Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de...

44
Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France [email protected] IAU Commission 31: TIME AND ASTRONOMY, IAU General Assembly, Prague, 21 st August 2006

Transcript of Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de...

Page 1: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Relativity and Space Geodesy

S. Pireaux

UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France

[email protected]

IAU Commission 31: TIME AND ASTRONOMY,

IAU General Assembly, Prague, 21st August 2006

Page 2: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Outline of the speachI. Native relativistic approach wrt spacecraft trajectory : orbitography

II. Native relativistic approach wrt photon trajectory: laser-links (time transfer, frequency shift)

a. Needed in: LISA, Tippo, T2L2, Galileo …

b. General method for relativistic laser-links

c. Illustration: LISA

a. Needed in: precise planetary gravitational field modeling, orbitography

b. Illustration: classical vs RMI prototype –Relativistic Motion Integrator- method

a. Relativistic time-scales

III. Caution with relativistic time-scales

b. Illustration: LISA

[ Pireaux, Barriot, Rosenblatt, Acta A 2005] [ Pireaux et Barriot, Cel.

Meca en prépa]

[B. Chauvineau, T. Régimbau, J.-Y. Vinet, S. Pireaux, Phys. Rev. D 72, 122003 (2005)]

Page 3: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

I. Native relativistic approach wrt spacecraft trajectory : orbitography

Ia. Needed in: - precise planetary gravitational field modeling - orbitography

• A good planetary gravitational field model?

good model of perturbations

precise orbitography

CHAMP GRACE

STELLA or LAGEOS

GOCE

• Include IAU 2000 standards regarding General Relativity: - GCRS metric

- time transformation- Earth rotation- …

relativistic gravitation:- Schwarzschild precession - geodesic ‘’ - Lense-Thirring ‘’

Page 4: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Ib. Illustration:classical method:

APressureRadiation

UA Egrad

UTidesEarth

grad

UTidesOcean

grad

ADrag cAtmospheri

A

E Bodies ngPerturbati

A icRelativist

A

Pressure cAtmospheri

numericaly integrate Newton’s second law of motion:

Simplectic integrator

numericaly integrate relativistic equation of motion (for a given metric):

RMI (Relativistic Motion Integrator) prototype method:

d

dXV

VVd

dV

VVGK ) , , ,T( ZYXX

with

3 ,2 ,1 ,0,,

K quadri-”force”

= Christoffel symbol wrt GCRS metric

= proper time

G

2cVVG

and first integral

Page 5: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

IIa. Need for relativistic laser links:

2008

-201

2

GALILEO

Project: CNES, ESA, CE

Implied: GEMINI/ OCA

Goals: positioning, …

2014

-202

0

LISA

Project: CNES, ESA, NASA

Implied: LISAFrance

Goals: Time Delay Interferom.

II. Native relativistic approach wrt photon trajectory: laser-links

Project: CNES

Implied: GEMINI/OCA

Goals: metrology, geodesy, clocks synchro. …

T2L2

2008

Implied: GEMINI,

ARTEMIS, through SIR ILIADE of OCA

Goal: metrology, planetodesy, …

TIPO

Page 6: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• LISA = space GW detector complementary to ground detectors

LISA (Laser Interferometer Space Antenna)

• good precision required on arm length: L/L ~ 10-23

• GW detection through measurement of phase shift due to L

TDI pre-processing of data required

• laser frequency noise and optical bench noise >>> GW signal

TDI observables = time-delayed (wrt photon flight time tij) combination

of data fluxes from = laser links, in close loops,

in order to cancel bench and frequency noise

Page 7: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• equilateral

.• rotation around

.

