RefrigerationPrint.pdf

download RefrigerationPrint.pdf

of 47

description

hhhh

Transcript of RefrigerationPrint.pdf

  • 1Principles of Refrigeration

    MAE 554Professor H. Ezzat Khalifa

    Syracuse University

    P-h Chart for R134a (SI Units)

  • 2Psychrometric Chart (ASHRAE)

    Psychrometric Processes

    Cool Heat

    Humidify

    Dehumidify

    Cool & Dehumidify

    Air Conditioning Systems Cool & Dehumidify Air

  • 3A/C System Psychrometric Processes

    Room Condition Line

    Coil temperature must be cooler than room dew point (DP) to dehumidify the air Coil Inlet

    Room Return Air

    Outdoor Air

    Room DP

    Coil Exit

    Reversed Carnot Cycle

    s

    T

    TC

    TH

  • 40.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0

    Cold-Side Temperature - TC, C

    CO

    P c

    20.030.040.050.060.070.0

    Carnot Cycle Performance

    Sat Cond T, C

    Reversed Carnot Vapor Compression Cycle

    s

    T

    TC

    TH

  • 5Reversed Rankine Vapor Compression Cycle

    s

    T

    TC

    TH

    Superheat HornIncreased Work

    Ideal Practical Vapor Compression Cycle

    s

    T

    TC

    TH

    Superheat HornIncreased Work

    Throttling Lossin Refrigeration

    Throttling LossIn Work

  • 61

    3 2

    4

    Simple Vapor Compression Cycle

    Single-Stage Vapor Compression Cycle

    hWhE h

    P

    PE

    PC

    TSC

    hWo

    TSH

  • 7Ideal VCC Performance

    0

    2

    4

    6

    8

    10

    -40.0 -30.0 -20.0 -10.0 0.0 10.0

    Evap. Sat. Temp., C

    CO

    P C

    0

    5

    10

    15

    20

    25

    Cap

    acity

    , kW 35.0 COP

    50.0 COP

    35.0 Q

    50.0 Q

    Cond. Sat. Temp., C

    R22Ideal VCC10 CFM

    Compressor

    Comparison of Ideal VCC with Carnot Cycle

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    -40.0 -30.0 -20.0 -10.0 0.0 10.0

    Evap. Sat. Temp., C

    Rel

    ativ

    e C

    OP

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    35.0

    50.0

    Cond. Sat. Temp., C

  • 8h

    P

    PE

    PC

    PS

    PD

    11b

    1a

    2d

    1c

    3 2

    4

    P-h Diagram for Real Vapor Compression Cycle

    Effect of the Gas Specific Heat Ratio,

  • 91

    23

    4

    6

    7 8

    5

    Two-Stage VCC with Flash Economizer

    hE h

    P

    PE

    PC

    TSC

    hW1

    TSH

    1

    23

    45

    6

    7

    8

    hW2

    PI

    P-h Diagram for 2-Stage VCC with Flash Economizer

  • 10

    1

    23

    45

    6

    7 8

    5

    Two-Stage VCC with Subcooler Economizer

    hE h

    P

    PE

    PC

    TSC

    hW1

    TSH

    1

    23

    45

    6

    7

    8

    hW2

    PI

    P-h Diagram for 2-Stage VCC with Subcooler

  • 11

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    -40 -30 -20 -10 0 10 20 30 40 50

    Intermediate Sat. Temp., C

    CO

    PC, C

    OP C

    r

    COPC

    COPCr

    Geometric-MeanIntermediate

    Optimum Intermediate Temperature for 2-Stage VCC

    0

    2

    4

    6

    8

    10

    -40.0 -30.0 -20.0 -10.0 0.0 10.0

    Evap. Sat. Temp., C

    CO

    PC

    35/COP 1

    50/COP 1

    35/COP 2

    50/COP 2

    Cond. Sat. Temp., C

    R22Ideal VCC

    Comparison of Two-Stage and Single-Stage VCCs

  • 12

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    1 2 3 4

    Number of Stages

    Rel

    ativ

    e C

    OP

    C a

    nd C

    apai

    ty

    Rel. COPRel. Capacity

    R22Ideal VCC

    Performance of Multi-stage VCCs

    14

    Cascade System

    High-Temperature Refrigerant

    Low-Temperature Refrigerant

  • 13

    Desirable Characteristics of Refrigerants

    Thermally stable Safe (toxicity and flammability) Low cost and widely available Compatible with materials of construction High performance

    High latent heat Low compression superheat Low throttling losses High heat transfer properties

    Environmentally benign (ODP and GWP)

    Refrigerant Classification

    Refrigerants

    MixturesPure

    Zeotropes Azeotropes

    R502

    R507

    R410A*

    R404A*

    R407C

    Natural CFC HCFC HFC

    Ammonia

    Propane

    R12

    R114

    R11

    R22

    R123

    R134a

    R32

    R125

    R143a

    Iso-Butane

    R290-R600a

    *Near-Azeotropes

    CO2

    Used in or considered for Refrigeration

    Propane/Iso-Butane

  • 14

    Mixture Phase Diagrams

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction, x

    Sat.

