 9.54E-08CE2-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE2-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE2-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE2-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 420: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-39

Table F-16. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE2-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE2-RPS-TM-CHA 1.60E-02 9.07E-05 1.00E+00 1.01E+00 1.08E-08CE2-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE2-CPA-CF-T2OF3TM 3.77E-04 3.04E-07 1.00E+00 1.00E+00 1.53E-09CE2-CTP-CF-CT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CTP-CF-HT2OF3TM 3.73E-05 2.90E-08 1.00E+00 1.00E+00 1.48E-09CE2-CBI-FF-PD 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PC 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CBI-FF-PB 5.00E-04 2.50E-08 1.00E+00 1.00E+00 9.48E-11CE2-CPR-FF-PC 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PB 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPR-FF-PD 1.10E-04 3.51E-09 1.00E+00 1.00E+00 6.03E-11CE2-CPA-FF-TC 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TD 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CPA-FF-TB 7.60E-03 2.10E-07 1.00E+00 1.00E+00 5.24E-11CE2-CTP-FF-CTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTB 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-CTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTD 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CTP-FF-HTC 8.40E-04 1.63E-08 1.00E+00 1.00E+00 3.65E-11CE2-CBI-FF-TD 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TC 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CBI-FF-TB 5.00E-04 8.43E-09 1.00E+00 1.00E+00 3.23E-11CE2-CPA-FF-TA 7.60E-03 1.02E-07 1.00E+00 1.00E+00 2.54E-11CE2-CTP-FF-CTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CTP-FF-HTA 8.40E-04 7.38E-09 1.00E+00 1.00E+00 1.65E-11CE2-CBI-FF-TA 5.00E-04 3.16E-09 1.00E+00 1.00E+00 1.23E-11

Page 421: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-40

Table F-17. RPS CE Group 3 top 50 cutsets (no manual scram).

Table F-17. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 63.8 4.80E-06 CE3-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-062 13.3 1.00E-06 CE3-BME-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKERS 1.00E-063 11.2 8.40E-07 CE3-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-074 10.1 7.50E-07 CE3-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-015 0.6 4.20E-08 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

CE3-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-086 0.4 2.80E-08 CE3-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06

CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-027 0.2 1.40E-08 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-048 0.2 1.40E-08 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-049 0 2.50E-09 CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

CE3-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A T&M)

1.60E-07

10 0 2.20E-09 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

11 0 2.20E-09 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

12 0 2.20E-09 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

13 0 2.20E-09 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

14 0 2.20E-09 CE3-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

15 0 2.20E-09 CE3-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

16 0 2.20E-09 CE3-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

17 0 2.20E-09 CE3-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

18 0 5.80E-10 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

19 0 4.10E-10 CE3-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE3-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

20 0 3.20E-10 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05

21 0 3.20E-10 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

22 0 3.20E-10 CE3-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05

23 0 3.20E-10 CE3-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

24 0 1.40E-10 CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

25 0 8.50E-11 CE3-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 CE3-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

26 0 7.20E-11 CE3-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE3-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

27 0 7.20E-11 CE3-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE3-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

28 0 5.10E-11 CE3-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE3-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

Page 422: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-41

Table F-17. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

29 0 2.40E-11 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-RYL-CF-1LM6OF6 CCF 6 OF 6 K1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

30 0 2.40E-11 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-RYL-CF-2LM6OF6 CCF 6 OF 6 K2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

31 0 2.40E-11 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-RYL-CF-3LM6OF6 CCF 6 OF 6 K3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

32 0 2.40E-11 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-RYL-CF-4LM6OF6 CCF 6 OF 6 K4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

33 0 2.00E-11 CE3-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

34 0 2.00E-11 CE3-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

35 0 2.00E-11 CE3-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

36 0 2.00E-11 CE3-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

37 0 2.00E-11 CE3-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

38 0 2.00E-11 CE3-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

39 0 2.00E-11 CE3-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

40 0 2.00E-11 CE3-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

41 0 1.50E-11 CE3-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE3-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

42 0 1.50E-11 CE3-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE3-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

43 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

44 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

45 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

46 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

47 0 1.10E-11 CE3-CPD-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 1.30E-04 CE3-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

48 0 1.10E-11 CE3-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 CE3-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

49 0 7.90E-12 CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB15 TCB-1-TCB-5 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

Page 423: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-42

Table F-17. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

50 0 7.90E-12 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB26 TCB-2-TCB-6 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event

Page 424: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-43

Table F-18. Importance measures sorted on Fussell-Vesely for case (CE Group 3, no manual scram).

Table F-18. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE3-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE3-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE3-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE3-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE3-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE3-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE3-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE3-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.06E+00 6.04E-05CE3-CBI-CF-P3OF4 7.21E-06 8.08E-05 1.00E+00 1.22E+01 8.40E-05CE3-CPD-CF-T3OF4 5.73E-05 6.56E-05 1.00E+00 2.15E+00 8.58E-06CE3-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.06E+00 6.04E-05CE3-CPR-CF-P3OF4 1.51E-06 1.69E-05 1.00E+00 1.22E+01 8.40E-05CE3-CTP-CF-CT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CTP-CF-HT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CBI-CF-T3OF4 7.21E-06 8.26E-06 1.00E+00 2.15E+00 8.58E-06CE3-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-CPR-CF-P2OF3TM 5.03E-06 3.02E-06 1.00E+00 1.60E+00 4.50E-06CE3-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-CPD-CF-T2OF3TM 1.35E-04 1.85E-06 1.00E+00 1.01E+00 1.02E-07CE3-CPD-FF-TD 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09

Page 425: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-44

Table F-18. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-CPD-FF-TC 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CPD-FF-TB 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CTP-CF-CT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CTP-CF-HT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CBI-FF-PD 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PB 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PC 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CPD-FF-TA 2.70E-03 2.21E-07 1.00E+00 1.00E+00 6.13E-10CE3-CTP-FF-HTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-CBI-CF-P2OF3TM 2.55E-07 1.53E-07 1.00E+00 1.60E+00 4.50E-06CE3-CBI-FF-TB 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TC 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TD 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CTP-FF-CTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CTP-FF-HTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CPR-FF-PB 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PC 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PD 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CBI-FF-TA 5.00E-04 3.90E-08 1.00E+00 1.00E+00 5.87E-10CE3-CBI-FF-PA 5.00E-04 5.02E-09 1.00E+00 1.00E+00 7.60E-11CE3-CBI-CF-T2OF3TM 2.55E-07 3.28E-09 1.00E+00 1.01E+00 9.66E-08CE3-CPR-FF-PA 1.10E-04 6.22E-10 1.00E+00 1.00E+00 4.23E-11CE3-RYL-FF-LCD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12

Page 426: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-45

Table F-19. Importance measures sorted on Risk Increase for case (CE Group 3, no manual scram).

Table F-19. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE3-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE3-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE3-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE3-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE3-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE3-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-CBI-CF-P3OF4 7.21E-06 8.08E-05 1.00E+00 1.22E+01 8.40E-05CE3-CPR-CF-P3OF4 1.51E-06 1.69E-05 1.00E+00 1.22E+01 8.40E-05CE3-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.06E+00 6.04E-05CE3-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.06E+00 6.04E-05CE3-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE3-CPD-CF-T3OF4 5.73E-05 6.56E-05 1.00E+00 2.15E+00 8.58E-06CE3-CTP-CF-CT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CTP-CF-HT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CBI-CF-T3OF4 7.21E-06 8.26E-06 1.00E+00 2.15E+00 8.58E-06CE3-CPR-CF-P2OF3TM 5.03E-06 3.02E-06 1.00E+00 1.60E+00 4.50E-06CE3-CBI-CF-P2OF3TM 2.55E-07 1.53E-07 1.00E+00 1.60E+00 4.50E-06CE3-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE3-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08

Page 427: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-46

Table F-19. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-CPD-CF-T2OF3TM 1.35E-04 1.85E-06 1.00E+00 1.01E+00 1.02E-07CE3-CTP-CF-CT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CTP-CF-HT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CBI-CF-T2OF3TM 2.55E-07 3.28E-09 1.00E+00 1.01E+00 9.66E-08CE3-CPD-FF-TD 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CPD-FF-TC 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CPD-FF-TB 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CBI-FF-PD 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PB 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PC 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CPD-FF-TA 2.70E-03 2.21E-07 1.00E+00 1.00E+00 6.13E-10CE3-CTP-FF-HTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CBI-FF-TB 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TC 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TD 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CTP-FF-CTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CTP-FF-HTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CPR-FF-PB 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PC 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PD 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CBI-FF-TA 5.00E-04 3.90E-08 1.00E+00 1.00E+00 5.87E-10CE3-CBI-FF-PA 5.00E-04 5.02E-09 1.00E+00 1.00E+00 7.60E-11CE3-CPR-FF-PA 1.10E-04 6.22E-10 1.00E+00 1.00E+00 4.23E-11CE3-RYL-FF-LCD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12

Page 428: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-47

Table F-20. Importance measures sorted on Birnbaum for case (CE Group 3, no manual scram).