• 3 (drag-free) stations 3 test masses

• planets and present. light deflection…

gravitationalrelativistic effects

L (t)ij

of stations ? Coordinates Interdistance (L ) ij

• planets present

• 5 million km interdistance

5 x 10 km6

• at 20° behind

1 A

U

20°

geodesic motion

classical doppler,Sagnac effect…

60°

• rotation of

Photon travel time (tij) ?

station1

station 2 station 3 • double laser links

• relativistic modeling of orbitography/laser links required:

Page 8: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

000 , , , , BBBBAABBph vxtxxntx

• Equation to be solved in terms of quantities at tA:

Photon orbit Receiving station orbit

(flight time, « direction ») = 1 + 2 (normalization) = 3 unknowns , ABABAB nttt

• Laser link:

A, tA = 0Emission:

tB = ?B,Reception:

photon? ABn

IIb. General method for relativistic laser-links

Page 9: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• Motion in background metric gh

in presence of gravitational sources (sce) :

1

2 1 22

42

dtcc

Ocr

GM

i

i

isce

k

i

kii

isce

dxcdtc

Ocr

VGM

1

4

53

22242

1

2 1 dzdydx

cO

cr

GM

i

i

isce

… with IAU2000 conventions 2 dxdxgds

... 1

1

1

1

/

432

2

cO

cO

cOdt

cdsd Proper- vs coordinate-time rates:

Proper vs coordinate time: ... t

Page 10: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Energy measured from spacecraft = ukgE

0// uudtdxv iii = spacecraft 4-velocity ddxu /

= photon 4-wave vector ddxk /

where

Frequency shift =

= relative difference between (if transfer from A to B)

frequency of photon, emitted by A, measured when received at B

proper frequency of photon when emitted by A (= proper frequency of identical oscillators aboard A and B)

1

AA

ABABBAAB tE

tttEtz

Page 11: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Order 1 :

terms in

Central body : presence, shape, orbital motion (during photon travel time)

Other bodies : presence, orbital motion

orbital motion:

2

2 ~

cr

GM

r

2 ~

2 sce

22volδtV

cr

GM

cr

GM

Order 2 : terms in

2

2 2 ~

cr

GM

Order 3/2 :

terms in

Central body: rotation, orbital motion

Other bodies: orbital motion

with = 1 for photons, for satellites

.

V

2 2 ~ sce2 dtc

dxccr

GM

dtc

dx

. c/V ~ sat

• Contributions from gravitational sources (sce) to h:

Page 12: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

... (2)(3/2)(1)

hhhh

~ 10-16

Sun rotation:

Orbital motion of sces: Sun

Jupiter

Venus

~ 2 . 10-16

~ 10-17

~ 10-15

(<<) ~ 10-13

Presence:

Orbital motion:

~ 10-8

~ 2 . 10-16

Presence:

Orbital motion: ~ 10-18

~ 2 . 10-12

m s~ 2 . 10-7

~ 50 Photon flight:

5 . 10+6 km

• Orders of magnitude :

IIc. Illustration: LISA, rotation around the Sun

bodies)(other (1)(Sun) )1(

hh

Page 13: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

evaluated at tA

2/312/10

Otttt ABABABAB

c

Lt AB

AB0

0

000 ABAB xxL

order 0 : where (+ sign : photon travels from A to B)

c

vntt BAB

AB0

002/1

0

000

AB

ABAB

L

xxn

order 1/2 : where

2

020

00

.

.

AABA

ABAABA

xnr

nxnxP

00

00 .

. ln ,

rxn

rtcxnnPrrnt

AAB

AABABAB

2

0

0

2

20

01

2

1

c

vn

c

vtt BABB

AB

20

30

000

3

0

2

, 1 t

cr

xGMnt

c

GMn

B

BABAB

order 1 :

where

Classical

Classical kinematic terms

Kinematic terms Shapiro delay Velocity changeduring photon

flight time

• LISA Flight time solution:

Page 14: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• Numerical estimates of geometric time delays in s over a year

tAB order 0 : amplitude ~ 48 000 km/c

« flexing » of triangle

tAB = LAB/c0

1 year period (rotation around the Sun)

4 month period(rotation around its center of mass)

1 au périhélie 1 à l’aphélie

6 month period

Page 15: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• Numerical estimates of geometric time delays in s over a year

tAB order 0 : « flexing » of triangle, amplitude ~ 48 000 km/c ;

tAB order 1/2 : amplitude ~ 960 km/c ;

