Regular structure of atomic nuclei in the presence of random interactions.

35
Regular structure of atomic nuclei in the presence of random interactions

Transcript of Regular structure of atomic nuclei in the presence of random interactions.

Page 1: Regular structure of atomic nuclei in the presence of random interactions.

Regular structure of atomic nuclei in thepresence of random interactions

Page 2: Regular structure of atomic nuclei in the presence of random interactions.

Outline• A brief introduction of spin zero ground state (0 g.

s.) dominance• Present status along this line 1. Main results on studies of the 0 g.s. dominance 2. Positive parity ground state dominance 3. Collectivity of low-lying states by using the TBRE 4. Energy centroids of given spin states• Perspectives * Some simpler quantities (e.g., parity positive g.s.

dominance, energy centroids) can be studied first * Searching for other regularities (e.g., collectivity)

Page 3: Regular structure of atomic nuclei in the presence of random interactions.

A brief introduction to the problem of

the 0 g.s. dominance

Page 4: Regular structure of atomic nuclei in the presence of random interactions.

1958 Wigner introduced Gaussian orthogonal ensemble of random matrices (GOE) in understanding the spacings of energy levels observed in resonances of slow neutron scattering on heavy nuclei. Ref: Ann. Math. 67, 325 (1958)

1970’s French, Wong, Bohigas, Flores introduced two-body random ensemble (TBRE) Ref: Rev. Mod. Phys. 53, 385 (1981); Phys. Rep. 299, (1998); Phys. Rep. 347, 223 (2001).Original References: J. B. French and S.S.M.Wong, Phys. Lett. B33, 449(1970); O. Bohigas and J. Flores, Phys. Lett. B34, 261 (1970).

Other applications: complicated systems (e.g., quantum chaos)

Two-body Random ensemble (TBRE)

Page 5: Regular structure of atomic nuclei in the presence of random interactions.

21 2 3 4

1 2 3 4

( )

2

1( ) exp( )

21,

1/ 2,

JTj j j jGJT

j j j j xGx

x

1 2 3 4if | | ;

otherwise.

j j JT j j JT

One usually choose Gaussian distribution for two-body random interactions

There are some people who use other distributions, for example, A uniform distribution between -1 and 1. For our study, it is found that these different distribution present similar statistics.

1 2 3 4 1 2 3 4| |JTj j j jG j j JT V j j JT

Two-body random ensemble (TBRE)

Page 6: Regular structure of atomic nuclei in the presence of random interactions.

1.What does 0 g.s. dominance mean ?

In 1998, Johnson, Bertsch, and Dean discovered that spin parity =0+ ground state dominance can be obtained by using random two-body interactions (Phys. Rev. Lett. 80, 2749) .

This result is called the 0 g.s. dominance.

Similar phenomenon was found in other systems, say, sd-boson systems.

C. W. Johnson et al., PRL80, 2749 (1998); R. Bijker et al., PRL84, 420 (2000); L. Kaplan et al., PRB65, 235120 (2002).

Page 7: Regular structure of atomic nuclei in the presence of random interactions.

† (0)

2 2

† † † ( )

2

A single- shell Hamiltonian:

2 1( ) ,

| | , 0,2, ,2 1

1( ) ,

21 1

( ) exp( )22

J JJ

J

J

J Jj j

J J

j

H J A A G

G j J V j J J j

A a a

G G

Page 8: Regular structure of atomic nuclei in the presence of random interactions.

(1) (1) (1) (1) (1)0 2 4 6 8

(2) (2) (2) (2) (2)0 2 4 6 8

(3) (3) (3)0 2 4

9 For , 0,2,4,6,8.

2There are five independent two-body matrices.

Set 1: , , , , output (1);

Set 2: , , , , output (2);

Set 3: , ,

j J

G G G G G

G G G G G

G G G

(3) (3)

6 8

(1000) (1000) (1000) (1000) (1000)0 2 4 6 8

, , output (3);

Set 1000: , , , , output (1000);

G G

G G G G G

Page 9: Regular structure of atomic nuclei in the presence of random interactions.

2

2

1

3

1

3

1

2

1

1

1

Spi n Di mensi on

0

2

3

4

5

6

7

8

9

10

12

j=9/2, n=4

Page 10: Regular structure of atomic nuclei in the presence of random interactions.