Table F-20. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-RYT-CF-2OF4 4.78E-06 6.38E-01 2.76E+00 1.34E+05 1.00E+00CE3-BME-CF-TB2OF8 9.97E-07 1.33E-01 1.15E+00 1.34E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 1.12E-01 1.13E+00 1.34E+05 1.00E+00CE3-CBI-CF-6OF8 7.66E-07 1.01E-01 1.11E+00 1.31E+05 9.84E-01CE3-RYL-CF-LM12OF24 4.29E-08 5.63E-03 1.01E+00 1.31E+05 9.84E-01CE3-CBI-CF-4OF6TM 1.72E-06 3.67E-03 1.00E+00 2.14E+03 1.60E-02CE3-RYL-CF-LM6OF12TM 1.58E-07 3.37E-04 1.00E+00 2.14E+03 1.60E-02CE3-RYT-FF-ICK4 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK3 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK2 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYT-FF-ICK1 1.20E-04 2.51E-03 1.00E+00 2.19E+01 1.57E-04CE3-RYL-CF-1LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-3LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-4LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-RYL-CF-2LM6OF6 2.02E-07 4.16E-06 1.00E+00 2.16E+01 1.54E-04CE3-BME-FO-TB8 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB2 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB4 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB3 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB1 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB7 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB6 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-BME-FO-TB5 1.80E-05 3.33E-04 1.00E+00 1.95E+01 1.39E-04CE3-CBI-CF-P3OF4 7.21E-06 8.08E-05 1.00E+00 1.22E+01 8.40E-05CE3-CPR-CF-P3OF4 1.51E-06 1.69E-05 1.00E+00 1.22E+01 8.40E-05CE3-BSN-CF-TB2OF8 1.06E-05 8.54E-05 1.00E+00 9.06E+00 6.04E-05CE3-PWR-CF-TB2OF4 2.51E-06 2.02E-05 1.00E+00 9.06E+00 6.04E-05CE3-BUV-CF-TB2OF8 5.43E-05 9.77E-05 1.00E+00 2.80E+00 1.35E-05CE3-CPD-CF-T3OF4 5.73E-05 6.56E-05 1.00E+00 2.15E+00 8.58E-06CE3-CTP-CF-CT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CTP-CF-HT3OF4 1.02E-05 1.17E-05 1.00E+00 2.15E+00 8.58E-06CE3-CBI-CF-T3OF4 7.21E-06 8.26E-06 1.00E+00 2.15E+00 8.58E-06CE3-CPR-CF-P2OF3TM 5.03E-06 3.02E-06 1.00E+00 1.60E+00 4.50E-06CE3-CBI-CF-P2OF3TM 2.55E-07 1.53E-07 1.00E+00 1.60E+00 4.50E-06CE3-RYL-CF-4LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-1LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-3LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RYL-CF-2LM3OF3TM 4.66E-07 1.56E-07 1.00E+00 1.34E+00 2.51E-06CE3-RPS-TM-CHA 1.60E-02 2.29E-03 1.00E+00 1.14E+00 1.07E-06CE3-PWR-FF-TB37 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB26 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB15 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-PWR-FF-TB48 6.00E-05 2.66E-06 1.00E+00 1.04E+00 3.33E-07CE3-BSN-FO-TB4 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB1 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB2 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB3 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB5 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB6 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB7 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-BSN-FO-TB8 1.50E-04 3.43E-06 1.00E+00 1.02E+00 1.71E-07CE3-CPD-CF-T2OF3TM 1.35E-04 1.85E-06 1.00E+00 1.01E+00 1.02E-07CE3-CTP-CF-CT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CTP-CF-HT2OF3TM 3.73E-05 5.10E-07 1.00E+00 1.01E+00 1.02E-07CE3-CBI-CF-T2OF3TM 2.55E-07 3.28E-09 1.00E+00 1.01E+00 9.66E-08CE3-BUV-FO-TB8 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08

Page 429: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-48

Table F-20. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BUV-FO-TB7 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB6 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB5 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB3 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB4 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB1 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-BUV-FO-TB2 1.10E-03 6.65E-06 1.00E+00 1.01E+00 4.53E-08CE3-CBI-FF-PD 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PB 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CBI-FF-PC 5.00E-04 3.08E-07 1.00E+00 1.00E+00 4.62E-09CE3-CPR-FF-PB 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PC 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPR-FF-PD 1.10E-04 6.56E-08 1.00E+00 1.00E+00 4.46E-09CE3-CPD-FF-TD 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CPD-FF-TC 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CPD-FF-TB 2.70E-03 5.39E-07 1.00E+00 1.00E+00 1.50E-09CE3-CTP-FF-HTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTC 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-CTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTB 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CTP-FF-HTD 8.40E-04 1.64E-07 1.00E+00 1.00E+00 1.47E-09CE3-CBI-FF-TB 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TC 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CBI-FF-TD 5.00E-04 9.71E-08 1.00E+00 1.00E+00 1.46E-09CE3-CPD-FF-TA 2.70E-03 2.21E-07 1.00E+00 1.00E+00 6.13E-10CE3-CTP-FF-CTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CTP-FF-HTA 8.40E-04 6.63E-08 1.00E+00 1.00E+00 5.92E-10CE3-CBI-FF-TA 5.00E-04 3.90E-08 1.00E+00 1.00E+00 5.87E-10CE3-CBI-FF-PA 5.00E-04 5.02E-09 1.00E+00 1.00E+00 7.60E-11CE3-CPR-FF-PA 1.10E-04 6.22E-10 1.00E+00 1.00E+00 4.23E-11CE3-RYL-FF-LCD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LCD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD4 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBD1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC3 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC2 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12CE3-RYL-FF-LBC1 2.60E-04 1.93E-10 1.00E+00 1.00E+00 5.62E-12

Page 430: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-49

Table F-21. RPS CE Group 3 top 50 cutsets (manual scram).

Table F-21. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 52.6 1.00E-06 CE3-BME-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKERS 1.00E-062 44.3 8.40E-07 CE3-ROD-CF-RODS CCF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-073 2.5 4.80E-08 CE3-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-06

CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-024 0.4 7.50E-09 CE3-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

5 0 5.80E-10 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

6 0 4.20E-10 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

7 0 3.20E-10 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05

8 0 3.20E-10 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

9 0 3.20E-10 CE3-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05

10 0 3.20E-10 CE3-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE3-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

11 0 2.80E-10 CE3-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

12 0 1.40E-10 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

13 0 1.40E-10 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

14 0 1.40E-10 CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

15 0 2.50E-11 CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE3-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A

T&M) 1.60E-07

CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-0216 0 2.40E-11 CE3-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06

CE3-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-0617 0 2.20E-11 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05

CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

18 0 2.20E-11 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

19 0 2.20E-11 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

20 0 2.20E-11 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

21 0 2.20E-11 CE3-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

22 0 2.20E-11 CE3-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

23 0 2.20E-11 CE3-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE3-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

24 0 2.20E-11 CE3-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05

Page 431: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-50

Table F-21. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE3-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

25 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

26 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

27 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

28 0 1.30E-11 CE3-BSN-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER SHUNT TRIP DEVICE

1.10E-05

CE3-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

29 0 4.10E-12 CE3-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE3-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE3-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

30 0 3.70E-12 CE3-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07 CE3-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06 /CE3-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

31 0 3.00E-12 CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

32 0 3.00E-12 CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

33 0 3.00E-12 CE3-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

34 0 3.00E-12 CE3-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

35 0 3.00E-12 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

36 0 3.00E-12 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03

37 0 3.00E-12 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

38 0 3.00E-12 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

39 0 3.00E-12 CE3-BME-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 UNDERVOLTAGE DEVICE FAILS 1.10E-03

40 0 3.00E-12 CE3-BME-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 UNDERVOLTAGE DEVICE FAILS 1.10E-03

41 0 3.00E-12 CE3-BME-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 UNDERVOLTAGE DEVICE FAILS 1.10E-03

42 0 3.00E-12 CE3-BME-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 HARDWARE FAILURES 1.80E-05 CE3-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 UNDERVOLTAGE DEVICE FAILS 1.10E-03

43 0 1.20E-12 CE3-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04

Page 432: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-51

Table F-21. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE DEVICE

5.40E-05

44 0 1.20E-12 CE3-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

45 0 1.20E-12 CE3-BSN-FO-TB5 TRIP CIRCUIT BREAKER TCB-5 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BSN-FO-TB6 TRIP CIRCUIT BREAKER TCB-6 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

46 0 1.20E-12 CE3-BSN-FO-TB7 TRIP CIRCUIT BREAKER TCB-7 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BSN-FO-TB8 TRIP CIRCUIT BREAKER TCB-8 SHUNT TRIP DEVICE FAILS 1.50E-04 CE3-BUV-CF-TB2OF8 CCF SPECIFIC 2 OF 8 TRIP CIRCUIT BREAKER UNDERVOLTAGE

DEVICE 5.40E-05

47 0 1.20E-12 CE3-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE3-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB26 TCB-2-TCB-6 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

48 0 1.20E-12 CE3-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE3-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB15 TCB-1-TCB-5 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

49 0 1.20E-12 CE3-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE3-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB48 TCB-4-TCB-8 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

50 0 1.20E-12 CE3-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE3-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE3-PWR-FF-TB37 TCB-3-TCB-7 SHUNT TRIP DEVICE DC POWER FAILS 6.00E-05

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for

channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event.

Page 433: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-52

Table F-22. Importance measures sorted on Fussell-Vesely for case (CE Group 3, manual scram).