Doppler

tAB = fct [ nAB , vB(tA)/c ]1/2

t23-t32… tAB is not symmetric (Sagnac+aberration term)1/2 1/2 1/2

Page 16: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• Numerical estimates of geometric time delays in s over a year

tAB order 0 : « flexing » of triangle, amplitude ~ 48 000 km/c ;

tAB order 1/2 : spacecraft Doppler, amplitude ~ 960 km/c ;

tAB order 1 : less than 30 m/c.

relativistic gravitational Einstein, Doppler, Shapiro effects

tAB = fct[ tAB , nAB , vB(tA)/c, GM/c², xA(tA), xB(tA) ]

1 0

Page 17: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

810 7~

LISA configuration (spacecraft orbits: circular about CM

+velocity proportional to orbital radius)

=> (reduction factor ~ L/R)

)( 22/312/1

Ozzzz ABABABAB

? 10 2 6

? 10 2 10

?10 2 14

60)10(

~ 3

cos ~ 8 n

nAB

n

rLz

Naive estimate:

Order 1/2:c

vvnz AB 0002/1

.

Kinematic terms(Doppler)

• LISA Frequency shift solution:

Page 18: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

free fall + LISA configuration (~ 60°) => compensation

4

30

2 .

2

1

r

LOvvnL

dt

d

c ABAB

1310 2~

L<<R=> compensation (reduction factor ~ L/R)

4

3

3

220

2 2

. 31

r

LO

r

L

r

xn

c

GM

BB

BAB

1210 6~

Einstein effectVelocity changeduring photon

flight time

Kinematic terms

00

230

0

002

00

2

0001 11 .

2

1 .

ABB

BABABAB

rrc

GM

r

xn

c

tGM

c

vv

c

vvnz

1010 2~ 1010 2~ 1510 2~ 1210 6~

Order 1:

Page 19: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

• LISACODE

collaboration of ARTEMIS (Côte d’Azur) – APC (Paris), in LISA FRANCE

aims at

includes without planets

relativistic laser links (time transfer + freq. shift)

classical orbito.

coordinate time only

mission simulationsTests of TDI data pre-processing, TDI-rangingsensitivity curvesrelevant order of magnitude estimates …

Time scales: careful with archives and coherence

Ephemeris of stations : presence of planets necessary, to provide initial conditions for photon flight times

Laser link : Sun alone sufficient, but relativistic description of its field necessary

Page 20: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

III. Caution with relativistic time-scales

Proper time of

satellite B(physical

scale)

B

Barycentric coordinate

time(artificial

scale)

t

AemBrecAB ttt t

B

Brect

Brec

B

tA

Aemt

Ae

A

m

Proper time of

satellite A(physical

scale)

ASatellite A

regularly archives values of

AC

,,C

A

CA

and

321with

Satellite B regularly archives values of

BC

,,C

B

CB

and

321with

IIIa. Time scales

Page 21: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

d/dt -1A

– t (s)ANumerical estimates

over a one year mission…

– t (s) linear trend removedA

IIIb. Illustration: LISA

Page 22: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Outline of the speachI. Native relativistic approach wrt spacecraft trajectory : orbitography

II. Native relativistic approach wrt photon trajectory: laser-links (time transfer, frequency shift)

a. Needed in: LISA, Tippo, T2L2, Galileo …

b. General method for relativistic laser-links

c. Illustration: LISA

a. Needed in: precise planetary gravitational field modeling, orbitography

b. Illustration: classical vs RMI prototype –Relativistic Motion Integrator- method

a. Relativistic time-scales

III. Caution with relativistic time-scales

b. Illustration: LISA

[ Pireaux, Barriot, Rosenblatt, Acta A 2005] [ Pireaux et Barriot, Cel.

