Relativistic effects Non-collinear magnetism (WIEN2k...

72
Relativistic effects & Non-collinear magnetism (WIEN2k / WIENncm) 18 th WIEN2k Workshop PennState University – USA – 2011 Xavier Rocquefelte Institutdes MatériauxJean-Rouxel(UMR 6502) Universitéde Nantes, FRANCE

Transcript of Relativistic effects Non-collinear magnetism (WIEN2k...

Page 1: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects

&

Non-collinear magnetism

(WIEN2k / WIENncm)

18th WIEN2k WorkshopPennState University – USA – 2011

Xavier RocquefelteInstitut des Matériaux Jean-Rouxel (UMR 6502)

Université de Nantes, FRANCE

Page 2: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

18th WIEN2k WorkshopPennState University – USA – 2011

Talk constructed using the following documents:Slides of:

Robert Laskowski, Stefaan Cottenier, Peter Blaha and Georg Madsen

Books:- WIEN2k userguide, ISBN 3-9501031-1-2- Electronic Structure: Basic Theory and Practical Methods, Richard M. Martin – ISBN 0 521 78285 6- Relativistic Electronic Structure Theory. Part 1. Fundamentals, Peter Schewerdtfeger, ISBN 0 444 51249 7

Notes of:- Pavel Novak (Calculation of spin-orbit coupling)

http://www.wien2k.at/reg_user/textbooks/- Robert Laskowski (Non-collinear magnetic version of WIEN2k package)

web:- http://www2.slac.stanford.edu/vvc/theory/relativity.html- wienlist digest - http://www.wien2k.at/reg_user/index.html- wikipedia …

Page 3: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Few words about Special Theory of Relativity

Light

Composed of photons (no mass)

Speed of light = constant

c ≈ ≈ ≈ ≈ 137 au

Atomic units:ħ = me = e = 1

Page 4: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Few words about Special Theory of Relativity

Light Matter

Composed of photons (no mass)

Speed of light = constant

c ≈ ≈ ≈ ≈ 137 au

Atomic units:ħ = me = e = 1

Speed ofmatter

mass

v = f(mass)

mass = f(v)

Composed of atoms (mass)

Page 5: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Few words about Special Theory of Relativity

Light Matter

Composed of photons (no mass)

Lorentz Factor (measure of the relativistic effects)

Speed of light = constant

c ≈ ≈ ≈ ≈ 137 au

Atomic units:ħ = me = e = 1

Speed ofmatter

mass

v = f(mass)

mass = f(v)

Momentum: p = γγγγmv = Mv

Total energy:

Relativistic mass: M = γγγγm (m: rest mass)1

1

12

=

cv

γ

Composed of atoms (mass)

E2 = p2c2 + m2c4

E = γγγγmc2 = Mc2

Page 6: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

( )22.1

58.01

1

1

122

=−

=

=

c

ve

γDetails for Au atom:

ccsve 58.0137

79)1( ==

Speed of the 1s electron (Bohr model):

+Zee-

Lorentz factor (γγγγ)

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

c ≈≈≈≈ 137 au

H(1s)

Speed (v)

Au(1s)

« Non-relativistic »particle: γγγγ = 1

1s electron of Au atom = relativistic particle

Definition of a relativistic particle (Bohr model)

au1)1(:H =sve

au79)1(:Au =sve

00003.1=γ

22.1=γnZ

ve∝∝∝∝

au1)1(:H =sve

au79)1(:Au =sve

00003.1=γ

22.1=γnZ

ve∝∝∝∝

Me(1s-Au) = 1.22me

Page 7: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects

Relativistic increase in the mass of an electron with its velocity (when ve → c)

1) The mass-velocity correction

+Ze

Page 8: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic increase in the mass of an electron with its velocity (when ve → c)

1) The mass-velocity correction

It has no classical relativistic analogueDue to small and irregular motions of an electron about its mean position (Zitterbewegung)

2) The Darwin term

+Ze

Relativistic effects

Page 9: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic increase in the mass of an electron with its velocity (when ve → c)

1) The mass-velocity correction

It has no classical relativistic analogueDue to small and irregular motions of an electron about its mean position (Zitterbewegung)

2) The Darwin term

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field induced by its own orbital motion (l)

3) The spin-orbit coupling

+Ze

Relativistic effects

Page 10: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic increase in the mass of an electron with its velocity (when ve → c)

1) The mass-velocity correction

It has no classical relativistic analogueDue to small and irregular motions of an electron about its mean position (Zitterbewegung)

2) The Darwin term

It is the interaction of the spin magnetic moment (s) of an electron with the magnetic field induced by its own orbital motion (l)

3) The spin-orbit coupling

The change of the electrostatic potential induced by relativity is an indirect effect of the core electrons on the valence electrons

4) Indirect relativistic effect

+Zeffe

Relativistic effects

Page 11: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

One electron radial Schrödinger equation

Ψ=Ψ

+∇−=Ψ εVH S2

2

1 Ψ=Ψ

+∇−=Ψ εV

mH

eS

22

2

h

HARTREE ATOMIC UNITS INTERNATIONAL UNITS

Atomic units:ħ = me = e = 11/(4 πε πε πε πε0) = 1

c = 1/ α α α α ≈≈≈≈ 137 au

Page 12: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

One electron radial Schrödinger equation

Ψ=Ψ

+∇−=Ψ εVH S2

2

1 Ψ=Ψ

+∇−=Ψ εV

mH

eS

22

2

h

r

ZV −=

r

ZeV

0

2

4πε−=

INTERNATIONAL UNITS

In a spherically symmetric potential

Atomic units:ħ = me = e = 11/(4 πε πε πε πε0) = 1

c = 1/ α α α α ≈≈≈≈ 137 au

( ) ( )ϕθ ,,,,, mllnmln YrR=Ψ

( ) ( ) ( )