Table F-22. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE3-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE3-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE3-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE3-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE3-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE3-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE3-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE3-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RPS-TM-CHA 1.60E-02 9.04E-05 1.00E+00 1.01E+00 1.07E-08CE3-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE3-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE3-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE3-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-CBI-CF-P3OF4 7.21E-06 3.18E-06 1.00E+00 1.44E+00 8.37E-07CE3-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-CPD-CF-T3OF4 5.73E-05 2.60E-06 1.00E+00 1.05E+00 8.58E-08CE3-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-CPR-CF-P3OF4 1.51E-06 6.66E-07 1.00E+00 1.44E+00 8.36E-07CE3-CTP-CF-CT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-CTP-CF-HT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-CBI-CF-T3OF4 7.21E-06 3.26E-07 1.00E+00 1.05E+00 8.58E-08CE3-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06

Page 434: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-53

Table F-22. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-CPR-CF-P2OF3TM 5.03E-06 1.13E-07 1.00E+00 1.02E+00 4.27E-08CE3-CPD-CF-T2OF3TM 1.35E-04 7.27E-08 1.00E+00 1.00E+00 1.02E-09CE3-CTP-CF-HT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CTP-CF-CT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CPD-FF-TC 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TD 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TB 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CBI-FF-PD 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PC 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PB 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-CBI-CF-P2OF3TM 2.55E-07 4.57E-09 1.00E+00 1.02E+00 3.35E-08CE3-CPD-FF-TA 2.70E-03 2.28E-09 1.00E+00 1.00E+00 1.55E-12CE3-CTP-FF-CTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CPR-FF-PD 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PC 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PB 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CBI-FF-TD 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TC 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TB 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12

Page 435: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-54

Table F-23. Importance measures sorted on Risk Increase for case (CE Group 3, manual scram).

Table F-23. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE3-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE3-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE3-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE3-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE3-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE3-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE3-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE3-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE3-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE3-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE3-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-CBI-CF-P3OF4 7.21E-06 3.18E-06 1.00E+00 1.44E+00 8.37E-07CE3-CPR-CF-P3OF4 1.51E-06 6.66E-07 1.00E+00 1.44E+00 8.36E-07CE3-CPD-CF-T3OF4 5.73E-05 2.60E-06 1.00E+00 1.05E+00 8.58E-08CE3-CTP-CF-CT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-CTP-CF-HT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-CBI-CF-T3OF4 7.21E-06 3.26E-07 1.00E+00 1.05E+00 8.58E-08CE3-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-CPR-CF-P2OF3TM 5.03E-06 1.13E-07 1.00E+00 1.02E+00 4.27E-08CE3-CBI-CF-P2OF3TM 2.55E-07 4.57E-09 1.00E+00 1.02E+00 3.35E-08CE3-RPS-TM-CHA 1.60E-02 9.04E-05 1.00E+00 1.01E+00 1.07E-08CE3-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 436: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-55

Table F-23. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-CPD-CF-T2OF3TM 1.35E-04 7.27E-08 1.00E+00 1.00E+00 1.02E-09CE3-CTP-CF-HT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CTP-CF-CT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CPD-FF-TC 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TD 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TB 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CBI-FF-PD 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PC 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PB 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CPD-FF-TA 2.70E-03 2.28E-09 1.00E+00 1.00E+00 1.55E-12CE3-CTP-FF-CTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CPR-FF-PD 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PC 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PB 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CBI-FF-TD 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TC 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TB 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12

Page 437: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-56

Table F-24. Importance measures sorted on Birnbaum for case (CE Group 3, manual scram).

Table F-24. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BME-CF-TB2OF8 9.97E-07 5.26E-01 2.11E+00 5.28E+05 1.00E+00CE3-ROD-CF-RODS 8.40E-07 4.43E-01 1.80E+00 5.28E+05 1.00E+00CE3-RYT-CF-2OF4 4.78E-06 2.52E-02 1.03E+00 5.28E+03 1.00E-02CE3-CBI-CF-6OF8 7.66E-07 3.98E-03 1.00E+00 5.19E+03 9.85E-03CE3-RYL-CF-LM12OF24 4.29E-08 2.23E-04 1.00E+00 5.19E+03 9.85E-03CE3-CBI-CF-4OF6TM 1.72E-06 1.45E-04 1.00E+00 8.54E+01 1.60E-04CE3-RYL-CF-LM6OF12TM 1.58E-07 1.33E-05 1.00E+00 8.54E+01 1.60E-04CE3-BSN-CF-TB2OF8 1.06E-05 3.32E-04 1.00E+00 3.23E+01 5.93E-05CE3-PWR-CF-TB2OF4 2.51E-06 7.85E-05 1.00E+00 3.23E+01 5.93E-05CE3-BME-FO-TB7 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB8 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB5 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB6 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB4 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB3 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB2 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BME-FO-TB1 1.80E-05 1.85E-04 1.00E+00 1.13E+01 1.95E-05CE3-BUV-CF-TB2OF8 5.43E-05 3.81E-04 1.00E+00 8.02E+00 1.33E-05CE3-XHE-XE-SCRAM 1.00E-02 2.98E-02 1.03E+00 3.95E+00 5.65E-06CE3-MSW-CF-2OF4 4.95E-06 1.48E-05 1.00E+00 3.98E+00 5.65E-06CE3-RYT-FF-ICK4 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK1 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK2 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYT-FF-ICK3 1.20E-04 9.96E-05 1.00E+00 1.83E+00 1.57E-06CE3-RYL-CF-1LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-2LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-3LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-RYL-CF-4LM6OF6 2.02E-07 1.64E-07 1.00E+00 1.81E+00 1.54E-06CE3-CBI-CF-P3OF4 7.21E-06 3.18E-06 1.00E+00 1.44E+00 8.37E-07CE3-CPR-CF-P3OF4 1.51E-06 6.66E-07 1.00E+00 1.44E+00 8.36E-07CE3-CPD-CF-T3OF4 5.73E-05 2.60E-06 1.00E+00 1.05E+00 8.58E-08CE3-CTP-CF-CT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-CTP-CF-HT3OF4 1.02E-05 4.62E-07 1.00E+00 1.05E+00 8.58E-08CE3-CBI-CF-T3OF4 7.21E-06 3.26E-07 1.00E+00 1.05E+00 8.58E-08CE3-PWR-FF-TB26 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB37 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB48 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-PWR-FF-TB15 6.00E-05 2.04E-06 1.00E+00 1.03E+00 6.44E-08CE3-CPR-CF-P2OF3TM 5.03E-06 1.13E-07 1.00E+00 1.02E+00 4.27E-08CE3-BSN-FO-TB3 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB8 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB7 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB2 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB6 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB4 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB1 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-BSN-FO-TB5 1.50E-04 2.68E-06 1.00E+00 1.02E+00 3.38E-08CE3-CBI-CF-P2OF3TM 2.55E-07 4.57E-09 1.00E+00 1.02E+00 3.35E-08CE3-RYL-CF-1LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-4LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-3LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-RYL-CF-2LM3OF3TM 4.66E-07 6.15E-09 1.00E+00 1.01E+00 2.50E-08CE3-BUV-FO-TB7 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB3 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB8 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB6 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08

Page 438: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-57

Table F-24. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE3-BUV-FO-TB5 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB4 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB1 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-BUV-FO-TB2 1.10E-03 1.09E-05 1.00E+00 1.01E+00 1.88E-08CE3-RPS-TM-CHA 1.60E-02 9.04E-05 1.00E+00 1.01E+00 1.07E-08CE3-MSW-FF-MT4 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT2 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT1 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-MSW-FF-MT3 1.30E-04 3.61E-07 1.00E+00 1.00E+00 5.27E-09CE3-CPD-CF-T2OF3TM 1.35E-04 7.27E-08 1.00E+00 1.00E+00 1.02E-09CE3-CTP-CF-HT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CTP-CF-CT2OF3TM 3.73E-05 1.89E-08 1.00E+00 1.00E+00 9.66E-10CE3-CBI-FF-PD 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PC 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CBI-FF-PB 5.00E-04 1.01E-08 1.00E+00 1.00E+00 3.83E-11CE3-CPR-FF-PD 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PC 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPR-FF-PB 1.10E-04 1.29E-09 1.00E+00 1.00E+00 2.16E-11CE3-CPD-FF-TC 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TD 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CPD-FF-TB 2.70E-03 1.34E-08 1.00E+00 1.00E+00 9.41E-12CE3-CTP-FF-CTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-CTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTC 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTD 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CTP-FF-HTB 8.40E-04 1.87E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TD 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TC 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CBI-FF-TB 5.00E-04 1.17E-09 1.00E+00 1.00E+00 4.35E-12CE3-CPD-FF-TA 2.70E-03 2.28E-09 1.00E+00 1.00E+00 1.55E-12

Page 439: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-58

Table F-25. RPS CE Group 4 top 50 cutsets (no manual scram).