Meca en prépa]

[B. Chauvineau, T. Régimbau, J.-Y. Vinet, S. Pireaux, Phys. Rev. D 72, 122003 (2005)]

Page 23: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Other transparencies

Page 24: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Y

Z

X Planetary rotation model

(X,Y,Z) = planetary crust frame Planetary potential model

better use relativistic formalism directly

Errors in relativistic corrections, time or space transformations…

Mis-modeling in the planetary potential or the planetary rotation model

Satellite motion current description: Newton’s law + relativistic corrections + other forces

X

Y

Z

Satellite motion(X,Y,Z) = quasi inertial frame

Relativistic correctionson

measurements

Geodesy: precise geophysics implies precise geodesy

Page 25: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

LAGEOS 1 Laser GEOdymics Satellite 1Aims: - calculate station positions (1-3cm) - monitor tectonic-plate motion - measure Earth gravitational field - measure Earth rotationDesign: - spherical with laser reflectors - no onboard sensors/electronic - no attitude controlOrbit: 5858x5958km, i = 52.6°, around EarthMission: 1976, ~50 years (USA)

CHAllenging Minisatellite PayloadAims: - precise gravity and magnetic field, their space and time variationsDesign: - laser reflector, GPS receiver - drift meter - magnetometer, star sensor, accelerometersOrbit: 454 km initial, near polar, around EarthMission: ~5 years (Germany)

CHAMP

Geodesy examples: a high-, or respectively low-altitude satellite…

Page 26: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Cause LAGEOS 1 CHAMP

Earth monopole 2.8 8.6

Earth oblateness 1.0 10**-3 1.1 10 **-2

Low order geopotential harmonics (eg. l=2,m=2) 6.0 10**-6 6.4 10**-5

High order geopotential harmonics (eg.l=18,m=18) 6.9 10**-12 9.4 10**-7

Moon 2.1 10**-6 7.9 10**-7

Sun 9.6 10**-7 2.7 10**-7

Other planets (eg. Ve) 1.3 10**-10 9.8 10**-13

Indirect oblation (Moon-Earth) 1.4 10**-11 1.4 10**-11

General relativistic corrections (total) 9.5 10**-10 1.7 10**-8

Atmospheric drag 3 10**-12 3.5 10**-7

Solar radiation pressure 3.2 10**-9 3.2 10**-8

Earth albedo pressure 3.4 10**-10 3.3 10**-9

Thermal emission 1.9 10**-12 8.3 10**-9

High satellite Low satellite

Geodesy: orders of magnitude [m/s²]

Page 27: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

a) Gravitational potential model for the Earth

LA

GE

OS

1

mSmCPGM

U lmlm

l

l

l

m

lm

l

EE

Esincos)(sin

XX

max

0 0

Page 28: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

""body body 3rdcouplingMoon -J2E PB

n n

AAA with

and

b) Newtonian contributions from the Moon, Sun and Planets

26

0

m/s 10

0.34965593

02761036.1

58286072.0

XYZ

LA

GE

OS

1

33

body 3rd n

n

n

n

n

n X

X

XX

XXGMA

1

0

0

215 52

32

2

2

205

couplingMoon -J2

MoMo

Mo

Mo

E

Mo

Mo XXX

ZC

X

GMA

Page 29: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

c) Relativistic correctionsAAAA

Precession Thirring-LensPrecession Sitter) (De GeodeticildSchwarzschR

L

AG

EO

S 1

28

0

m/s 10

0.210319-

524321.4

187604.0

XYZ

VXVXVX

GM

Xc

GMEEA 4

4 2

32

Schw

Page 30: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

VA

GPGP

2 ,

211

0

m/s 10

0.928

141.2

245.0

XYZ

LA

GE

OS

1

XVX

GM

cE

GP

322

3

Page 31: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

VA

LTPLTP

2 ,

212

0

m/s 10

40.10

83.34

13.0

XYZ

LA

GE

OS

1

23

2

3

X

XXSS

Xc

G E

ELTP

Page 32: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Advantages: - To easily take into account all relativistic effects with “metric” adapted to the precision of measurements and adopted conventions. - Same geodesic equation for photons (light signals) massive particles (satellites without non-grav forces)

- Relativistically consistent approach

Advantages: - Well-proven method. - Might be sufficient for current applications.

Classical approach: “Newton” + relativistic corrections for precise satellite dynamics and time measurements.