∂∂+

∂∂

∂∂+

∂∂

∂∂=∇

2

2

2222

22

sin

1sin

sin

11

ϕθθθ

θθ rrrr

rr

HARTREE ATOMIC UNITS

Page 13: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

One electron radial Schrödinger equation

Ψ=Ψ

+∇−=Ψ εVH S2

2

1

( )lnln

e

ln

e

RRr

ll

mV

dr

dRr

dr

d

rm ,,2

2,2

2

2

1

2

1

2ε=

+++

− hh

In a spherically symmetric potential

Ψ=Ψ

+∇−=Ψ εV

mH

eS

22

2

h

r

ZV −=

r

ZeV

0

2

4πε−=

( )lnln

ln RRr

llV

dr

dRr

dr

d

r ,,2,2

2

2

1

2

1 ε=

+++

INTERNATIONAL UNITS

( ) ( )ϕθ ,,,,, mllnmln YrR=Ψ

( ) ( ) ( )

∂∂+

∂∂

∂∂+

∂∂

∂∂=∇

2

2

2222

22

sin

1sin

sin

11

ϕθθθ

θθ rrrr

rr

HARTREE ATOMIC UNITS

Page 14: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description of electrons, consistent with the theory of special relativity.

Ψ=Ψ εDH with

E2 = p2c2 + m2c4

VcmpcH eD ++⋅= 2βα rr

Page 15: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac Hamiltonian: a brief description

Dirac relativistic Hamiltonian provides a quantum mechanical description of electrons, consistent with the theory of special relativity.

=

0

0

k

kk σ

σα

−=

1

1

0

0kβ

=

01

101σ

−=

0

02 i

−=

10

013σ

(2××××2) Pauli spin matrices

Momentum operator Rest mass

Electrostaticpotential

VcmpcH eD ++⋅= 2βα rr

(2××××2) unit matrices

Ψ=Ψ εDH with

E2 = p2c2 + m2c4

Page 16: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation: HD and ΨΨΨΨ are 4-dimensional

ΦΦΦΦ and χχχχ are time-independent two-component spinors describing the spatial and spin-1/2 degrees of freedom

ΨΨΨΨ is a four-component single-particle wave function that describes spin-1/2 particles.

=

4

3

2

1

4

3

2

1

ψψψψ

ε

ψψψψ

DH

spin up

spin down

Largecomponents (ΦΦΦΦ)

Smallcomponents (χχχχ)

In case of electrons:

ΦΦΦΦ====

χχχχψψψψ

Leads to a set of coupled equations for ΦΦΦΦ and χχχχ:

( ) ( )φεχσ 2cmVpc e−−=⋅ r

( ) ( )χεφσ 2cmVpc e+−=⋅ r

factor ∝ 1/(mec2)

Page 17: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation: HD and ΨΨΨΨ are 4-dimensional

For a free particle (i.e. V = 0):

( )( )

( )( )

0

0ˆˆˆ

0ˆˆˆ

ˆˆˆ0

ˆˆˆ0

4

3

2

1

2

2

2

2

=

ΨΨΨΨ

++−+−−−

+−−−−−−

cmppip

cmpipp

ppipcm

pippcm

ezyz

eyzz

zyze

yxze

εε

εε

0

0

0,2

φ

cme

0

0

0

,2 φcme

Particles: up & down

− ↑

0

0

0

,2

χcme

↓χ0

0

0

,2cme

Antiparticles: up & down

Solution in the slow particle limit (p=0)

Non-relativistic limit decouples Ψ1 from Ψ2

and Ψ3 from Ψ4

Page 18: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation: HD and ΨΨΨΨ are 4-dimensional

For a free particle (i.e. V = 0):

( )( )

( )( )

0

0ˆˆˆ

0ˆˆˆ

ˆˆˆ0

ˆˆˆ0

4

3

2

1

2

2

2

2

=

ΨΨΨΨ

++−+−−−

+−−−−−−

cmppip

cmpipp

ppipcm

pippcm

ezyz

eyzz

zyze

yxze

εε

εε

0

0

0,2

φ

cme

0

0

0

,2 φcme

Particles: up & down

− ↑

0

0

0

,2

χcme

↓χ0

0

0

,2cme

Antiparticles: up & down

Solution in the slow particle limit (p=0)

Non-relativistic limit decouples Ψ1 from Ψ2

and Ψ3 from Ψ4

For a spherical potential V(r):

( )( )

Υ−Υ

=

Φ=Ψκσnκ

κσnκ

χ rfi

rg gnκ and fnκ are Radial functions

Yκσ are angular-spin functions

2slj +=

( )21+−= jsκ1,1−+=s

Page 19: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation in a spherical potential

The resulting equations for the radial functions (gnκκκκ and fnκκκκ) are simplified if we define:

2' cme−= εε ( ) ( )22

'

c

rVmrM ee

−+= εEnergy: Radially varying mass:

For a spherical potential V(r):

Page 20: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation in a spherical potential

The resulting equations for the radial functions (gnκκκκ and fnκκκκ) are simplified if we define:

2' cme−= εε ( ) ( )22

'

c

rVmrM ee

−+= εEnergy: Radially varying mass:

