Relativistic Smoothed Particle Hydrodynamics Outline Relativistic hydrodynamics Relativistic SPH...

37
Relativistic Smoothed Particle Hydrodynamics Outline • Relativistic hydrodynamics • Relativistic SPH • Entropy-based SPH • Shocks and artificial viscosity C.E. Aguiar, T. Kodama U.F. Rio de Janeiro T. Osada,Y. Hama U. São Paulo

Transcript of Relativistic Smoothed Particle Hydrodynamics Outline Relativistic hydrodynamics Relativistic SPH...

Relativistic Smoothed Particle Hydrodynamics

Outline

• Relativistic hydrodynamics• Relativistic SPH• Entropy-based SPH• Shocks and artificial viscosity

C.E. Aguiar, T. KodamaU.F. Rio de Janeiro

T. Osada,Y. HamaU. São Paulo

Relativistic Hydrodynamics

gPuuT

)1,1,1,1(diag

),(

densitybaryon

densityenergy

pressure

densityenthalpy

g

u

n

P

P

v

unn

0 T

0 n

Energy-momentumconservation

Baryon-numberconservation

Baryon number conservation:

n

v

dt

d

vtdt

d

comoving derivative:

0)( un

0 T

dt

du

d

d

Pn

uwd

d

1)(

Energy-momentum conservation:

n/Pen/w enthalpy per baryon:

0

Pgnuu

n

t

Pw

dt

d

1)(

Energy equation:

)(1

vPdt

dE

n

PwE

Momentum equation:

Pdt

d

1qvq w

Entropy conservation:

0)(0

uTuv

entropy density (rest frame)

0dt

ds /n/s

v

dt

d

Lagrangian Equations

0dt

ds

)(1

vPdt

dE

Pdt

d

1q

v

dt

d

SPH

- L.Lucy, Astron.J. 82, 1013 (1977)- R.Gingold, J.Monaghan, MNRAS 181, 378 (1977)

• Developed to study gas dynamics in astrophysical systems. • Lagrangian method.• No grids.• Arbitrary geometries.• Equally applicable in 1, 2 and 3 space dimensions.

Reviews:- J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992)- L. Hernquist, N. Katz, Ap. J. Suppl. 70, 419 (1989)

Smoothing

xxxxxx dhWAAA S ),()()()(

)()()( 2hOAAS xx

h

x0 1),( xx dhW

)()()()()]()([ xxxxxx SSS BABABA

kernel smoothing),( hW x

Error:

Particles

b

bb

bbSPS W

AAA )(

)(

)()()( xx

x

xxx

xxxxx dWS )()()(

xxxxx

xx

dWAAS )()()(

)()(

b

bbSPS W )()()( xxxx

N

bbb

1

)()( xxx

"Monte-Carlo" sampling

b = baryon number of ''particle'' b

b

bb

bb W )(

)(

)()( xx

x

xvxv

b

bbb W )()()()( xxxvxvx

)()()()()]()([ xxxxxx SPSPSP BABABA

)()(0, xx AAhN SP

Different ways of writing SP estimates(we omit the SP subscript from now on):

b

bbb W )()()(

1)( xxxv

xxv

Derivatives

b

bb

bb W

AA )()( xxx

b

bb

bb W

AA )()( xxx

No need for finite differences and grids:

211 ii

i

AAA

i-1 i+1i

bab

b

bba W

vv

b

abab

bba W

vv)(

vvv )(

b

abaabba

a W)(1

)( vvv

More than one way of calculating derivatives:

AAA )(

b

baaabbaa WAAA )()()( xx

v

dt

d

b

abababaa W)()( vvv

)]()([ ttW bb

aba xx

bababab

a Wdt

d)( xx

aa

dt

dv

x

Moving the Particles

b

abab

bb

a

aab

a WPP

dt

dE22

vv

b

abab

b

a

ab

a WPP

dt

d22

q

22

1 PPP

dt

d q

aaaa w vq

2

1 vvv

PP)P(

dt

dE

a

aaaa

PwE

Energy equation

Momentum equation

)(

)()()(

)(

)()()(

00

0

aaa

a

aia

aa

ii

WE

ET

Wq

qT

xx

xxx

xx

xxx

aa

atotal

aa

atotal

EE

qP

Energy and Momentum

b

abbbb

abb

bba WsW

)()()( xxx s

0dt

dsa

Entropy equation

Particle Velocity

aaaaaa P,s,E,, vq ?