Table F-25. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 66.5 4.80E-06 CE4-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-062 11.7 8.40E-07 CE4-ROD-CF-RODS CCF OF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-073 10.5 7.50E-07 CE4-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-014 9.8 7.10E-07 CE4-BME-CF-TB2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CIRCUIT BREAKERS 7.10E-075 0.6 4.20E-08 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

CE4-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-086 0.4 2.80E-08 CE4-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06

CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-027 0.2 1.40E-08 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-048 0.2 1.40E-08 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-049 0 2.50E-09 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

CE4-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A T&M)

1.60E-07

10 0 2.20E-09 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

11 0 2.20E-09 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

12 0 2.20E-09 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

13 0 2.20E-09 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

14 0 4.10E-10 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

15 0 3.20E-10 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05

16 0 3.20E-10 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

17 0 3.20E-10 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

18 0 9.20E-11 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

19 0 8.50E-11 CE4-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 CE4-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

20 0 7.20E-11 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

21 0 7.20E-11 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

22 0 5.10E-11 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

23 0 2.40E-11 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-1LM6OF6 CCF 6 OF 6 K1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

24 0 2.40E-11 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-2LM6OF6 CCF 6 OF 6 K2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

25 0 2.40E-11 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-3LM6OF6 CCF 6 OF 6 K3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

26 0 2.40E-11 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-4LM6OF6 CCF 6 OF 6 K4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

Page 440: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-59

Table F-25. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

27 0 2.00E-11 CE4-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

28 0 2.00E-11 CE4-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

29 0 2.00E-11 CE4-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

30 0 2.00E-11 CE4-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

31 0 1.50E-11 CE4-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE4-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

32 0 1.50E-11 CE4-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 CE4-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

33 0 1.10E-11 CE4-CPD-CF-T2OF3TM CCF 2 OF 3 CORE PROTECTION CALCULATORS (CH A T&M) 1.30E-04 CE4-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

34 0 1.10E-11 CE4-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 CE4-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01

35 0 1.10E-11 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

36 0 1.10E-11 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

37 0 7.90E-12 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-FF-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE DC POWER

FAILS 6.00E-05

CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-0438 0 7.90E-12 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

CE4-PWR-FF-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-0439 0 7.90E-12 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

CE4-PWR-FF-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-0440 0 7.90E-12 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

CE4-PWR-FF-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-0441 0 3.60E-12 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05

/CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-3LM6OF6 CCF 6 OF 6 K3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07

42 0 3.60E-12 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-4LM6OF6 CCF 6 OF 6 K4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07

43 0 3.60E-12 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-1LM6OF6 CCF 6 OF 6 K1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07

44 0 3.60E-12 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-2LM6OF6 CCF 6 OF 6 K2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07

45 0 3.00E-12 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

46 0 3.00E-12 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP 2.50E-06

Page 441: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-60

Table F-25. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

POWER 47 0 3.00E-12 CE4-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06

CE4-CTP-CF-CT2OF3TM CCF 2 OF 3 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

48 0 3.00E-12 CE4-CPR-CF-P2OF3TM CCF 2 OF 3 PRESSURE SENSORS/TRANSMITTERS (CH A T&M) 5.00E-06 CE4-CTP-CF-HT2OF3TM CCF 2 OF 3 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 3.70E-05 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02

49 0 3.00E-12 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

50 0 3.00E-12 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event.

Page 442: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-61

Table F-26. Importance measures sorted on Fussell-Vesely for case (CE Group 4, no manual scram).

Table F-26. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-RYT-CF-2OF4 4.78E-06 6.65E-01 2.98E+00 1.39E+05 1.00E+00CE4-ROD-CF-RODS 8.40E-07 1.17E-01 1.13E+00 1.39E+05 1.00E+00CE4-CBI-CF-6OF8 7.66E-07 1.05E-01 1.12E+00 1.37E+05 9.84E-01CE4-BME-CF-TB2OF4 7.07E-07 9.83E-02 1.11E+00 1.39E+05 1.00E+00CE4-RYL-CF-LM12OF24 4.29E-08 5.87E-03 1.01E+00 1.37E+05 9.84E-01CE4-CBI-CF-4OF6TM 1.72E-06 3.83E-03 1.00E+00 2.23E+03 1.60E-02CE4-RPS-TM-CHA 1.60E-02 2.38E-03 1.00E+00 1.15E+00 1.07E-06CE4-RYT-FF-ICK1 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK2 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK3 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK4 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYL-CF-LM6OF12TM 1.58E-07 3.52E-04 1.00E+00 2.23E+03 1.60E-02CE4-BME-FO-TB2 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB3 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB1 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB4 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-CBI-CF-P3OF4 7.21E-06 8.42E-05 1.00E+00 1.27E+01 8.40E-05CE4-CPD-CF-T3OF4 5.73E-05 6.84E-05 1.00E+00 2.19E+00 8.58E-06CE4-BUV-CF-TB2OF4 3.65E-05 5.81E-05 1.00E+00 2.59E+00 1.14E-05CE4-BSN-CF-TB2OF4 8.73E-06 4.80E-05 1.00E+00 6.50E+00 3.95E-05CE4-CPR-CF-P3OF4 1.51E-06 1.76E-05 1.00E+00 1.27E+01 8.40E-05CE4-PWR-CF-TB2OF4 2.51E-06 1.38E-05 1.00E+00 6.50E+00 3.95E-05CE4-CTP-CF-CT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CTP-CF-HT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CBI-CF-T3OF4 7.21E-06 8.60E-06 1.00E+00 2.19E+00 8.58E-06CE4-BUV-FO-TB3 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB4 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB2 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB1 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-RYL-CF-3LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-2LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-4LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-1LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-BSN-FO-TB4 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB3 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB2 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB1 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-CPR-CF-P2OF3TM 5.03E-06 3.15E-06 1.00E+00 1.63E+00 4.50E-06CE4-CPD-CF-T2OF3TM 1.35E-04 1.92E-06 1.00E+00 1.01E+00 1.02E-07CE4-PWR-FF-TB1 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB2 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB4 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB3 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-CPD-FF-TB 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TC 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TD 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CTP-CF-CT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CTP-CF-HT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CBI-FF-PB 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CBI-FF-PC 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CBI-FF-PD 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CPD-FF-TA 2.70E-03 2.30E-07 1.00E+00 1.00E+00 6.13E-10CE4-CTP-FF-HTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09

Page 443: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-62

Table F-26. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CTP-FF-CTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CBI-CF-P2OF3TM 2.55E-07 1.60E-07 1.00E+00 1.63E+00 4.50E-06CE4-RYL-CF-1LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-2LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-3LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-4LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-CBI-FF-TD 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TB 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TC 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CTP-FF-CTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CTP-FF-HTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CPR-FF-PD 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPR-FF-PC 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPR-FF-PB 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CBI-FF-TA 5.00E-04 4.07E-08 1.00E+00 1.00E+00 5.87E-10CE4-CBI-FF-PA 5.00E-04 5.23E-09 1.00E+00 1.00E+00 7.60E-11CE4-CBI-CF-T2OF3TM 2.55E-07 3.41E-09 1.00E+00 1.01E+00 9.66E-08CE4-CPR-FF-PA 1.10E-04 6.48E-10 1.00E+00 1.00E+00 4.23E-11CE4-RYL-FF-LCD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12

Page 444: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-63

Table F-27. Importance measures sorted on Risk Increase for case (CE Group 4, no manual scram).

Table F-27. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-RYT-CF-2OF4 4.78E-06 6.65E-01 2.98E+00 1.39E+05 1.00E+00CE4-ROD-CF-RODS 8.40E-07 1.17E-01 1.13E+00 1.39E+05 1.00E+00CE4-BME-CF-TB2OF4 7.07E-07 9.83E-02 1.11E+00 1.39E+05 1.00E+00CE4-CBI-CF-6OF8 7.66E-07 1.05E-01 1.12E+00 1.37E+05 9.84E-01CE4-RYL-CF-LM12OF24 4.29E-08 5.87E-03 1.01E+00 1.37E+05 9.84E-01CE4-CBI-CF-4OF6TM 1.72E-06 3.83E-03 1.00E+00 2.23E+03 1.60E-02CE4-RYL-CF-LM6OF12TM 1.58E-07 3.52E-04 1.00E+00 2.23E+03 1.60E-02CE4-RYT-FF-ICK1 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK2 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK3 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK4 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB2 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB3 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB1 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB4 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-RYL-CF-3LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-2LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-4LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-1LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-CBI-CF-P3OF4 7.21E-06 8.42E-05 1.00E+00 1.27E+01 8.40E-05CE4-CPR-CF-P3OF4 1.51E-06 1.76E-05 1.00E+00 1.27E+01 8.40E-05CE4-BSN-CF-TB2OF4 8.73E-06 4.80E-05 1.00E+00 6.50E+00 3.95E-05CE4-PWR-CF-TB2OF4 2.51E-06 1.38E-05 1.00E+00 6.50E+00 3.95E-05CE4-BUV-CF-TB2OF4 3.65E-05 5.81E-05 1.00E+00 2.59E+00 1.14E-05CE4-CPD-CF-T3OF4 5.73E-05 6.84E-05 1.00E+00 2.19E+00 8.58E-06CE4-CTP-CF-CT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CTP-CF-HT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CBI-CF-T3OF4 7.21E-06 8.60E-06 1.00E+00 2.19E+00 8.58E-06CE4-CPR-CF-P2OF3TM 5.03E-06 3.15E-06 1.00E+00 1.63E+00 4.50E-06CE4-CBI-CF-P2OF3TM 2.55E-07 1.60E-07 1.00E+00 1.63E+00 4.50E-06CE4-RYL-CF-1LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-2LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-3LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-4LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RPS-TM-CHA 1.60E-02 2.38E-03 1.00E+00 1.15E+00 1.07E-06CE4-BSN-FO-TB4 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB3 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB2 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB1 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB1 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB2 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB4 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB3 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-BUV-FO-TB3 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB4 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB2 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB1 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-CPD-CF-T2OF3TM 1.35E-04 1.92E-06 1.00E+00 1.01E+00 1.02E-07CE4-CTP-CF-CT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CTP-CF-HT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CBI-CF-T2OF3TM 2.55E-07 3.41E-09 1.00E+00 1.01E+00 9.66E-08CE4-CPD-FF-TB 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TC 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TD 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CBI-FF-PB 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CBI-FF-PC 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09

Page 445: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-64

Table F-27. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CBI-FF-PD 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CPD-FF-TA 2.70E-03 2.30E-07 1.00E+00 1.00E+00 6.13E-10CE4-CTP-FF-HTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CBI-FF-TD 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TB 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TC 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CTP-FF-CTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CTP-FF-HTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CPR-FF-PD 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPR-FF-PC 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPR-FF-PB 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CBI-FF-TA 5.00E-04 4.07E-08 1.00E+00 1.00E+00 5.87E-10CE4-CBI-FF-PA 5.00E-04 5.23E-09 1.00E+00 1.00E+00 7.60E-11CE4-CPR-FF-PA 1.10E-04 6.48E-10 1.00E+00 1.00E+00 4.23E-11CE4-RYL-FF-LCD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12

Page 446: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-65

Table F-28. Importance measures sorted on Birnbaum for case (CE Group 4, no manual scram).