Alternative and pioneering effort: develop a satellite motion integrator in a pure relativistic framework.

Drawbacks: - To be adapted to the adopted space-time transformations and to the level of precision of data

Geodesy: a modern view…

Page 33: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

a) Method: GINS provides template orbits to validate the RMI orbits

- simulations with 1) Schwarzschild metric => validate Schwarzschild correction

2) (Schwarzschild + GRIM4-S4) metric => validate harmonic contributions

3) Kerr metric => validate Lens-Thirring correction

4) GCRS metric with(out) Sun, Moon, Planets => validate geodetic precession

(other bodies contributions)

(…)

b) RMI goes beyond GINS capabilities:

- (will) includes 1) IAU 2000 standard GCRS metric

2) IAU 2000 time transformation prescriptions

3) IAU 2000/IERS 2003 new standards on Earth rotation

4) post-newtonian parameters in metric and time transformations

- separate modules allow easy update for metric, Earth potential model (EGM96)… prescriptions

- contains all relativistic effects, different couplings at corresponding metric order.

Page 34: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

TAI

J2000 (“inertial”)

INTEGRATOR

i

i

i

i

VdT

dXA

dT

Xd ,

2

2

PLANET EPHEMERIS

DE403

For in and

TDB

AE PB

AGP

EE vx ,

Earth ro

tation m

odel

GRAVITATIONAL POTENTIALMODEL FOR EARTH

GRIM4-S4

ITRS (non inertial)

TDBTTTAI

c) diagram: GINS

TAI

J2000 (“inertial”)

ORBIT

i

i

i VdT

dXX

,

with i=1,2,3 spatial indices

Page 35: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Ear

thro

tati

onm

odel

PLANET EPHEMERIS

DE403

for in

TDB

G

GCRS (“inertial”)

INTEGRATOR

d

dX

d

Xd ;

2

2

METRIC MODEL

GIAU2000

GCRS metric

GRAVITATIONAL POTENTIALMODEL FOR EARTH

GRIM4-S4

ITRS (non inertial)

TDBTCG

TCG

TCG

d) diagram: RMI

TCG

GCRS (“inertial”)

ORBIT

d

dXX

;

with =0,1,2,3 space-time indices

Page 36: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

classical limit j

j

ji

i

iX

XX

W

dT

XdK

2

2

2

with evaluated at

for the CM of satellite

,G

K

X

X

d

Xd

d

dX

d

dX

d

dXX

Xd

Xd

d

dX

d

dX

cGK

2

12

2

2

difference between the two equations at first order in :

XX - test-mass, shielded from non-gravitational forces, at (geodesic eq.)

X- satellite Center of Mass at (generalized relativistic eq.)

Geodesy: principle of accelerometers…

Page 37: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

[Bize et al 1999] Europhysics Letters C, 45, 558[Chovitz 1988] Bulletin Géodésique, 62,359[Fairhaid_Bretagnon 1990] Astronomy and Astrophysics, 229, 240-247[Hirayama et al 1988][IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67[IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88[IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries.

http://www.iau-sofa.rl.ac.uk/product.html[IERS 2003] IERS website. http://www.iers.org/map[Irwin-Fukushima 1999] Astronomy and Astrophysics, 348, 642-652[Lemonde et al 2001] Ed. A.N.Luiten, Berlin (Springer)[Moyer 1981a] Celestial Mechanics, 23, 33-56[Moyer 1981b] Celestial Mechanics, 23, 57-68[Moyer 2000] Monograph 2: Deep Space Communication and Navigation series[Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1

[Standish 1998] Astronomy and Astrophysics, 336, 381-384

[Weyers et al 2001] Metrologia A, 38, 4, 343

Relativistic time transformations

Geodesy: bibliography

Page 38: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

[Damour et al 1991] Physical Review D, 43, 10, 3273-3307 [Damour et al 1992] Physical Review D, 45, 4, 1017-1044[Damour et al 1993] Physical Review D, 47, 8, 3124-3135[Damour et al 1994] Physical Review D, 49, 2, 618-635 [IAU 1992] IAU 1991 resolutions. IAU Information Bulletin 67[IAU 2001a] IAU 2000 resolutions. IAU Information Bulletin 88[IAU 2001b] Erratum on resolution B1.3. Information Bulletin 89 [IAU 2003] IAU Division 1, ICRS Working Group Task 5: SOFA libraries.