Then the coupled equations can be written in the form of the radial eq.:

Darwin term

Spin-orbit coupling

( ) ( )11 +=+ llκκNote that:

For a spherical potential V(r):

Mass-velocity effect

( ) ( )κκ

κκ

κ εκnn

e

n

e

ne

n

e

ggrdr

dV

cMdr

dg

dr

dV

cMg

r

ll

MV

dr

dgr

dr

d

rM'

1

44

1

2

1

2 22

2

22

2

2

22

2

2

=+−−

+++

− hhhh

Page 21: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation in a spherical potential

The resulting equations for the radial functions (gnκκκκ and fnκκκκ) are simplified if we define:

2' cme−= εε ( ) ( )22

'

c

rVmrM ee

−+= εEnergy: Radially varying mass:

( ) ( )κκ

κκ

κ εκnn

e

n

e

ne

n

e

ggrdr

dV

cMdr

dg

dr

dV

cMg

r

ll

MV

dr

dgr

dr

d

rM'

1

44

1

2

1

2 22

2

22

2

2

22

2

2

=+−−

+++

− hhhh

( ) ( )κκ

κε nnnk f

rgV

cdr

df 1'

1 −+−=h

Then the coupled equations can be written in the form of the radial eq.:

and Darwin term

Spin-orbit coupling

( ) ( )11 +=+ llκκNote that:

For a spherical potential V(r):

Due to spin-orbit coupling, ΨΨΨΨ is not an eigenfunctionof spin (s) and angular orbital moment (l).

Instead the good quantum numbers are j and κκκκNo approximation have been made

so far

No approximation have been made

so far

Page 22: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small ⇒⇒⇒⇒ neglect SOC in radial functions (and treat it by perturbation theory)

nln gg ~→κ nln ff~→κ

( )nl

nl

e

nle

nl

e

gdr

gd

dr

dV

cMg

r

ll

MV

dr

gdr

dr

d

rM~'

~

4~1

2

~1

2 22

2

2

22

2

2

ε=−

+++

− hhh

dr

gd

cMf nl

enl

~

2

~ h=and with the normalization condition: ( ) 1 ~~ 222 =+∫ drrfg nlnl

No SOC ⇒⇒⇒⇒ Approximate radial functions:

Page 23: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Dirac equation in a spherical potential

Scalar relativistic approximation

Approximation that the spin-orbit term is small ⇒⇒⇒⇒ neglect SOC in radial functions (and treat it by perturbation theory)

nln gg ~→κ nln ff~→κ

( )nl

nl

e

nle

nl

e

gdr

gd

dr

dV

cMg

r

ll

MV

dr

gdr

dr

d

rM~'

~

4~1

2

~1

2 22

2

2

22

2

2

ε=−

+++

− hhh

dr

gd

cMf nl

enl

~

2

~ h=and with the normalization condition: ( ) 1 ~~ 222 =+∫ drrfg nlnl

No SOC ⇒⇒⇒⇒ Approximate radial functions:

The four-component wave function is now written as:

Inclusion of the spin-orbit coupling in “second variation” (on the large component only)( )

( )

Υ−Υ

=

Φ=Ψlmnl

lmnl

χ rfi

rg∼∼∼

∼∼

ψψεψ ~~~SOHH +=

with

=

00

01

4 22

2 l

dr

dV

rcMH

e

SO

rrh σ

Φ∼ is a pure spin state

χ∼ is a mixture of up and down spin states

Page 24: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects in a solid

For a molecule or a solid:

Relativistic effects originate deep inside the core.

It is then sufficient to solve the relativistic equations in a spherical atomic geometry (inside the atomic spheres of WIEN2k).

Justify an implementation of the relativistic effects only inside the muffin-tin atomic spheres

Page 25: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

SOC: Spin orbit coupling

Implementation in WIEN2k

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

Valence electronsValence electrons

« Fully »relativistic

Spin-compensatedDirac equation

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

Page 26: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Interstitial RegionInterstitial Region

Valence electronsValence electrons

Not relativistic

SOC: Spin orbit coupling

Implementation in WIEN2k

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

Valence electronsValence electrons

« Fully »relativistic

Spin-compensatedDirac equation

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

Page 27: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Implementation in WIEN2k: core electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

« Fully »relativistic

Spin-compensatedDirac equation

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

« Fully »relativistic

Spin-compensatedDirac equation

17 0.00 0 1,-1,2 ( n,κ,occup)2,-1,2 ( n,κ,occup)2, 1,2 ( n,κ,occup)2,-2,4 ( n,κ,occup)3,-1,2 ( n,κ,occup)3, 1,2 ( n,κ,occup)3,-2,4 ( n,κ,occup)3, 2,4 ( n,κ,occup)3,-3,6 ( n,κ,occup)4,-1,2 ( n,κ,occup)4, 1,2 ( n,κ,occup)4,-2,4 ( n,κ,occup)4, 2,4 ( n,κ,occup)4,-3,6 ( n,κ,occup)5,-1,2 ( n,κ,occup)4, 3,6 ( n,κ,occup)4,-4,8 ( n,κ,occup)0

17 0.00 0 1,-1,2 ( n,κ,occup)2,-1,2 ( n,κ,occup)2, 1,2 ( n,κ,occup)2,-2,4 ( n,κ,occup)3,-1,2 ( n,κ,occup)3, 1,2 ( n,κ,occup)3,-2,4 ( n,κ,occup)3, 2,4 ( n,κ,occup)3,-3,6 ( n,κ,occup)4,-1,2 ( n,κ,occup)4, 1,2 ( n,κ,occup)4,-2,4 ( n,κ,occup)4, 2,4 ( n,κ,occup)4,-3,6 ( n,κ,occup)5,-1,2 ( n,κ,occup)4, 3,6 ( n,κ,occup)4,-4,8 ( n,κ,occup)0

case.inc for Au atom

s 0 1/2 -1 2

p 1 3/21/2 1 -2 2 4

d 2 5/23/2 2 -3 4 6

f 3 7/25/2 3 -4 6 8

l s=+1

j=l+s/2 κκκκ=-s(j+1/2) occupation

s=-1 s=+1s=-1 s=+1s=-1

For spin-polarized potential,spin up and spin down are calculatedseparately, the density is averagedaccording to the occupation number

specified in case.inc file.