References after Johnson, Bertsch and Dean

R. Bijker, A. Frank, and S. Pittel, Phys. Rev. C60, 021302(1999); D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.85, 4016(2000); Nucl. Phys. A682, 229c(2001); V. Zelevinsky, D. Mulhall, and A. Volya, Yad. Fiz. 64, 579(2001); D. Kusnezov, Phys. Rev. Lett. 85, 3773(2000); ibid. 87, 029202 (2001); L. Kaplan and T. Papenbrock, Phys. Rev. Lett. 84, 4553(2000); R.Bijker and A.Frank, Phys. Rev. Lett.87, 029201(2001); S. Drozdz and M. Wojcik, Physica A301, 291(2001); L. Kaplan, T. Papenbrock, and C. W. Johnson, Phys. Rev. C63, 014307(2001); R. Bijker and A. Frank, Phys. Rev. C64, (R)061303(2001); R. Bijker and A. Frank, Phys. Rev. C65, 044316(2002); P.H-T.Chau, A. Frank, N.A.Smirnova, and P.V.Isacker, Phys. Rev. C66, 061301 (2002); L. Kaplan, T.Papenbrock, and G.F. Bertsch, Phys. Rev. B65, 235120(2002); L. F. Santos, D. Kusnezov, and P. Jacquod, Phys. Lett. B537, 62(2002); T. Papenbrock and H. A. Weidenmueller, Phys. Rev. Lett. 93, 132503 (2004); T. Papenbrock and H. A. Weidenmueller, Phys. Rev. C 73 014311 (2006); Y.M. Zhao and A. Arima, Phys. Rev.C64, (R)041301(2001); A. Arima, N. Yoshinaga, and Y.M. Zhao, Eur.J.Phys. A13, 105(2002); N. Yoshinaga, A. Arima, and Y.M. Zhao, J. Phys. A35, 8575(2002); Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev.C66, 034302(2002); Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rev. C66, 064322(2002); Y.M.Zhao, A. Arima, N. Yoshinaga, Phys.Rev.C66, 064323 (2002); Y. M. Zhao, S. Pittel, R. Bijker, A. Frank, and A. Arima, Phys. Rev. C66, R41301 (2002); Y. M. Zhao, A. Arima, G. J. Ginocchio, and N. Yoshinaga, Phys. Rev. C66,034320(2003); Y. M. Zhao, A. Arima, N. Yoshinga, Phys. Rev. C68, 14322 (2003); Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, O. Scholten, Phys. Rev. C70, 054322 (2004); Y.M.Zhao, A. Arima, K. Ogawa, Phys. Rev. C71, 017304 (2005); Y. M. Zhao, A. Arima, N. Yoshida, K. Ogawa, N. Yoshinaga, and V.K.B.Kota , Phys. Rev. C72, 064314 (2005); N. Yoshinaga, A. Arima, and Y. M. Zhao, Phys. Rev. C73, 017303 (2006); Y. M. Zhao, J. L. Ping, A. Arima, Preprint; etc.

Review papers :  YMZ, AA, and N. Yoshinaga, Phys. Rep. 400, 1(2004); V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).

Page 11: Regular structure of atomic nuclei in the presence of random interactions.

1. Present status of understanding

the 0 g.s. dominance problem

Present status of this subjectPresent status of this subject

Page 12: Regular structure of atomic nuclei in the presence of random interactions.

• Phenomenological method by our group (Zhao, Arima and Yoshinaga): reasonably applicable to all systems

• Mean field method by Bijker and Frank group: sd, sp boson systems (Kusnezov also considered sp bosons in a similar way)

• Geometric method suggested by Chau, Frank, Smirnova, and Isacker goes along the same line of our method (provided a foundation of our method for simple systems in which eigenvalues are in linear combinations of two-body interactions).

Page 13: Regular structure of atomic nuclei in the presence of random interactions.

Our phenomenological method

( ) ( )

0(0) 0 2 4 6

7, 4 ( ) by TBRE exact ( ) pred(1) Pred(2)

25 3 13

19.9% 18.19% 14.3% 25% 6 2 6

32

I v I vE j n P I P I g

E G G G G

f or

2(2) 0 2 4 6

2(4) 2 4 6

3.14

1 11 3 13 1.2% 0.89% 0 0 3.25

2 6 2 642 13

31.7% 33.25% 11 11

E G G G G

E G G G

4(2) 0 2 4 6

4(4) 2 4 6

28.6% 25% 4.12

1 5 5 13 0 0 0 0 3.45

2 6 2 67 13

25.3 11

E G G G G

E G G G

5(4) 2 4 6

6(2) 0 2

0% 22.96% 28.6% 25% 3.68

8 192 26 0 0 0 0 3.62

7 77 111 5

2 6

E G G G

E G G

4 6

8(4) 2 4 6

3 19 0 0.02% 0 0 3.64

2 610 129 127

22.2% 24.15% 28.6% 25% 21 77 33

G G

E G G G

4.22

Page 14: Regular structure of atomic nuclei in the presence of random interactions.