    Tem

    pera

    ture

    Tsat

    Liquid Mole-Fraction Vapor Mole-Fraction

    P1

    P2

    Mixture Phase Diagrams

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction, x

    Sat.

    Tem

    pera

    ture

    Tsat

    Liquid Mole-Fraction Vapor Mole-Fraction

    P1

    P2

    Azeotrope

  • 15

    NIST Refrigerant Properties

    ASHRAE Refrigerant Safety Classification

    B3R1140

    A3R170, R290, R600a, R1150

    High Flammability

    B2NH3

    A2R32, R142b, R143a, R152a

    Low Flammability

    B1R123, R764, R21

    A1R11, R12, R22, R125, R134a, R407C,

    R507, R404A, R410A, R744No Flammability

    High ToxicityLow/No Toxicity

    Refrigerants marked in Red are ozone depleting substances that are no longer used in new equipment.Refrigerants marked in Green are natural refrigerants that have low GWP,as well as no ODP.

  • 16

    Refrigerants: Methane Group

    Refrigerants: Ethane Group

  • 17

    ODP and GWP for Various Refrigerants

    Refrigerant ODP GWP Refrigerant ODP GWP

    CFC-11 1.0 1.0 HFC-125 0.0 0.84 CFC-12 1.0 3.05 HFC-134 0.0 0.25 CFC-13 N/A N/A HFC-134a 0.0 0.25 HCFC-22 0.051 0.370 HFC-143a 0.0 1.2 HFC-23 0.0 N/A HFC-152a 0.0 0.029 HFC-32 0.0 0.130 R500 0.78 2.39 CFC-113 0.87 1.300 R502 0.245 5.10 CFC-114 0.74 4.150 R503 N/A N/A HCFC-123 0.016 0.019 R410A 0.0 0.49 HCFC-123a 0.016 0.019 R507 0.0 0.96 HCFC-124 0.018 0.095

    ODP (Ozone Depletion Potential), and GWP (Greenhouse Warming Potential) are calculated relative to CFC R11.

    Refrigerant Comparison

    (1.0) means reference value

    Refrigerant CO2 R12 R22 R134a R404A R410A C3H8 NH3

    Natural? Yes No No No No No Yes Yes

    Flammable? No No No No No No Yes Yes

    Toxic? No No No No No No No Yes

    Relative Cost 0.1 - (1.0) 4.0 5.0 5.0 0.3 0.2

    Volum. Capacity 4.8 0.6 (1.0) 0.7 1.2 1.5 0.9 1.0

    Critical Temp.(F) 88 234 205 214 163 158 206 270

    P @ 70F (psia) 852 85 136 86 165 216 125 129

    ODP 0 1.0 0.05 0 0 0 0 0

    GWP (100yr) (1.0) 7100 1500 1300 3750 1730 3 0

  • 18

    Refrigerant Pressure-Capacity Relationship

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 100 200 300 400 500Pressure Difference @ ARI [psi]

    Volu

    met

    ric C

    apac

    ity @

    AR

    I [To

    n/cf

    m]

    Best FitR123R11R245faR114R600aR12R134aR290R22R407CR717R507R410A

    R22

    NH3

    R404A/R507Propane

    R407C

    R410A

    R134a

    R22 & its near neighbors

    Comparison of Simple Cycle EER

    R22 R134a R290 R407C R507 R410A0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10EER Relative to R22

    ARICHEER

  • 19

    Relative ARI Capacity [Same Displacement]

    0.0

    0.5

    1.0

    1.5

    2.0Capacity relative to R22

    Relative Compressor Displacement [Same Capacity]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0Displacement relative to R22

  • 20

    Low Temperature Capacity Comparison

    SCT=130F; SH=20F; SC=15F; No LSHX; No Quench

    0.1

    1.0

    -50 -40 -30 -20 -10 0 10 20 30 40 50

    Saturated Evaporator Temperature [F]

    Cap

    acity

    Rel

    ativ

    e to

    AR

    I

    R22R507R134aR410A

    Low Temperature EER Comparison

    0.1

    1.0

    -50 -40 -30 -20 -10 0 10 20 30 40 50

    Saturated Evaporator Temperature [F]