Table F-28. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-RYT-CF-2OF4 4.78E-06 6.65E-01 2.98E+00 1.39E+05 1.00E+00CE4-ROD-CF-RODS 8.40E-07 1.17E-01 1.13E+00 1.39E+05 1.00E+00CE4-BME-CF-TB2OF4 7.07E-07 9.83E-02 1.11E+00 1.39E+05 1.00E+00CE4-CBI-CF-6OF8 7.66E-07 1.05E-01 1.12E+00 1.37E+05 9.84E-01CE4-RYL-CF-LM12OF24 4.29E-08 5.87E-03 1.01E+00 1.37E+05 9.84E-01CE4-CBI-CF-4OF6TM 1.72E-06 3.83E-03 1.00E+00 2.23E+03 1.60E-02CE4-RYL-CF-LM6OF12TM 1.58E-07 3.52E-04 1.00E+00 2.23E+03 1.60E-02CE4-RYT-FF-ICK1 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK2 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK3 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-RYT-FF-ICK4 1.20E-04 2.31E-03 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB2 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB3 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB1 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-BME-FO-TB4 1.80E-05 3.47E-04 1.00E+00 2.03E+01 1.39E-04CE4-RYL-CF-3LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-2LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-4LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-RYL-CF-1LM6OF6 2.02E-07 3.83E-06 1.00E+00 1.99E+01 1.36E-04CE4-CBI-CF-P3OF4 7.21E-06 8.42E-05 1.00E+00 1.27E+01 8.40E-05CE4-CPR-CF-P3OF4 1.51E-06 1.76E-05 1.00E+00 1.27E+01 8.40E-05CE4-BSN-CF-TB2OF4 8.73E-06 4.80E-05 1.00E+00 6.50E+00 3.95E-05CE4-PWR-CF-TB2OF4 2.51E-06 1.38E-05 1.00E+00 6.50E+00 3.95E-05CE4-BUV-CF-TB2OF4 3.65E-05 5.81E-05 1.00E+00 2.59E+00 1.14E-05CE4-CPD-CF-T3OF4 5.73E-05 6.84E-05 1.00E+00 2.19E+00 8.58E-06CE4-CTP-CF-CT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CTP-CF-HT3OF4 1.02E-05 1.22E-05 1.00E+00 2.19E+00 8.58E-06CE4-CBI-CF-T3OF4 7.21E-06 8.60E-06 1.00E+00 2.19E+00 8.58E-06CE4-CPR-CF-P2OF3TM 5.03E-06 3.15E-06 1.00E+00 1.63E+00 4.50E-06CE4-CBI-CF-P2OF3TM 2.55E-07 1.60E-07 1.00E+00 1.63E+00 4.50E-06CE4-RYL-CF-1LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-2LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-3LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RYL-CF-4LM3OF3TM 4.66E-07 1.44E-07 1.00E+00 1.31E+00 2.22E-06CE4-RPS-TM-CHA 1.60E-02 2.38E-03 1.00E+00 1.15E+00 1.07E-06CE4-BSN-FO-TB4 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB3 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB2 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-BSN-FO-TB1 1.50E-04 3.44E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB1 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB2 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB4 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-PWR-FF-TB3 6.00E-05 1.38E-06 1.00E+00 1.02E+00 1.65E-07CE4-CPD-CF-T2OF3TM 1.35E-04 1.92E-06 1.00E+00 1.01E+00 1.02E-07CE4-CTP-CF-CT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CTP-CF-HT2OF3TM 3.73E-05 5.31E-07 1.00E+00 1.01E+00 1.02E-07CE4-CBI-CF-T2OF3TM 2.55E-07 3.41E-09 1.00E+00 1.01E+00 9.66E-08CE4-BUV-FO-TB3 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB4 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB2 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-BUV-FO-TB1 1.10E-03 6.57E-06 1.00E+00 1.01E+00 4.30E-08CE4-CBI-FF-PB 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CBI-FF-PC 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CBI-FF-PD 5.00E-04 3.21E-07 1.00E+00 1.00E+00 4.62E-09CE4-CPR-FF-PD 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPR-FF-PC 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09

Page 447: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-66

Table F-28. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CPR-FF-PB 1.10E-04 6.83E-08 1.00E+00 1.00E+00 4.46E-09CE4-CPD-FF-TB 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TC 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CPD-FF-TD 2.70E-03 5.62E-07 1.00E+00 1.00E+00 1.50E-09CE4-CTP-FF-HTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-HTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTD 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTC 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CTP-FF-CTB 8.40E-04 1.71E-07 1.00E+00 1.00E+00 1.47E-09CE4-CBI-FF-TD 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TB 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CBI-FF-TC 5.00E-04 1.01E-07 1.00E+00 1.00E+00 1.46E-09CE4-CPD-FF-TA 2.70E-03 2.30E-07 1.00E+00 1.00E+00 6.13E-10CE4-CTP-FF-CTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CTP-FF-HTA 8.40E-04 6.91E-08 1.00E+00 1.00E+00 5.92E-10CE4-CBI-FF-TA 5.00E-04 4.07E-08 1.00E+00 1.00E+00 5.87E-10CE4-CBI-FF-PA 5.00E-04 5.23E-09 1.00E+00 1.00E+00 7.60E-11CE4-CPR-FF-PA 1.10E-04 6.48E-10 1.00E+00 1.00E+00 4.23E-11CE4-RYL-FF-LCD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LCD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD3 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBD1 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC4 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12CE4-RYL-FF-LBC2 2.60E-04 2.01E-10 1.00E+00 1.00E+00 5.62E-12

Page 448: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-67

Table F-29. RPS CE Group 4 top 50 cutsets (manual scram).

Table F-29. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

1 52.3 8.40E-07 CE4-ROD-CF-RODS CCF OF 20% OR MORE CRD/RODS FAIL TO INSERT 8.40E-072 44.1 7.10E-07 CE4-BME-CF-TB2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CIRCUIT BREAKERS 7.10E-073 3 4.80E-08 CE4-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-06

CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-024 0.5 7.50E-09 CE4-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07

/CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

5 0 4.20E-10 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-LM12OF24 CCF SPECIFIC 12 OF 24 LOGIC MATRIX OUTPUT RELAYS 4.30E-08 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

6 0 3.20E-10 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05

7 0 3.20E-10 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05

8 0 3.20E-10 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

9 0 2.80E-10 CE4-CBI-CF-4OF6TM CCF SPECIFIC 4 OF 6 BISTABLE TRIP UNITS (CH A T&M) 1.70E-06 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

10 0 1.40E-10 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

11 0 1.40E-10 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

12 0 9.20E-11 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP POWER

2.50E-06

13 0 2.50E-11 CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 1.60E-02 CE4-RYL-CF-LM6OF12TM CCF SPECIFIC 6 OF 12 LOGIC MATRIX OUTPUT RELAYS (CH A

T&M) 1.60E-07

CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-0214 0 2.40E-11 CE4-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06

CE4-RYT-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) TRIP CONTACTORS 4.80E-0615 0 2.20E-11 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05

CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

16 0 2.20E-11 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

17 0 2.20E-11 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

18 0 2.20E-11 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

19 0 1.10E-11 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

20 0 1.10E-11 CE4-BSN-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP DEVIC

8.70E-06

CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

21 0 4.10E-12 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

22 0 3.70E-12 CE4-CBI-CF-6OF8 CCF SPECIFIC 6 OF 8 BISTABLE TRIP UNITS 7.70E-07 CE4-MSW-CF-2OF4 CCF 2 OF 4 (1-OUT-OF-2 TWICE) MANUAL SWITCHES 4.90E-06

Page 449: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-68

Table F-29. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

/CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-0123 0 3.00E-12 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03

CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

24 0 3.00E-12 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR SHUNT TRIP

POWER 2.50E-06

25 0 3.00E-12 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03

26 0 3.00E-12 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03

27 0 3.00E-12 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03

28 0 3.00E-12 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE4-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03

29 0 1.20E-12 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-BUV-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-FF-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE DC POWER

FAILS 6.00E-05

30 0 1.20E-12 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-BUV-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-FF-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE DC POWER

FAILS 6.00E-05

31 0 1.20E-12 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE4-BUV-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-FF-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE DC POWER

FAILS 6.00E-05

32 0 1.20E-12 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE4-BUV-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 UNDERVOLTAGE DEVICE FAILS 1.10E-03 CE4-PWR-FF-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE DC POWER