Core states: fully occupied →→→→ spin-compensated Dirac

equation (include SOC)

Page 28: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

1s1/2 →→→→2s1/2

2p1/2 →→→→2p3/2 →→→→3s1/2

3p1/2

3p3/2

3d3/2 →→→→3d5/2 →→→→4s1/2

4p1/2

4p3/2

4d3/2

4d5/2

5s1/2

4f5/2 →→→→4f7/2 →→→→

Implementation in WIEN2k: core electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

« Fully »relativistic

Spin-compensatedDirac equation

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

CoreelectronsCore

electrons

« Fully »relativistic

Spin-compensatedDirac equation

17 0.00 0 1,-1,2 ( n,κ,occup)2,-1,2 ( n,κ,occup)2, 1,2 ( n,κ,occup)2,-2,4 ( n,κ,occup)3,-1,2 ( n,κ,occup)3, 1,2 ( n,κ,occup)3,-2,4 ( n,κ,occup)3, 2,4 ( n,κ,occup)3,-3,6 ( n,κ,occup)4,-1,2 ( n,κ,occup)4, 1,2 ( n,κ,occup)4,-2,4 ( n,κ,occup)4, 2,4 ( n,κ,occup)4,-3,6 ( n,κ,occup)5,-1,2 ( n,κ,occup)4, 3,6 ( n,κ,occup)4,-4,8 ( n,κ,occup)0

17 0.00 0 1,-1,2 ( n,κ,occup)2,-1,2 ( n,κ,occup)2, 1,2 ( n,κ,occup)2,-2,4 ( n,κ,occup)3,-1,2 ( n,κ,occup)3, 1,2 ( n,κ,occup)3,-2,4 ( n,κ,occup)3, 2,4 ( n,κ,occup)3,-3,6 ( n,κ,occup)4,-1,2 ( n,κ,occup)4, 1,2 ( n,κ,occup)4,-2,4 ( n,κ,occup)4, 2,4 ( n,κ,occup)4,-3,6 ( n,κ,occup)5,-1,2 ( n,κ,occup)4, 3,6 ( n,κ,occup)4,-4,8 ( n,κ,occup)0

case.inc for Au atom

s 0 1/2 -1 2

p 1 3/21/2 1 -2 2 4

d 2 5/23/2 2 -3 4 6

f 3 7/25/2 3 -4 6 8

l s=+1

j=l+s/2 κκκκ=-s(j+1/2) occupation

s=-1 s=+1s=-1 s=+1s=-1

For spin-polarized potential,spin up and spin down are calculatedseparately, the density is averagedaccording to the occupation number

specified in case.inc file.

Core states: fully occupied →→→→ spin-compensated Dirac

equation (include SOC)

Page 29: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Implementation in WIEN2k: valence electrons

Valence electrons INSIDE atomic spheres are treated within scalar relativistic approximation [1] if RELA

is specified in case.struct file (by default).

[1] Koelling and Harmon, J. Phys. C (1977)

TitleF LATTICE,NONEQUIV.ATOMS: 1 225 Fm-3mMODE OF CALC=RELA unit=bohr

7.670000 7.670000 7.670000 90.000000 90.000000 90.000 000

ATOM 1: X=0.00000000 Y=0.00000000 Z=0.00000000MULT= 1 ISPLIT= 2

Au1 NPT= 781 R0=0.00000500 RMT= 2.6000 Z: 79.0LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.00000000.0000000 0.0000000 1.0000000

48 NUMBER OF SYMMETRY OPERATIONS

TitleF LATTICE,NONEQUIV.ATOMS: 1 225 Fm-3mMODE OF CALC=RELA unit=bohr

7.670000 7.670000 7.670000 90.000000 90.000000 90.000 000

ATOM 1: X=0.00000000 Y=0.00000000 Z=0.00000000MULT= 1 ISPLIT= 2

Au1 NPT= 781 R0=0.00000500 RMT= 2.6000 Z: 79.0LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.00000000.0000000 0.0000000 1.0000000

48 NUMBER OF SYMMETRY OPERATIONS

♦ no κ dependency of the wave function, (n,l,s) are still good quantum numbers

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

♦ all relativistic effects are included except SOC

♦ small component enters normalization and calculation of charge inside spheres

♦ augmentation with large component only

♦ SOC can be included in « second variation »

Valence electrons in interstitial region are treated classically

Valence electrons in interstitial region are treated classically

Page 30: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Implementation in WIEN2k: valence electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

SOC is added in a second variation (lapwso):

- First diagonalization (lapw1):

- Second diagonalization (lapwso):1111 Ψ=Ψ εH

( ) Ψ=Ψ+ εSOHH1

The second equation is expanded in the basis of first eigenvectors (ΨΨΨΨ1)