    EER

    Rel

    ativ

    e to

    R22

    @ A

    RI

    R22R507R134aR410A

    SCT=130F; SH=20F; SC=15F; No LSHX; No Quench

  • 21

    Discharge Superheat Comparison

    0

    50

    100

    150

    200

    250

    300

    -50 -40 -30 -20 -10 0 10 20 30 40 50

    Saturated Evaporator Temperature [F]

    Dis

    char

    ge S

    uoer

    hear

    [F]

    R22R507R134aR410A

    SCT=130F; SH=20F; SC=15F; No LSHX; No Quench

    Total Equivalent Warming Impact (TEWI)

    Medium Temperature RefrigerationFrom DoE's ORNL Report, 1997

  • 22

    Fluid Comparison - R134a vs. R744 (CO2)

    Region of Operational Interest

    Region of Operational Interest

    R744 (CO2)R134a

    R134a R744Critical Point 214 F 88 FLow Pressure 10-50 psi 110 - 500 psiHigh Pressure 100-250 psi 750-2000 psi

    Other CO2 Properties:High throttling losses Solid CO2 (Dry Ice) at -80F (70 psi)Transcritical Cycle (typical)Much Higher heat transfer potential (2-3x)Temperature glide on heat rejection HX

    Refrigerant-Lubricant Viscosity

  • 23

    Vapor Compressors

    Classification of Vapor Compressors

    Positive Displacement Machines [PD]: Reciprocating Piston, Rolling Piston, Scroll, Screw,

    Sliding Vane

    Rotodynamic (Turbo) Machines [RD]: Radial, Mixed-flow Centrifugal; Single and Multi-stage

  • 24

    Positive Displacement Vapor Compressors

    Compressor Application Range

    0.1 1.0 10.0 100.0 1000.0 10000.0

    Rotary [HVAC]

    Scroll [HVAC]

    H Recip [HVAC]

    SH Recip [HVAC]

    Screw [HVAC]

    Centrifugal [HVAC]

    ARI Capacity, Tons

  • 25

    Positive Displacement Compressors

    Piston (Reciprocating)

  • 26

    Comparison of P-V Diagrams

    Pre

    ssur

    e

    Scroll/Screw (AC & Refrig.)

    Volume Displacement

    Clearance Volume

    Recip. AC

    Recip. Refrig.

    Up to 60% Up to 60% More CapacityMore Capacity

    Piston Compressor Volumetric Efficiency

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 10 20 30 40 50 60

    Pressure Ratio

    Theo

    retic

    al V

    olum

    eter

    ic E

    ffici

    ency

    0.0000.0100.0150.0200.0300.0500.0700.100

    C

    n = 1.15

  • 27

    Rolling Piston (Rotary) Compressor Pump

    Typical Rolling Piston Compressor

    ASHRAE Handbook of Systems and Equipment, 2004

  • 28

    Hermetic Scroll Compressor

    Scroll Compressor

  • 29

    Scroll Compressor Operation

    Scroll Operation (DTU)

    Typical Scroll Compressor Performance

    ASHRAE Handbook of Systems and Equipment, 2004

  • 30

    Twin Screw (Lysholm) Compressor

    Single Screw Compressor

    ASHRAE Handbook of Systems and Equipment, 2004

  • 31

    Typical Screw Compressor Performance

    ASHRAE Handbook of Systems and Equipment, 2004

    Over/Under-compression Loss

    0%

    20%

    40%

    60%

    80%

    100%

    0.0 1.0 2.0 3.0 4.0 5.0

    Relative Discharge Pressure (Pd/Pd*)

    Perc

    enta

    ge O

    ver/

    Und

    er-c

    ompr

    essi

    on L

    oss

    3.03.54.05.06.0

    VRUnder-compression

  • 32

    Screw CompressorsEfficiency Improvement

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    0 10 20 30 40 50 60 70 80 90Male Rotor Tip Speed [m/s]

    Rel

    ativ

    e Lo

    ss

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Isen

    trop

    ic E

    ffici

    ency

    Leakage Losses Flow & Viscous Losses

    Pump Efficiency

    Close leakage gaps & reduce oil injectionClose leakage gaps & reduce oil injection

    Sliding Vane Compressor

  • 33

    Centrifugal Compressors

    Centrifugal Compressor

  • 34

    Typical Centrifugal Compressor Impeller

    ASHRAE Handbook of Systems and Equipment, 2004

    Ns-Ds Diagram for Single-Stage CompressorsFrom O. E. Balje: Turbomachines - A Guide to Design Selection and Theory, Wiley, NY, '81