Our phenomenological method

Let find the lowest eigenvalue;

Repeat this process for all .'1, 0J J JG G

JG

( ) = g.s. probability

Number of time that

=

1 for a single-j shell)

2

I

P I I

N I

N

N j

appears i n the above process

Number of two-body matri x el ements

(

empirical ( ) /IP I N N

Page 15: Regular structure of atomic nuclei in the presence of random interactions.

Four fermions in a single-j shell

2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7 0 4 2 8

j J

9 0 4 0 0 12

11 0 4 0 4 8 16

13 0 4 0 2 2 12 20

15 0 4 0 2 0 0 16 24

17 0 4 6 0 4 2 0 20 28

19 0 4 8 0 2 8 2 16 24 32

21 0 4 8 0 2 0 0 0 20 28 36

23 0 4 8 0 2 0 10 2 0 24 32 40

25 0 4 8 0 2 4 8 10 6 0 28 36 44

27 0 4 8 0 2 4 2 0 0 4 20 32 40 48

29 0 4 8 0 0 2 6 8 12 8 0 24 36 44 52

31 0 4 8 0 0 2 0 8 14 16 6 0 32 40 48 56

Page 16: Regular structure of atomic nuclei in the presence of random interactions.

0 2 4 6 8 10 12

0

20

40

60

80

0 5 10 15 20 25

0

20

40

60

0 2 4 6 8 10 12 140

20

40

60

80

0 5 10 15 20

0

20

40

60

80

a)

TBRE, pred.j=9/2 shell with 4 fermions

I g

.s. p

rob

ab

ilitie

s (

%)

TBRE, pred.j=9/2 shell with 5 fermions

c)

b)

TBRE, pred.7 fermions in the j1=7/2,j

2=5/2 orbits

angular momenta I

d)

TBRE, pred.10 sd bosons system

Applications of our method to realistic systems

Page 17: Regular structure of atomic nuclei in the presence of random interactions.

Spin Imax Ground state probabilities

Page 18: Regular structure of atomic nuclei in the presence of random interactions.

• By using our phenomenological method, one can trace back what interactions, not only monopole pairing interaction but also some other terms with specific features, are responsible for 0 g.s. dominance. We understand that the Imax g.s. probability comes from the Jmax pairing interaction for single-j shell (also for bosons). The phenomenology also predicts spin I g.s. probabilities well. On the other hand, the reason of success of this method is not fully understood at a deep level, i.e., starting from a fundamental symmetry.

• Bijker-Frank mean field applies very well to sp bosons and reasonably well to sd bosons.

• Geometry method Chau, Frank, Sminova and Isacker is applicable to simple systems.

Summary of understandingof the 0 g.s. dominance

Page 19: Regular structure of atomic nuclei in the presence of random interactions.

Time reversal invariance Zuker et al. (2002);

Time reversal invariance? Bijker&Frank&Pittel (1999);

Width ? Bijker&Frank (2000);

off-diagonal matrix elements for I=0 states Drozdz et al. (2001),

Highest symmetry hypothesis Otsuka&Shimizu(~2004),

Spectral Radius by Papenbrock & Weidenmueller (2004-2006)

Semi-empirical formula by Yoshinaga, Arima and Zhao(2006).

Other works

Page 20: Regular structure of atomic nuclei in the presence of random interactions.

2. Parity distribution in the ground

States under random interactions

Present status of this subjectPresent status of this subject

Page 21: Regular structure of atomic nuclei in the presence of random interactions.

• (A) Both protons and neutrons are in the shell which corresponds to nuclei with both proton number Z and neutron number N ~40;

• (B) Protons in the shell and neutrons in the shell which correspond to nuclei with Z~40 and N~50;

• (C) Both protons and neutrons are in the shell which correspond to nuclei with Z and N~82;

• (D) Protons in the shell and neutrons in the shell which correspond to nuclei with Z~50 and N~82.