http://www.iau-sofa.rl.ac.uk/product.html[IERS 2003] IERS website. http://www.iers.org/map[Klioner 1996] International Astronomical Union, 172, 39K, 309-320[Klioner et al 1993] Physical Review D, 48, 4, 1451-1461

[Klioner et al 2003] astro-ph/0303377 v1

[Soffel et al 2003] prepared for the Astronomical Journal, asro-ph/0303376v1

[GRGS 2001] Descriptif modèle de forces: logiciel GINS[Moisson 2000] (thèse). Observatoire de Paris[McCarthy Petit 2003] IERS conventions 2003 http://maia.usno.navy.mil/conv2000.html.

Metric prescriptions

RMI

Page 39: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Principle of ground-space time transfer:

T2L2 (optical telemetry with 2 laser links)

• Follow evolution of time aboard wrt ground time:

– Rebuild triplets (TA, Tsat, TC)

– Compute ground-satellite delay:

satcalibCsatAatmosphCsatAicrelativistCsatAAC

A TdTdTdTTT

T -22

2

2

-

• Date laser pulses:

– Departure from ground station: TA

– Arrival aboard: Tsat= TB

– Echo return on ground: TC

Clock

Retro-reflectors

Detection

Clock

Laser telemetry station

Page 40: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Common view

On-board oscillator noise x(0.1 s)

Non-Common view

On-board oscillator noise x(3)

Principle of ground-ground time transfer:

Page 41: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

– Mesure PPN parameter (Shapiro effect)

– Planet Telemetry

– Asteroid masses

– Pioneer effect

– …

Radial distance measurement

: centimetric over 1 day

106.2 2113

x

Angular distance measurement = 2 10-9 rd

TIPO Telescope

TIPO (Télémétrie Interplanétaire Optique)

Scientific objectives of TIPO:

Method:

Page 42: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

sce

sce orb.22

r

R 2

2 ~

2

T

δt

cr

GM

cr

GM vol

r

R sce orb.with ~ 1 for planets, << 1 for Sun

.

5 x 10 km6

Rorb. sce

r

Orbital motion of sces during photon flight time:

Page 43: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

... (2)(3/2)(1)

HHHH

bodies)(other (1)(Earth) )1(

HH

Earth) sph.-(non (1)Earth) (sph. )1(

HH

Earth rotation:

orbital motion of sces : Sun

Moon

Jupiter

2

2

3 r

R4

c

GM

) ou 1( 4 sce3 r

Rr

VcGM

~ 10-15

~ 10-15

~ 10-18

~ 10-19

Sun Moon JupiterrR

rR

MmH

T ~

~ 10-15

~ 10-11

~ 10-13

~ 10-15

~ 10-12

~ 2H ~ 10-18

T2L2, rotation around the Earth:

~ 10-9

s vol photon:

0.1 s~ 10-10

)( .

2 22

Jcr

GM

,...)( .

2 32

Jcr

GM2

2 ~

cr

GM

Page 44: Relativity and Space Geodesy S. Pireaux UMR 6162 ARTEMIS, Obs. de la Côte d’Azur, Av. de Copernic, 06130 Grasse, France sophie.pireaux@obs-azur.fr IAU.

Collaborations in LISA FRANCELISA France: - APC, Paris 7 - ARTEMIS, OCA - CNES - IAP Paris - LAPP Annecy - LUTH Observatoire de Paris-Meudon - ONERA - Service d'Astrophysique CEA

UMR ARTEMIS, OCA:

- B. Chauvineau: gravitation relativiste

- S. Pireaux: gravitation relativiste, théories alternatives

- T. Régimbau: modélisation d'ondes gravitationnelles - fond stochastique-

- J-Y. Vinet: Time-Delay Interferometry