FAILS 6.00E-05

33 0 8.50E-13 CE4-CPD-CF-T3OF4 CCF 3 OF 4 CORE PROTECTION CALCULATORS 5.70E-05 CE4-CPR-CF-P3OF4 CCF 3 OF 4 PRESSURE SENSORS/TRANSMITTERS 1.50E-06 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

34 0 8.20E-13 CE4-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR

UNDERVOLTAGE DEV 3.70E-05

35 0 8.20E-13 CE4-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR

UNDERVOLTAGE DEV 3.70E-05

36 0 7.20E-13 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CTP-CF-CT3OF4 CCF 3 OF 4 COLD LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

37 0 7.20E-13 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CTP-CF-HT3OF4 CCF 3 OF 4 HOT LEG TEMPERATURE SENSORS/TRANSMITTERS 1.00E-05 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

38 0 5.10E-13 CE4-CBI-CF-P3OF4 CCF 3 OF 4 PRESSURE BISTABLES 7.20E-06 CE4-CBI-CF-T3OF4 CCF 3 OF 4 TEMPERATURE BISTABLES 7.20E-06 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

39 0 3.30E-13 CE4-BSN-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR

UNDERVOLTAGE DEV 3.70E-05

CE4-PWR-FF-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

40 0 3.30E-13 CE4-BSN-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE FAILS 1.50E-04

Page 450: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-69

Table F-29. (Continued) Cut Set

Cut Set %

Cut Set Prob.

Basic Event a Description Prob.

CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

CE4-PWR-FF-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

41 0 3.30E-13 CE4-BSN-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR

UNDERVOLTAGE DEV 3.70E-05

CE4-PWR-FF-TB1 TRIP CIRCUIT BREAKER TCB-1 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

42 0 3.30E-13 CE4-BSN-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 SHUNT TRIP DEVICE FAILS 1.50E-04 CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR

UNDERVOLTAGE DEV 3.70E-05

CE4-PWR-FF-TB2 TRIP CIRCUIT BREAKER TCB-2 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

43 0 2.80E-13 CE4-BME-FO-TB1 TRIP CIRCUIT BREAKER TCB-1 HARDWARE FAILURES 1.80E-05 CE4-MSW-FF-MT3 MANUAL SWITCH 3 FAILS 1.30E-04 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04

44 0 2.80E-13 CE4-BME-FO-TB2 TRIP CIRCUIT BREAKER TCB-2 HARDWARE FAILURES 1.80E-05 CE4-MSW-FF-MT4 MANUAL SWITCH 4 FAILS 1.30E-04 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04

45 0 2.80E-13 CE4-BME-FO-TB3 TRIP CIRCUIT BREAKER TCB-3 HARDWARE FAILURES 1.80E-05 CE4-MSW-FF-MT1 MANUAL SWITCH 1 FAILS 1.30E-04 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04

46 0 2.80E-13 CE4-BME-FO-TB4 TRIP CIRCUIT BREAKER TCB-4 HARDWARE FAILURES 1.80E-05 CE4-MSW-FF-MT2 MANUAL SWITCH 2 FAILS 1.30E-04 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04

47 0 2.40E-13 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-1LM6OF6 CCF 6 OF 6 K1 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK3 TRIP CONTACTOR K3 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

48 0 2.40E-13 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-2LM6OF6 CCF 6 OF 6 K2 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK4 TRIP CONTACTOR K4 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

49 0 2.40E-13 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-3LM6OF6 CCF 6 OF 6 K3 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK1 TRIP CONTACTOR K1 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

50 0 2.40E-13 /CE4-RPS-TM-CHA RPS CHANNEL A IN TEST AND MAINTENANCE 9.80E-01 CE4-RYL-CF-4LM6OF6 CCF 6 OF 6 K4 LOGIC MATRIC RELAY OUTPUTS 2.00E-07 CE4-RYT-FF-ICK2 TRIP CONTACTOR K2 RELAY FAILS 1.20E-04 CE4-XHE-XE-SCRAM OPERATOR FAILS TO INITIATE MANUAL SCRAM 1.00E-02

CE4-BUV-CF-TB2OF4 CCF 2 OF 4 (1-OF-2 TWICE) TRIP CIRCUIT BRKR UNDERVOLTAGE DEV

3.70E-05

CE4-PWR-FF-TB3 TRIP CIRCUIT BREAKER TCB-3 SHUNT TRIP DEVICE DC POWER FAILS

6.00E-05

a. A / as the first character in a basic event name indicates a complemented event (Success = 1 - Failure). For example, the basic event for channel A in test and maintenance (T&M) is CEx-RPS-TM-CHA (Failure = 1.60E-02). Thus, the basic event name for channel A not in T&M is /CEx-RPS-TM-CHA (Success = 9.84E-01). The event description for complemented events remains the same as the description used for the failure event.

Page 451: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-70

Table F-30. Importance measures sorted on Fussell-Vesely for case (CE Group 4, manual scram).

Table F-30. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-ROD-CF-RODS 8.40E-07 5.24E-01 2.10E+00 6.23E+05 1.00E+00CE4-BME-CF-TB2OF4 7.07E-07 4.41E-01 1.79E+00 6.23E+05 1.00E+00CE4-XHE-XE-SCRAM 1.00E-02 3.52E-02 1.04E+00 4.48E+00 5.64E-06CE4-RYT-CF-2OF4 4.78E-06 2.98E-02 1.03E+00 6.24E+03 1.00E-02CE4-CBI-CF-6OF8 7.66E-07 4.70E-03 1.01E+00 6.14E+03 9.85E-03CE4-RYL-CF-LM12OF24 4.29E-08 2.63E-04 1.00E+00 6.14E+03 9.85E-03CE4-BUV-CF-TB2OF4 3.65E-05 2.58E-04 1.00E+00 8.07E+00 1.13E-05CE4-BME-FO-TB1 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB2 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB3 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB4 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BSN-CF-TB2OF4 8.73E-06 2.12E-04 1.00E+00 2.53E+01 3.90E-05CE4-CBI-CF-4OF6TM 1.72E-06 1.72E-04 1.00E+00 1.01E+02 1.60E-04CE4-RPS-TM-CHA 1.60E-02 1.07E-04 1.00E+00 1.01E+00 1.07E-08CE4-RYT-FF-ICK4 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK3 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK2 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK1 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-PWR-CF-TB2OF4 2.51E-06 6.10E-05 1.00E+00 2.53E+01 3.90E-05CE4-MSW-CF-2OF4 4.95E-06 1.74E-05 1.00E+00 4.52E+00 5.64E-06CE4-RYL-CF-LM6OF12TM 1.58E-07 1.58E-05 1.00E+00 1.01E+02 1.60E-04CE4-BUV-FO-TB1 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB2 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB3 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB4 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-CBI-CF-P3OF4 7.21E-06 3.76E-06 1.00E+00 1.52E+00 8.37E-07CE4-CPD-CF-T3OF4 5.73E-05 3.07E-06 1.00E+00 1.05E+00 8.58E-08CE4-BSN-FO-TB2 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB3 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB1 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB4 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB2 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB1 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB3 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB4 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-CPR-CF-P3OF4 1.51E-06 7.86E-07 1.00E+00 1.52E+00 8.36E-07CE4-CTP-CF-CT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CTP-CF-HT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CBI-CF-T3OF4 7.21E-06 3.86E-07 1.00E+00 1.05E+00 8.58E-08CE4-MSW-FF-MT2 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT3 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT1 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT4 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-RYL-CF-4LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-3LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-2LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-1LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-CPR-CF-P2OF3TM 5.03E-06 1.34E-07 1.00E+00 1.03E+00 4.27E-08CE4-CPD-CF-T2OF3TM 1.35E-04 8.59E-08 1.00E+00 1.00E+00 1.02E-09CE4-CTP-CF-CT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10CE4-CTP-CF-HT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10CE4-CPD-FF-TD 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TC 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TB 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CBI-FF-PD 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-CBI-FF-PC 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11

Page 452: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-71

Table F-30. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CBI-FF-PB 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-RYL-CF-3LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-2LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-1LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-4LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-CBI-CF-P2OF3TM 2.55E-07 5.40E-09 1.00E+00 1.02E+00 3.35E-08CE4-CPD-FF-TA 2.70E-03 2.70E-09 1.00E+00 1.00E+00 1.55E-12CE4-CTP-FF-CTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CPR-FF-PC 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PB 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PD 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CBI-FF-TD 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TC 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TB 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12

Page 453: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-72

Table F-31. Importance measures sorted on Risk Increase for case (CE Group 4, manual scram).