nPesnw /),(

1),(|| 2 snww qvq

1),/(|| 2 swq

),(,/, snPn v

snensnPsne )/(),(,),( 2

equation for

RSPH Equations

b

ababb

ba

a

ab

a WPP

dt

dEvv

22

b

abab

b

a

ab

a WPP

dt

d22

q

aa

dt

dv

x

b

abba W

1),/(|| 2 aaaaa swq

0dt

dsa

Baryon-Free Matter

TPn 0

0 T

0)( u

PuTd

d

1

0 Tu

dTdP

0

Pguu

vq T

PTE

v

dt

d

Pdt

d

1q

)(1

vPdt

dE

Lagrangian equations:

b

abab

b

a

ab

a WPP

sdt

d22

q

aa

dt

dv

x

b

abba Ws

aaaaaa

aa

aaa

n

n

/,/

1),( 2q

Entropy-based RSPH

b

ababb

ba

a

ab

a WPP

sdt

Edvv

22

b

abba W

Ultrarelativistic Pion Gas

42

30TP

32

15

2T

PPT 3

27766.02

)3(152

n

3

1

d

dPcs

- 8 - 6 - 4 - 2 0 2 4 6 8 1 0 1 2

x

0

0.2

0.4

0.6

0.8

1

1.2

entr

opy

dens

ity

exactSPH

N /L = 80h = 0.1dt = 0.05

R arefaction w aveP = (15/1282)1/3 4 /3

Pion Gas

Rarefaction Wave

0 2 4 6 8 10 12

x

0

0.1

0.2

0.3

0.4

0.5

entr

opy

dens

ity

exactSPH

Landau-Kalatn ikov so lutionP = (15/128 4 /3

N /L = 400h = 0.05dt = 0.02

Pion Gas

Landau Solution

Shock Waves

shock wave

x

numerical calculation

-50 -40 -30 -20 -10 0 10 20 30 40 50

x (fm )

0

1

2

3

4

5

6

entr

opy

dens

ity (

fm-3

)

N = 1000h = 0.5 fmdt = 0.25 fm /ctm ax = 50 fm /c

= 0 , = 0

Pion G as

Pion Gas

Shock Wave

Artificial Viscosity

gQPuuQPT )()(

v

dtdu

hfPQ

/

)(

sitybulk viscoQ

T

Qu

)(

u

Q

T

QQPu

Q

d

d)(

0,0

0,)()(

2hhhfTN

Thermodynamically normal matter:

0Q

Second Law of Thermodynamics:

Thermodynamically anomalous matter:

0,0

0,)()(

2hhhfTA

QPQ

E

vq

Q

T

Q

dt

d

v

qq

T

QQP

dt

d

)(1

ET

QQP

dt

Ed

v)(1

b

abab

bb

a

aaba

aa WQPQP

ssdt

sd22

)( q

Dissipative RSPH

aa

dt

dv

x

b

abba Ws

aa

aaa

a

T

Qs

dt

sd

b

ababb

bba

a

aaba

aa WQPQP

ssdt

Esdvv

22

)(

b

abba W

-50 -40 -30 -20 -10 0 10 20 30 40 50

x (fm )

0

1

2

3

4

5

6

entr

opy

dens

ity (

fm-3

)

N = 1000h = 0.5 fmdt = 0.25 fm /ctm ax = 50 fm /c

= 2 , = 4

Pion G asShock Wave

Pion Gas

452shock

412shock

shock431

2

v1

1v9v

3

2/

/

/ )(

)(

Rankine - Hugoniot:

Pion Gas

1 2 3 4 5 6 7 8

ra tio o f entropy densities

0.5

0.6

0.7

0.8

0.9

1

shoc

k ve

loci

ty /

c

QGP + Pion Gas

c

c

TT,BraT

TT,aTP

4

4

322116302 /)/n(r,/a f

c

c

PP,BP

PP,P

43

3

)r(a

BT,

r

BP cc 11

4

Rarefaction Shock

QGP + Pions

-30 -20 -10 0 10 20 30 40 50

x (fm )

0

4

8

12

16

entr

opy

dens

ity (

fm-3

)

N = 3600h = 0.5 fmdt = 0.1 fm /ctm ax = 50 fm /c

= 4 , = 4

Q G P + P ion G as

Rarefaction Shock

QGP + Pions

-30 -20 -10 0 10 20 30 40 50

x (fm )

0

0.2

0.4

0.6

0.8

1

velo

city

/ c

N =3600h = 0.5 fmdt = 0.1 fm /ct = 50 fm /c= 4 , = 4

Q G P + P ion G as

Rarefaction Shock

QGP + Pions

-30 -20 -10 0 10 20 30 40 50

x (fm )

0

0.2

0.4

0.6

0.8

1

1.2

T /

TC

N = 3600h = 0.5 fmdt = 0.1 fm /ctm ax = 50 fm /c

= 4 , = 4

Q G P + P ion G as