( ) ΨΨ=ΨΨΨΨ+∑ jiN

i

iSO

jjij H 11111 εεδ

sum include both up/down spin states

→→→→ N is much smaller than the basis size in lapw1

Page 31: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Implementation in WIEN2k: valence electrons

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

Atomic sphere (RMT) RegionAtomic sphere (RMT) Region

Valence electronsValence electrons

Scalar relativistic(no SOC)

Possibility to add SOC(2nd variational)

SOC is added in a second variation (lapwso):

- First diagonalization (lapw1):

- Second diagonalization (lapwso):1111 Ψ=Ψ εH

( ) Ψ=Ψ+ εSOHH1

The second equation is expanded in the basis of first eigenvectors (ΨΨΨΨ1)

( ) ΨΨ=ΨΨΨΨ+∑ jiN

i

iSO

jjij H 11111 εεδ

sum include both up/down spin states

→→→→ N is much smaller than the basis size in lapw1

♦ SOC is active only inside atomic spheres, only spherical potential (VMT) is taken into account, in the polarized case spin up and down parts are averaged.

♦ Eigenstates are not pure spin states, SOC mixes up and down spin states

♦ Off-diagonal term of the spin-density matrix is ignored. It means that in each SCF cycle the magnetization is projected on the chosen direction (from case.inso)

VMT: Muffin-tin potential (spherically symmetric)

Page 32: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Controlling spin-orbit coupling in WIEN2k

♦ Do a regular scalar-relativistic “scf” calculation

♦ save_lapw

♦ initso_lapw

WFFIL4 1 0 llmax,ipr,kpot-10.0000 1.50000 emin,emax (output energ y window)0. 0. 1. direction of magnetization (lattice vectors)

NX number of atoms for which RLO is addedNX1 -4.97 0.0005 atom number,e-lo,de (case.in1), repeat NX times0 0 0 0 0 number of atoms for wh ich SO is switch off; atoms

WFFIL4 1 0 llmax,ipr,kpot-10.0000 1.50000 emin,emax (output energ y window)0. 0. 1. direction of magnetization (lattice vectors)

NX number of atoms for which RLO is addedNX1 -4.97 0.0005 atom number,e-lo,de (case.in1), repeat NX times0 0 0 0 0 number of atoms for wh ich SO is switch off; atoms

• case.inso:

• case.in1(c):(…)

2 0.30 0.005 CONT 1 0 0.30 0.000 CONT 1

K-VECTORS FROM UNIT:4 -9.0 4.5 65 emin/emax/nband

(…)2 0.30 0.005 CONT 1 0 0.30 0.000 CONT 1

K-VECTORS FROM UNIT:4 -9.0 4.5 65 emin/emax/nband

• symmetso (for spin-polarized calculations only)

♦ run(sp)_lapw -so -so switch specifies that scf cycles will include SOC

Page 33: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Controlling spin-orbit coupling in WIEN2k

The w2web interface is helping you

Non-spin polarized case

Page 34: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Controlling spin-orbit coupling in WIEN2k

The w2web interface is helping you

Spin polarized case

Page 35: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects in the solid: Illustration

Page 36: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects in the solid: Illustration

♦ Scalar-relativistic (SREL):

- LDA overbinding (2%)- Bulk modulus: 447 GPa

+ spin-orbit coupling (SREL+SO):

- LDA overbinding (1%)- Bulk modulus: 436 GPa

⇒ Exp. Bulk modulus: 462 GPa

Page 37: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Z

ansr 0

2

)1( = bohr 10 ==αcm

ae

h

bohr 013.079

1)1( ==sr

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50Non relativistic (l=0)

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50Non relativistic (l=0)

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50

Radius of the 1s orbit (Bohr model):

+Zee-

Atomic units:ħ = me = e = 1

c = 1/ α α α α ≈≈≈≈ 137 au

AND

Au 1s

(1) Relativistic orbital contraction

Page 38: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

[ ]γα

00

a

cMRELAa

e

== h

ee mmM 22.1=⋅= γ

Z

ansr 0

2

)1( = bohr 10 ==αmc

ah

bohr 013.079

1)1( ==sr

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50Non relativistic (l=0)Relativistic (κκκκ=-1)

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50Non relativistic (l=0)Relativistic (κκκκ=-1)

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50Non relativistic (l=0)Relativistic (κκκκ=-1)Relativistic (κκκκ=-1)

20% Orbitalcontraction

Radius of the 1s orbit (Bohr model):

+Zee-

AND

In Au atom, the relativistic mass (M) of the 1s electron is 22% larger than

the rest mass (m)

bohr010.022.11

791

)1( 02

===γa

Z

nsr

Au 1s

(1) Relativistic orbital contraction

Page 39: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

0 2 4 60.0

0.1

0.2

0.3

0.4

0.5

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=0)Relativistic (κκκκ=-1)

0 2 4 60.0

0.1

0.2

0.3

0.4

0.5

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=0)Relativistic (κκκκ=-1)Relativistic (κκκκ=-1)

Orbitalcontraction

Au 6s

ns orbitals (with n > 1) contract due to orthogonality to 1s

( )0046.1

096.01

1

1

122

=−

=

=

c

ve

γ

cn

Zsve 096.017.13

6

79)6( ====

Direct relativistic effect (mass enhancement) →→→→ contraction of 0.46% only

(1) Relativistic orbital contraction

However, the relativistic contraction of the 6s orbital is large (>20%)

Page 40: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

-40

-30

-20

-10

0

10

20

Relativisticcorrection (%)