Table F-31. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-ROD-CF-RODS 8.40E-07 5.24E-01 2.10E+00 6.23E+05 1.00E+00CE4-BME-CF-TB2OF4 7.07E-07 4.41E-01 1.79E+00 6.23E+05 1.00E+00CE4-XHE-XE-SCRAM 1.00E-02 3.52E-02 1.04E+00 4.48E+00 5.64E-06CE4-RYT-CF-2OF4 4.78E-06 2.98E-02 1.03E+00 6.24E+03 1.00E-02CE4-CBI-CF-6OF8 7.66E-07 4.70E-03 1.01E+00 6.14E+03 9.85E-03CE4-RYL-CF-LM12OF24 4.29E-08 2.63E-04 1.00E+00 6.14E+03 9.85E-03CE4-BUV-CF-TB2OF4 3.65E-05 2.58E-04 1.00E+00 8.07E+00 1.13E-05CE4-BME-FO-TB1 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB2 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB3 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB4 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BSN-CF-TB2OF4 8.73E-06 2.12E-04 1.00E+00 2.53E+01 3.90E-05CE4-CBI-CF-4OF6TM 1.72E-06 1.72E-04 1.00E+00 1.01E+02 1.60E-04CE4-RPS-TM-CHA 1.60E-02 1.07E-04 1.00E+00 1.01E+00 1.07E-08CE4-RYT-FF-ICK4 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK3 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK2 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK1 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-PWR-CF-TB2OF4 2.51E-06 6.10E-05 1.00E+00 2.53E+01 3.90E-05CE4-MSW-CF-2OF4 4.95E-06 1.74E-05 1.00E+00 4.52E+00 5.64E-06CE4-RYL-CF-LM6OF12TM 1.58E-07 1.58E-05 1.00E+00 1.01E+02 1.60E-04CE4-BUV-FO-TB1 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB2 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB3 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB4 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-CBI-CF-P3OF4 7.21E-06 3.76E-06 1.00E+00 1.52E+00 8.37E-07CE4-CPD-CF-T3OF4 5.73E-05 3.07E-06 1.00E+00 1.05E+00 8.58E-08CE4-BSN-FO-TB2 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB3 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB1 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB4 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB2 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB1 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB3 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB4 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-CPR-CF-P3OF4 1.51E-06 7.86E-07 1.00E+00 1.52E+00 8.36E-07CE4-CTP-CF-CT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CTP-CF-HT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CBI-CF-T3OF4 7.21E-06 3.86E-07 1.00E+00 1.05E+00 8.58E-08CE4-MSW-FF-MT2 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT3 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT1 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT4 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-RYL-CF-4LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-3LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-2LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-1LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-CPR-CF-P2OF3TM 5.03E-06 1.34E-07 1.00E+00 1.03E+00 4.27E-08CE4-CPD-CF-T2OF3TM 1.35E-04 8.59E-08 1.00E+00 1.00E+00 1.02E-09CE4-CTP-CF-CT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10CE4-CTP-CF-HT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10CE4-CPD-FF-TD 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TC 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TB 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CBI-FF-PD 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-CBI-FF-PC 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11

Page 454: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-73

Table F-31. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CBI-FF-PB 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-RYL-CF-3LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-2LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-1LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-4LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-CBI-CF-P2OF3TM 2.55E-07 5.40E-09 1.00E+00 1.02E+00 3.35E-08CE4-CPD-FF-TA 2.70E-03 2.70E-09 1.00E+00 1.00E+00 1.55E-12CE4-CTP-FF-CTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CPR-FF-PC 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PB 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PD 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CBI-FF-TD 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TC 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TB 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12

Page 455: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-74

Table F-32. Importance measures sorted on Birnbaum for case (CE Group 4, manual scram).

Table F-32. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-ROD-CF-RODS 8.40E-07 5.24E-01 2.10E+00 6.23E+05 1.00E+00CE4-BME-CF-TB2OF4 7.07E-07 4.41E-01 1.79E+00 6.23E+05 1.00E+00CE4-RYT-CF-2OF4 4.78E-06 2.98E-02 1.03E+00 6.24E+03 1.00E-02CE4-CBI-CF-6OF8 7.66E-07 4.70E-03 1.01E+00 6.14E+03 9.85E-03CE4-RYL-CF-LM12OF24 4.29E-08 2.63E-04 1.00E+00 6.14E+03 9.85E-03CE4-CBI-CF-4OF6TM 1.72E-06 1.72E-04 1.00E+00 1.01E+02 1.60E-04CE4-RYL-CF-LM6OF12TM 1.58E-07 1.58E-05 1.00E+00 1.01E+02 1.60E-04CE4-BSN-CF-TB2OF4 8.73E-06 2.12E-04 1.00E+00 2.53E+01 3.90E-05CE4-PWR-CF-TB2OF4 2.51E-06 6.10E-05 1.00E+00 2.53E+01 3.90E-05CE4-BME-FO-TB1 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB2 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB3 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BME-FO-TB4 1.80E-05 2.18E-04 1.00E+00 1.31E+01 1.95E-05CE4-BUV-CF-TB2OF4 3.65E-05 2.58E-04 1.00E+00 8.07E+00 1.13E-05CE4-MSW-CF-2OF4 4.95E-06 1.74E-05 1.00E+00 4.52E+00 5.64E-06CE4-XHE-XE-SCRAM 1.00E-02 3.52E-02 1.04E+00 4.48E+00 5.64E-06CE4-RYT-FF-ICK4 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK3 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK2 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYT-FF-ICK1 1.20E-04 1.04E-04 1.00E+00 1.87E+00 1.39E-06CE4-RYL-CF-4LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-3LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-2LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-RYL-CF-1LM6OF6 2.02E-07 1.71E-07 1.00E+00 1.85E+00 1.36E-06CE4-CBI-CF-P3OF4 7.21E-06 3.76E-06 1.00E+00 1.52E+00 8.37E-07CE4-CPR-CF-P3OF4 1.51E-06 7.86E-07 1.00E+00 1.52E+00 8.36E-07CE4-CPD-CF-T3OF4 5.73E-05 3.07E-06 1.00E+00 1.05E+00 8.58E-08CE4-CTP-CF-CT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CTP-CF-HT3OF4 1.02E-05 5.45E-07 1.00E+00 1.05E+00 8.58E-08CE4-CBI-CF-T3OF4 7.21E-06 3.86E-07 1.00E+00 1.05E+00 8.58E-08CE4-CPR-CF-P2OF3TM 5.03E-06 1.34E-07 1.00E+00 1.03E+00 4.27E-08CE4-CBI-CF-P2OF3TM 2.55E-07 5.40E-09 1.00E+00 1.02E+00 3.35E-08CE4-BSN-FO-TB2 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB3 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB1 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-BSN-FO-TB4 1.50E-04 2.78E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB2 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB1 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB3 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-PWR-FF-TB4 6.00E-05 1.11E-06 1.00E+00 1.02E+00 2.98E-08CE4-RYL-CF-3LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-2LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-1LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-RYL-CF-4LM3OF3TM 4.66E-07 6.44E-09 1.00E+00 1.01E+00 2.21E-08CE4-BUV-FO-TB1 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB2 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB3 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-BUV-FO-TB4 1.10E-03 1.14E-05 1.00E+00 1.01E+00 1.67E-08CE4-RPS-TM-CHA 1.60E-02 1.07E-04 1.00E+00 1.01E+00 1.07E-08CE4-MSW-FF-MT2 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT3 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT1 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-MSW-FF-MT4 1.30E-04 2.43E-07 1.00E+00 1.00E+00 2.99E-09CE4-CPD-CF-T2OF3TM 1.35E-04 8.59E-08 1.00E+00 1.00E+00 1.02E-09CE4-CTP-CF-CT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10CE4-CTP-CF-HT2OF3TM 3.73E-05 2.24E-08 1.00E+00 1.00E+00 9.66E-10

Page 456: Reliability Study: Combustion Engineering Reactor Protection

Appendix F

F-75

Table F-32. (Continued) Basic Event Name Probability of

Failure Fussell-Vesely

Importance Risk Reduction

Ratio Risk Increase

Ratio Birnbaum

Importance CE4-CBI-FF-PD 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-CBI-FF-PC 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-CBI-FF-PB 5.00E-04 1.19E-08 1.00E+00 1.00E+00 3.83E-11CE4-CPR-FF-PC 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PB 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPR-FF-PD 1.10E-04 1.52E-09 1.00E+00 1.00E+00 2.16E-11CE4-CPD-FF-TD 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TC 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CPD-FF-TB 2.70E-03 1.59E-08 1.00E+00 1.00E+00 9.41E-12CE4-CTP-FF-CTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTD 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTC 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-CTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CTP-FF-HTB 8.40E-04 2.21E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TD 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TC 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CBI-FF-TB 5.00E-04 1.38E-09 1.00E+00 1.00E+00 4.35E-12CE4-CPD-FF-TA 2.70E-03 2.70E-09 1.00E+00 1.00E+00 1.55E-12

Page 457: Reliability Study: Combustion Engineering Reactor Protection

Appendix G

Sensitivity Analysis

Page 458: Reliability Study: Combustion Engineering Reactor Protection
Page 459: Reliability Study: Combustion Engineering Reactor Protection

G. SENSITIVITY ANALYSIS

Sensitivity analyses of the Combustion Engineering Reactor Protection System (RPS) fault tree model and quantification were performed in the area of success criteria. Two sensitivities were analyzed: The sensitivity from using two trip parameters versus three trip parameters and the sensitivity to the rod failure criteria.

G.1. Three Trip Parameter Sensitivity

Only two trip signals were included in the RPS fault tree model: hot leg temperature and pressurizer pressure. If three signals were included in the model, then two of the CCF events dominating the RPS channel unavailability would be affected. Table G-1 shows the revised CCF basic events for the three-trip parameters contribution and their point estimates.

Table G-1. Three-trip parameter basic events.

Three Trip Parameter Basic Events CCF Basic Event Probability CEx-CBI-CF-CBI9OF12 3.0E-7 CEx-CBI-CF-CBI6OF9TM 5.4E-7

Figure G-1 shows the overall point estimate of an unavailability comparison between two- and

three-trip parameters with no operator action. Figure G-2 shows a similar distribution, but for the results including operator action. When operator action is factored in, the channel contribution decreases significantly, leaving no detectable difference between the models.