  • 35

    2-Stage Centrifugal Compressor

    ASHRAE Handbook of Systems and Equipment, 2004

    Polytropic Efficiency

    0.830

    0.832

    0.834

    0.836

    0.838

    0.840

    0.842

    0.844

    0.846

    0.848

    0.850

    1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    Pressure Ratio

    Isen

    trop

    ic E

    ffici

    ency

    p = 0.85; = 1.1

  • 36

    Typical Centrifugal Compressor Performance

    ASHRAE Handbook of Systems and Equipment, 2004

    IGV Control Fixed SpeedVariable-Speed Control

    Centrifugal Chiller Part-Load Performance

    ASHRAE Handbook of Systems and Equipment, 2004

  • 37

    Comparison of Chiller Compressors

    ASHRAE Handbook of Systems and Equipment, 2004

    Expansion Devices

  • 38

    Short Restrictor Expansion Device

    ASHRAE Handbook of Refrigeration, 2004

    Thermostatic Expansion Valve

    ASHRAE Handbook of Refrigeration, 2004

  • 39

    Constant-Pressure Expansion Valve

    ASHRAE Handbook of Refrigeration, 2004

    Float-controlled Expansion Valve

    ASHRAE Handbook of Refrigeration, 2004

  • 40

    Thermally Activated Heat Pump Concept

    ASHRAE Handbook of Refrigeration, 2004

    Single-Effect LiBr-H2O Absorption Cycle

    1

    6

    4"

    7

    3

    2

    4'

    5

    Solution HX

    Condenser

    Evaporator Absorber

    Generator

    Pump

  • 41

    Practical Configuration of LiBr-H2O System

    ASHRAE Handbook of Refrigeration, 2004

    Mixture Phase Diagrams

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Mole Fraction, x

    Sat.

    Tem

    pera

    ture

    Tsat

    Liquid Mole-Fraction Vapor Mole-Fraction

    P1

    P2

  • 42

    Single-Effect LiBr-H2O Cycle Duhring Diagram

    T

    P

    CrystallizationPE

    PC

    Pure H2O; x=0 x=xsx=xw

    TGTC~TATE

    1, 7

    6 3

    2 5

    4', 4"

    Double-Effect LiBr-H2O Absorption Cycle [1]

    3'

    1

    9

    6

    10

    7'

    5

    6

    2

    Condenser

    Evaporator Absorber

    Generator 1

    Pump

    7"

    Solution HX

    3'

    8

    Pump

    Solution HX

    Generator 2

    4'

    4

    3

    8

    4"

  • 43

    Double-Effect LiBr-H2O Absorption Cycle [2]

    1

    10

    9"

    12

    3

    2

    4'

    6'

    Condenser

    Evaporator Absorber

    Generator 1

    Pump

    4"

    3'

    54

    9'

    8' 8

    6

    Solution HX

    Generator 2

    Single-Effect LiBr-H2O Cycle Duhring Diagram

    T

    P

    CrystallizationPE

    PC

    Pure H2O; x=0 x=xsx=xw

    TGTC~TATE

    1, 8

    7 3

    2 5

    4, 6

  • 44

    Pumpless Aqua-Ammonia System

    ASHRAE Handbook of Refrigeration, 2004

    Bubble Pump

    Simple and Regenerative Reversed Brayton Cycle

    S

    T

    2

    3

    6, 15

    4

    3

    2

    1

  • 45

    Regenerative Air Cycle

    ConditionedSpace

    Exp. Comp.

    Recuperator

    Gas Cooler

    Ambient air

    Power

    Simple Air Cycle Performance

    Ta = 35 C; R = 0.9; E = 0.88; C = 0.87; P/P = 0.05; TA = 10 C

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    Expander Pressure Ratio

    CO

    P

    22.0

    12.0

    2.0

    -8.0

    -18.0

    -38.0

    -58.0

    -78.0

    -98.0

    -118.0

    Load Temp.C

  • 46

    Regenerative Air Cycle Performance

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    1.0 2.0 3.0 4.0 5.0 6.0

    Expander Pressure Ratio

    CO

    P

    22.0

    12.0

    2.0

    -8.0

    -18.0

    -38.0

    -58.0

    -78.0

    -98.0

    -118.0

    Load Temp.C

    Ta = 35 C; R = 0.9; E = 0.88; C = 0.87; P/P = 0.05; TA = 10 C

    Comparison of Air Liquefaction Cycles

    0

    2000

    4000

    6000

    8000

    10000

    12000

    Revrsible(Ideal)

    Linde Linde + VC Precooler

    (-45 C)

    Dual-Pressure

    Linde

    Dual-Pressure

    Linde + VCPrecooler

    Claude

    kJ/k

    g Li

    quid

    Air

  • 47

    Rotary Magnetic Refrigerator