1s 2s 4s3s 5s 6s

( )NRELA

NRELARELA

E

EE −

r2ρρρρ (e/bohr)

0.00r (bohr)

0.01 0.02 0.03 0.04 0.05 0.060

10

20

30

40

50

Orbitalcontraction

Non relativistic (l=0)Relativistic (κκκκ=-1)

Au 1s0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

r2ρρρρ (e/bohr)

r (bohr)

r2ρρρρ (e/bohr)

r ( )

Orbitalcontraction

Non relativistic (l=0)Relativistic (κκκκ=-1)

Au 6s

(1) Orbital Contraction: Effect on the energy

Page 41: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(2) Spin-Orbit splitting of p states

1.0

r2ρρρρ (e/bohr)

r (bohr)

0.0 0.5 1.5 2.0

r2ρρρρ (e/bohr)

r (bohr)

2.5

Non relativistic (l=1)Non relativistic (l=1)

Au 5p

0.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4

Page 42: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(2) Spin-Orbit splitting of p states

l=1

E

j=3/2 (κκκκ=-2)j=1+

1/2=

3/2

orbital moment

spin

+e-e

j=1+1/2=3/2

♦ Spin-orbit splitting of l-quantum number

r2ρρρρ (e/bohr)r2ρρρρ (e/bohr)Non relativistic (l=1)Relativistic (κκκκ=-2)Non relativistic (l=1)Relativistic (κκκκ=-2)

Au 5p

♦ p3/2 (κκκκ=-2): nearly same behavior than non-relativistic p-state

1.0

r (bohr)

0.0 0.5 1.5 2.0

r (bohr)

2.50.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4

Page 43: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(2) Spin-Orbit splitting of p states

l=1

E

j=1/2 (κκκκ=1)j=1-1/2=1/2

spin

orbital moment

+e -e

j=1-1/2=1/2

♦ Spin-orbit splitting of l-quantum number

r2ρρρρ (e/bohr)r2ρρρρ (e/bohr)Non relativistic (l=1)

Relativistic (κκκκ=1)

Non relativistic (l=1)

Relativistic (κκκκ=1)

Au 5p

♦ p1/2 (κκκκ=1): markedly different behavior than non-relativistic p-state

gκκκκ=1 is non-zero at nucleus

1.0

r (bohr)

0.0 0.5 1.5 2.0

r (bohr)

2.50.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4

Page 44: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(2) Spin-Orbit splitting of p states

l=1

E

j=3/2

j=1/2 (κκκκ=1)

(κκκκ=-2)j=1+

1/2=

3/2

j=1-1/2=1/2

orbital moment

spin

spin

orbital moment

+e-e

+e -e

j=1+1/2=3/2 j=1-1/2=1/2

Ej=3/2 ≠ ≠ ≠ ≠ Ej=1/2

♦ Spin-orbit splitting of l-quantum number

r2ρρρρ (e/bohr)r2ρρρρ (e/bohr)Non relativistic (l=1)Relativistic (κκκκ=-2)Relativistic (κκκκ=1)

Non relativistic (l=1)Relativistic (κκκκ=-2)Relativistic (κκκκ=1)

Au 5p

♦ p1/2 (κκκκ=1): markedly different behavior than non-relativistic p-state

gκκκκ=1 is non-zero at nucleus

1.0

r (bohr)

0.0 0.5 1.5 2.0

r (bohr)

2.50.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4

Page 45: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

-40

-30

-20

-10

0

10

20

Relativisticcorrection (%)

2p1/2 2p3/2

3p1/2 3p3/2 4p1/2 4p3/2 5p1/2 5p3/2

( )NRELA

NRELARELA

E

EE −

κκκκ=1 κκκκ=-2

(2) Spin-Orbit splitting of p states

Scalar-relativistic p-orbital is similar to p3/2 wave function, but ΨΨΨΨdoes not contain p1/2 radial basis function

r2ρρρρ (e/bohr)r2ρρρρ (e/bohr)Non relativistic (l=1)Relativistic (κκκκ=-2)Relativistic (κκκκ=1)

Non relativistic (l=1)Relativistic (κκκκ=-2)Relativistic (κκκκ=1)

Au 5p

1.0

r (bohr)

0.0 0.5 1.5 2.0

r (bohr)

2.50.0

0.1

0.2

0.3

0.5

0.7

0.6

0.4

Page 46: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from contracted s-states

-e

+Ze-e

-e

Non-relativistic (NREL)

Page 47: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from contracted s-states

-e

+Ze-e

-e

Non-relativistic (NREL)

-e

+Zeff1e

Zeff1 = Z- σ σ σ σ(NREL)

Page 48: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from contracted s-states

+Ze-e

-e

+Ze-e

-e

-e

+Zeff1e +Zeff2e

Zeff2 = Z- σ σ σ σ(REL)

Non-relativistic (NREL) Relativistic (REL)

Zeff1 = Z- σ σ σ σ(NREL) Zeff1 > Zeff2

-e-e

-e

Page 49: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

(3) Orbital expansion: Au(d) states

Higher l-quantum number states expand due to better shielding of nucleus charge from contracted s-states

-e

+Ze-e

-e

-e

+Ze-e

-e

-e

+Zeff1e +Zeff2e

-e

Zeff2 = Z- σ σ σ σ(REL)

Non-relativistic (NREL) Relativistic (REL)

Indirect relativistic effect

Zeff1 > Zeff2Zeff1 = Z- σ σ σ σ(NREL)

Page 50: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

-40

-30

-20

-10

0

10

20

Relativisticcorrection (%)