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

Unavailability

No Operator Action

Two Trip Parameter Unavailability 6.5E-06 7.5E-06 7.5E-06 7.2E-06

Three Trip Parameter Unavailability 6.0E-06 7.0E-06 7.0E-06 6.7E-06

Group 1 Group 2 Group 3 Group 4

Figure G-1. Sensitivity comparison with no operator action.

G-1

Page 460: Reliability Study: Combustion Engineering Reactor Protection

Appendix G

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

Unavailability

With Operator Action

Two Trip Parameter Unavailability 5.7E-06 1.9E-06 1.9E-06 1.6E-06

Three Trip Parameter Unavailability 5.7E-06 1.9E-06 1.9E-06 1.6E-06

Group 1 Group 2 Group 3 Group 4

Figure G-2. Sensitivity with operator action.

In all cases, the bistable CCF events change from specific six of eight failures to specific nine of twelve failures. Given these changes, the RPS unavailability in Table G-2 shows the segment percent contributions from the two-trip parameter so that it can be compared to the segment percent contribution from the three-trip parameter model. In all cases, the channel segment decreases its contribution and the trip contactor or trip breaker segments increase the contribution. When operator action to manually trip the reactor is taken into account, the differences between two and three trips become negligible.

G-2

Page 461: Reliability Study: Combustion Engineering Reactor Protection

Appendix G

Table G-2. Three-trip parameter results and comparison to two-trip parameters.

RPS Segment Two Trip Parameter

Percent

Three Trip Parameter

Percent

Three Trip Parameter

Unavailability

Two Trip Parameter

Percent

Three Trip Parameter

Percent

Three Trip Parameter

Unavailability

Channel 12.0% 5.0% 3.0E-07 0.1% 0.1% 3.0E-09Trip Modules 0.7% 0.7% 4.5E-08 0.0% 0.0% 4.2E-10Trip Contactors 74.4% 80.3% 4.8E-06 85.1% 85.1% 4.8E-06Rods 12.9% 14.0% 8.4E-07 14.8% 14.8% 8.4E-07Total Group 1 RPS 100.0% 100.0% 6.0E-06 100.0% 100.0% 5.7E-06

Channel 10.4% 4.3% 3.0E-07 0.4% 0.2% 3.0E-09Trip Modules 0.6% 0.6% 4.5E-08 0.2% 0.2% 2.9E-09Trip Breakers 77.8% 83.1% 5.8E-06 55.2% 55.4% 1.0E-06Rods 11.2% 12.0% 8.4E-07 44.2% 44.3% 8.4E-07Total Group 2 RPS 100.0% 100.0% 7.0E-06 100.0% 100.0% 1.9E-06

Channel 10.4% 4.3% 3.0E-07 0.4% 0.2% 2.9E-09Trip Modules 0.6% 0.6% 4.5E-08 0.2% 0.2% 2.9E-09Trip Breakers 77.9% 83.1% 5.8E-06 55.2% 55.4% 1.0E-06Rods 11.2% 12.0% 8.4E-07 44.2% 44.3% 8.4E-07Total Group 3 RPS 100.0% 100.0% 7.0E-06 100.0% 100.0% 1.9E-06

Channel 10.8% 4.5% 3.0E-07 0.5% 0.2% 3.0E-09Trip Modules 0.6% 0.6% 4.2E-08 0.0% 0.0% 4.2E-10Trip Breakers 77.0% 82.4% 5.6E-06 47.2% 47.4% 7.6E-07Rods 11.6% 12.5% 8.4E-07 52.3% 52.4% 8.4E-07Total Group 4 RPS 100.0% 100.0% 6.7E-06 100.0% 100.0% 1.6E-06

Group 3 RPS Model

Group 4 RPS Model

Unavailability (Point Estimate) with No Credit for Manual Scram by Operator

Unavailability (Point Estimate) with Credit for Manual Scram by Operator

Group 1 RPS Model

Group 2 RPS Model

G.2. Rod Failure Criterion Sensitivity

The Combustion Engineering RPS fault tree includes an event that represents the CCF of the shutdown rods to insert, given that the trip breaker(s) have opened. The components included in this failure are the rods and the control rod drive mechanisms (CRDs). One BE has been assigned to the supercomponent, RMA. Combustion Engineering cores contain approximately 36 shutdown rods. This section describes the sensitivity of the BE probability and the RPS unavailability to the assumed failure criterion.

G.2.1. Rod Failure Criteria The probability of the failure of sufficient rods to insert and shut down the reactor due to ROD or

CRD common-cause failure is expected to be very small. This event has never occurred in the operating history of commercial PWR nuclear power plants. The calculated common-cause failure probability depends on the number of rods required to insert. For most transients, the insertion of a few rods is sufficient to shut down the reactor. For others, it requires more rods to insert. In rare cases, insertion of all of the rods will not guarantee successful shut down of the reactor.

From 1984 through 1998, only three possible failures to insert PWR ROD and CRD common-cause events were observed. In the first event, two rods were observed to have clad cracking and guide wear. The other 46 rods were assigned a degradation value of 0.1 due to the design flaw nature of the fault. In another event, two control rod drives out of 48 exhibited faulty firing circuits. In the last event, the drive screw threads were galled. Thus, the operating experience is very sparse.

G-3

Page 462: Reliability Study: Combustion Engineering Reactor Protection

Appendix G

G.2.2. Rod CCF BE Failure Probability Sensitivity Results The failure criterion assumed for this study is that 7 or more CEAs (20 percent of the shutdown

rods) fail to insert fully into the core upon demand. The Rod CCF Basic Event probabilities were calculated for 20, 30, 40, 50, 60, 70, and 80 percent failure criteria, and are shown in Figure G-3. The Combustion Engineering RPS models were evaluated, using the stated Rod CCF criteria, and the results are shown in Figure G-3. The choice of seven or more CEAs failing to insert results in a rod unavailability contribution of 11.2 to 12.9 percent (no operator action). As can bee seen in Figure G-3, the selection of rod CCF criteria does not significantly impact the overall RPS unavailability.

CE Rod Common-Cause Failure Criteria Sensitivity

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

7/36 11/36 14/36 18/36 22/36 25/36 29/36

Failure Criteria

Prob

abili

ty

Rod CCF Mean Failure RateCE Group 1 RPS UnavailabilityCE Group 2 RPS UnavailabilityCE Group 3 RPS UnavailabilityCE Group 4 RPS Unavailability

Rod CCF Criteria Used in

This Study

Figure G-3. Sensitivity of the RPS models to shutdown rod failure criterion.

G.3. Trip Breaker Reliability Comparison

The major difference between the CE RPS designs is the trip breaker configurations. The sub-trees representing the trip breaker configurations were analyzed, without the balance of the RPS system, to determine what, if any, differences in unavailability there were based purely on the trip breaker configuration. The results are shown in Table G-3.

Table G-3. Trip breaker configuration comparison.

Unavailability Percent of LowestEight Trip Breakers 9.99E-07 41%Four Trip Breakers 7.08E-07 0%

The eight-trip breaker configuration is relevant to CE Group 2 and CE Group 3, and the four-trip breaker configuration is relevant to CE Group 4.

G-4

Page 463: Reliability Study: Combustion Engineering Reactor Protection

Appendix G

The eight-trip breaker configuration is 41 percent less reliable than the four-trip breaker configuration. This is entirely due to the failure criteria used in the model. There are many more combinations of trip breaker failures (combinations of 2, 3, 4, 5, 6, 7, and 8) in the group of eight that will fail to de-energize the CEDM power supplies than in the group of four trip breakers (combinations of 2, 3, and 4). See Appendix E, Table E-1 for the CCF BE equations.

G-5

Page 464: Reliability Study: Combustion Engineering Reactor Protection

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (2-89) NRCM 1102, BIBLIOGRAPHIC DATA SHEET 3201. 3202 (See Instructions on the reverse)

1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.) NUREG/CR-5500, Vol. 10 INEL/EXT-97-00740

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED Reliability Study: Combustion Engineering Reactor Protection System, 1984 – 1998

MONTH YEAR

4. FIN OR GRANT NUMBER

Y6214 5. AUTHOR(S) 6. TYPE OF REPORT

Technical T. E. Wierman, S. T. Beck, M. B. Calley, S. A. Eide, C. D. Gentillon, W. E. Kohn 7. PERIOD COVERED (Inclusive Dates)

01/01/1984 – 12/31/1998 8. PERFORMING ORGANIZAITON - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.) Idaho National Engineering and Environmental Laboratory Risk & Reliability Assessment Department P.O. Box 1625 Idaho Falls, ID 83415-3850

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type “Same as above”; If contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.) Division of Risk Analysis and Applications Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

11. ABSTRACT (200 words or less) This report documents an analysis of the safety-related performance of the reactor protection system (RPS) at U.S. Combustion Engineering commercial reactors during 1984 through 1998. The analysis is based on the four variations of Combustion Engineering reactor protection system designs. RPS operational data were collected for all U.S. Combustion Engineering commercial reactors from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on fault tree models of the systems. An engineering analysis of trends and patterns was also performed on the data to obtain additional insights into RPS performance. RPS unavailability results obtained from the data were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT Unlimited

Reactor protection system, RPS, PWR, RPS operational events, probabilistic risk assessments, plant evaluations, system unreliability

14. SECURITY CLASSIFICATION (This page) Unclassified (This report) Unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (2-89)