7 / 2 5/ 2g d

5/ 2 1/ 2 9 / 2f p g

11/ 2 1/ 2 3/ 2h s d

5/ 2 1/ 2 9 / 2f p g

11/ 2 1/ 2 3/ 2h s d

7 / 2 5/ 2g d

Page 22: Regular structure of atomic nuclei in the presence of random interactions.

(unit

Basis ( )

(0,4) (0,6) (2,2) (2,4) (2,6)

86.6 86.2 93.1 81.8 88.8

(2,3) (1,4) (0,5) (6,1) (2,1) (1,3) (1,5)

42.8 38.6 45.0

A

: %)

38.4 31.2 77.1 69.8

Basis ( )

(2,2) (2,4) (4, 2)

72.7 80.5 81.0

(3,4) (2,3) (3,2) (4,1) (1,4) (5,0) (3,3) (5,1)

42.5 72.4 39.1 75.1 26.4 4

B

4.1 79.4 42.9

Basis ( )

(2,2) (2,4) (4,0) (6,0)

92.2 81.1 80.9 82.4

(2,3) (5,0) (4,1) (1,5) (1,3)

52.0 42.6 56.5 64.4 73.0

Basis ( )

(2,2) (4,2

C

D

) (2, 4) (0,6)

67.2 76.1 74.6 83.0

(3,2) (2,3) (0,5) (3,3)

54.2 54.0 45.9 54.5

Page 23: Regular structure of atomic nuclei in the presence of random interactions.

3. Collective motion in the presence

of random interactions

Present status of this subjectPresent status of this subject

Page 24: Regular structure of atomic nuclei in the presence of random interactions.

Collectivity in the IBM under random interactions

Page 25: Regular structure of atomic nuclei in the presence of random interactions.
Page 26: Regular structure of atomic nuclei in the presence of random interactions.

Shell model: Horoi, Zelevinsky, Volya, PRC, PRL; Velazquez, Zuker, Frank, PRC; Dean et al., PRC; IBM:Kusnezov, Casten, et al., PRL; Geometric model: Zhang, Casten, PRC;

Other works

Page 27: Regular structure of atomic nuclei in the presence of random interactions.

YMZ, Pittel, Bijker, Frank, and AA, PRC66, 041301 (2002). (By using usual SD pairs)

YMZ, J. L. Ping, and AA, preprint.(By using symmetry dictated pairs)

Our works by using SD pairs

Page 28: Regular structure of atomic nuclei in the presence of random interactions.

4. Energy centroids of spin I states

under random interactions

Present status of this subjectPresent status of this subject

Page 29: Regular structure of atomic nuclei in the presence of random interactions.

,

22 2

2 2

proportional to

1 ,

1( 1) |} ( ) ( ) .

2

Suppose that |} ( ) ( ) 's are random.

multiplicity number of ( , )

J J JI I J I I

J I

J n nI

K

n n

J JI I

JI

J

E G

n n j I j K j J

j I j K j J

d K

Note that ( 1)

,2

( 1),

2

JI

J

JJ JII I I

JI

n n

d n nd

Page 30: Regular structure of atomic nuclei in the presence of random interactions.
Page 31: Regular structure of atomic nuclei in the presence of random interactions.
Page 32: Regular structure of atomic nuclei in the presence of random interactions.

Other works on energy centroids

• Mulhall, Volya, and Zelevinsky, PRL(2000)

• Kota, PRC(2005)

• YMZ, AA, Yoshida, Ogawa, Yoshinaga, and Kota, PRC(2005)

• YMZ, AA, and Ogawa PRC(2005)

Page 33: Regular structure of atomic nuclei in the presence of random interactions.

Conclusion and perspective Conclusion and perspective

Page 34: Regular structure of atomic nuclei in the presence of random interactions.

• Regularities of many-body systems under random interactions, including spin zero ground state dominance, parity distribution,

collectivity, energy centroids with various quantum numbers.

• Suggestions and Questions: Study of simpler quantities: parity distribution in ground states, energy centroids, constraints of Hamiltonian in order to obtain correct collectivity, and spin 0 g.s. dominance

Page 35: Regular structure of atomic nuclei in the presence of random interactions.

Acknowledgements: Akito Arima (Tokyo) Naotaka Yoshinagana (Saitama) Stuart Pittel (Delaware) Kengo Ogawa (Chiba) Nobuaki Yoshida (Kansai) R. Bijker (Mexico)  Olaf Scholten (Groningen) V. K. B. Kota (Ahmedabad) Noritake Shimizu(Tokyo)

Thank you for your attention!