3d3/2 3d5/2 4d3/2 4d5/2

5d3/2 5d5/2

4f5/2 4f7/2( )

NRELA

NRELARELA

E

EE −

0 1 2 30.0

0.1

0.2

0.3

0.4

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=2)Relativistic (κκκκ=2)Relativistic (κκκκ=-3)

40 1 2 30.0

0.1

0.2

0.3

0.4

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=2)Relativistic (κκκκ=2)Relativistic (κκκκ=-3)

40.0 0.1 0.2 0.30

1

2

3

4

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=2)Relativistic (κκκκ=2)Relativistic (κκκκ=-3)

0.40.0 0.1 0.2 0.30

1

2

3

4

r2ρρρρ (e/bohr)

r (bohr)

Non relativistic (l=2)Relativistic (κκκκ=2)Relativistic (κκκκ=-3)

0.4

κκκκ=2 κκκκ=-3

κκκκ=3 κκκκ=-4

Orbitalexpansion

(3) Orbital expansion: Au(d) states

Au 3d Au 5d

Page 51: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

-40

-30

-20

-10

0

10

20

Relativisticcorrection (%)

1s 2s 4s

2p1/2 2p3/2

3d3/2 3d5/2

3s

3p1/2 3p3/2

5s 6s

4p1/2 4p3/2 5p1/2 5p3/2

4d3/2 4d5/2

5d3/2 5d5/2

4f5/2 4f7/2

( )NRELA

NRELARELA

E

EE −

Relativistic effects on the Au energy levels

Page 52: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Atomic spectra of gold

Orbital contraction

SO splitting

SO splitting

Orbital expansion

Page 53: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Ag – Au: the differences (DOS & optical prop.)

Ag Au

Page 54: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic semicore states: p1/2 orbitals

Electronic structure of fcc Th, SOC with 6p1/2 local orbital

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

6p1/2

6p1/2

6p3/2

6p3/2

Energy vs. basis size DOS with and without p1/2

p1/2 included

p1/2 not included

Page 55: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

SOC in magnetic systems

SOC couples magnetic moment to the lattice

Symmetry operations acts in real and spin space

♦direction of the exchange field matters (input in case.inso)

♦number of symmetry operations may be reduced (reflections act differently on spins than on positions)

♦time inversion is not symmetry operation (do not add an inversion for k-list)

♦initso_lapw (must be executed) detects new symmetry setting

[100] [010] [001] [110]

1

mx

my

2z

A A A A

A B B -

B A B -

B B A B

Direction of magnetization

Page 56: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativity in WIEN2k: Summary

WIEN2k offers several levels of treating relativity:

♦♦♦♦non-relativistic: select NREL in case.struct (not recommended)

♦♦♦♦standard: fully-relativistic core, scalar-relativistic valence

mass-velocity and Darwin s-shift, no spin-orbit interaction

♦♦♦♦”fully”-relativistic:

adding SO in “second variation” (using previous eigenstates as basis)

adding p1/2 LOs to increase accuracy (caution!!!)

x lapw1 (increase E-max for more eigenvalues, to have

x lapwso basis for lapwso)

x lapw2 –so -c SO ALWAYS needs complex lapw2 version

♦♦♦♦Non-magnetic systems:

SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.

♦♦♦♦Magnetic systems:

symmetso dedects proper symmetry and rewrites case.struct/in*/clm*

Page 57: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Relativistic effects

&

Non-collinear magnetism

(WIEN2k / WIENncm)

18th WIEN2k WorkshopPennState University – USA – 2011

Xavier RocquefelteInstitut des Matériaux Jean-Rouxel (UMR 6502)

Université de Nantes, FRANCE

Page 58: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Pauli Hamiltonian for magnetic systems

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

2x2 matrix in spin space, due to Pauli spin operators

=

01

101σ

−=

0

02 i

−=

10

013σ

(2××××2) Pauli spin matrices

Page 59: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Pauli Hamiltonian for magnetic systems

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

2x2 matrix in spin space, due to Pauli spin operators

Wave function is a 2-component vector (spinor) – It corresponds to the large components of the dirac wave function (small components are neglected)

ΨΨ

=

ΨΨ

2

1

2

1 εPHspin up

spin down

=

01

101σ

−=

0

02 i

−=

10

013σ

(2××××2) Pauli spin matrices

Page 60: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Pauli Hamiltonian for magnetic systems

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

2x2 matrix in spin space, due to Pauli spin operators

Effective electrostatic potential

Effective magnetic field

xcHexteff VVVV ++= xcexteff BBB +=

Exchange-correlation potential

Exchange-correlation field

Page 61: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Pauli Hamiltonian for magnetic systems

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

2x2 matrix in spin space, due to Pauli spin operators

Effective electrostatic potential

Effective magnetic field

Spin-orbit coupling

dr

dV

rcM e

1

2 22

2h=ζ

xcHexteff VVVV ++= xcexteff BBB +=

Exchange-correlation potential

Exchange-correlation field

Many-body effects which are defined within DFT LDA or GGA

Page 62: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Exchange and correlation

From DFT exchange correlation energy:

( )( ) ( ) ( )[ ] 3 , , drmrrmrE homxcxc

rr ρερρ ∫=

Local function of the electronic density (ρρρρ) and the magnetic moment (m)

Definition of Vxc and Bxc (functional derivatives):

( )ρρ

∂∂= mE

V xcxc

r, ( )

m

mEB xc

xc r

rr

∂∂= ,ρ

LDA expression for Vxc and Bxc:

( ) ( )ρρερρε

∂∂+= m

mVhomxchom

xcxc

rr ,

, ( )m

m

mB

homxc

xc ˆ,

∂∂=

rr ρερ

Bxc is parallel to the magnetization density vector (m)^

Page 63: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Non-collinear magnetism

Direction of magnetization vary in space, thus spin-orbit term is present

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

( )

( )εψψ

µµ

µµ=

+−+∇−+

−+++∇−

...2

...2

22

22

zBeffe

yxB

yxBzBeffe

BVm

iBB

iBBBVm

h

h

♦♦♦♦ Non-collinear magnetic moments

=

2

1

ψψ

ψ ΨΨΨΨ1 and ΨΨΨΨ2 are non-zero

♦♦♦♦ Solutions are non-pure spinors

Page 64: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Collinear magnetism

Magnetization in z-direction / spin-orbit is not present

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

εψψµ

µ=

+−+∇−

+++∇−

...2

0

0...2

22

22

zBeffe

zBeffe

BVm

BVm

h

h

♦♦♦♦ Collinear magnetic moments

♦♦♦♦ Solutions are pure spinors

=↑ 0

1ψψ

=↓

2

0

ψψ

↓↑ ≠ εε ♦♦♦♦ Non-degenerate energies

Page 65: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Non-magnetic calculation

No magnetization present, Bx = By = Bz = 0 and no spin-orbit coupling

( ) ...2

22

+⋅+⋅++∇−= lBVm

H effBeffe

P

rrrrh σζσµ

εψψ =

+∇−

+∇−

effe

effe

Vm

Vm

22

22

20

02

h

h

=↑ 0

ψψ

=↓ ψ

ψ0

↓↑ = εε

♦♦♦♦ Solutions are pure spinors

♦♦♦♦ Degenerate spin solutions

Page 66: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Magnetism and WIEN2k

Wien2k can only handle collinear or non-magnetic cases

run_lapw script:

x lapw0x lapw1x lapw2x lcorex mixer

non-magnetic case

m = n↑↑↑↑ – n↓↓↓↓ = 0

run_lapw script:

x lapw0x lapw1 –upx lapw1 -dnx lapw2 –upx lapw2 -dnx lcore –upx lcore -dnx mixer

magnetic case

m = n↑↑↑↑ – n↓↓↓↓ ≠≠≠≠ 0DOS

EF

DOS

EF

Page 67: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Magnetism and WIEN2k

Spin-polarized calculations

♦♦♦♦ runsp_lapw script (unconstrained magnetic calc.)

♦♦♦♦ runfsm_lapw -m value (constrained moment calc.)

♦♦♦♦ runafm_lapw (constrained anti-ferromagnetic calculation)

♦♦♦♦ spin-orbit coupling can be included in second variational step

♦♦♦♦ never mix polarized and non-polarized calculations in one case directory !!!

Page 68: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Non-collinear magnetism

♦ code based on Wien2k (available for Wien2k users)

In case of non-collinear spin arrangements WIENncm (WIEN2k clone) has to be used:

♦ structure and usage philosophy similar to Wien2k

♦ independent source tree, independent installation

WIENncm properties:

♦ real and spin symmetry (simplifies SCF, less k-points)

♦ constrained or unconstrained calculations (optimizes magnetic moments)

♦ SOC in first variational step, LDA+U

♦ Spin spirals

Page 69: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Non-collinear magnetism

For non-collinear magnetic systems, both spin channels have to be considered simultaneously

runncm_lapw script:

xncm lapw0xncm lapw1xncm lapw2xncm lcorexncm mixer

Relation between spin density matrix and magnetization

mz = n↑↑↑↑↑↑↑↑ – n↓↓↓↓↓↓↓↓ ≠≠≠≠ 0

mx = ½(n↑↑↑↑↓↓↓↓ + n↓↓↓↓↑↑↑↑) ≠≠≠≠ 0

my = i½(n↑↑↑↑↓↓↓↓ - n↓↓↓↓↑↑↑↑) ≠≠≠≠ 0

DOS

EF

Page 70: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

WienNCM: Spin spirals

Transverse spin wave

qRrr

⋅=α

α α α α

R( ) ( )( )θθ cos , sinsin , cos nnn RqRqmm

rrrrr ⋅⋅=

♦ spin-spiral is defined by a vector q given in reciprocal space and an angle θbetween magnetic moment and rotation axis.

♦ Rotation axis is arbitrary

⇒⇒⇒⇒ Translational symmetry is lost !

⇒ But WIENncm is using the generalized Bloch theorem. The calculation of spinwaves only requires one unit cell for even incommensurate modulation q vector.

Page 71: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

WienNCM: Usage

1. Generate the atomic and magnetic structures

2. Run initncm (initialization script)

3. Run the NCM calculation:

♦ Create atomic structure

♦ Create magnetic structure

See utility programs: ncmsymmetry, polarangles, …

♦ xncm (WIENncm version of x script)

♦ runncm (WIENncm version of run script)

More information on the manual (Robert Laskowski)

[email protected]

Page 72: Relativistic effects Non-collinear magnetism (WIEN2k ...susi.theochem.tuwien.ac.at/reg_user/textbooks/WIEN2k_lecture...ncm.… · Relativistic effects & Non-collinear magnetism (WIEN2k

Thank you for

your attention

18th WIEN2k WorkshopPennState University – USA – 2011

Xavier RocquefelteInstitut des Matériaux Jean-Rouxel (UMR 6502)

Université de Nantes, FRANCE