refrigeration-optimisation (англ) day-2-m40.pdf

49
Refrigeration Plant Optimisation. What are the options? Dr Michael Bellstedt Minus40 Pty Ltd Sydney

Transcript of refrigeration-optimisation (англ) day-2-m40.pdf

Page 1: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigeration Plant Optimisation.

What are the options?

Dr Michael BellstedtMinus40 Pty Ltd

Sydney

Page 2: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigeration in the meat industry

• Refrigeration – the largest, yet most neglected power user!

• The energy and carbon cost threats• Synthetic refrigerants – get out now!• Energy efficiency

• Where is power used?

• Importance of plant stability

• Overview of energy savings opportunities

• Conclusions and Recommendations• NSW OEH funding available

Page 3: refrigeration-optimisation (англ) day-2-m40.pdf

Energy

Page 4: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigeration in meat industryUsed everywhere….

Office air‐conditioningBoning and processing roomsCarcass chillers and holding chillersFreezer roomsBlast chillers and freezersPlate freezers 

30% to 70% of site power consumption!!!!Yet in most cases  refrigeration plant technologies from ‘70s and ‘80s…. and breakdown maintenance!!!

Page 5: refrigeration-optimisation (англ) day-2-m40.pdf

5

Page 6: refrigeration-optimisation (англ) day-2-m40.pdf

Power cost impactSmall Medium Large

Annual consumption 5 GWh 10 GWh 25 GWh

2011 annual cost $500,000 $1,000,000 $2,500,000

2015 annual cost $750,000 $1,500,000 $3,750,000

Increase $250,000 $500,000 $1,250,000

Investing in power savings is a really good idea!!!

Page 7: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigerants overviewAmmonia – high efficiency, environmentally benign, 

special design requirements

Carbon dioxide – low temperatures, 

environmentally benign, special design requirements

Synthetics (R22, R404a, R134a) – commonly used 

for small systems, often low efficiency, 

environmentally problematic

Page 8: refrigeration-optimisation (англ) day-2-m40.pdf

Choice of refrigerant and system

R404a, air-cooled condenser, direct expansion

Ammonia, evaporative condenser,liquid recirculated

R404a systems 30-70% LESS efficient

Page 9: refrigeration-optimisation (англ) day-2-m40.pdf

Carbon 

Page 10: refrigeration-optimisation (англ) day-2-m40.pdf

Global Warming Potentials

Refrigerant 100yr GWPR717 (Ammonia) 0R744 (CO2) 1R404a 3,862R134a 1,410R22 1,780

Releasing 1kg of R404a = 3,862 kgs of CO2!= emissions of 1 car driven 15-20,000km!!

Page 11: refrigeration-optimisation (англ) day-2-m40.pdf

Effect of Carbon Tax on R404ACosts / kg Tax rate / ton CO2

$0 $20 $40 $60

Base cost $30 $30 $30 $30

Carbon Tax $0 $80 $160 $240

Handling cost $0 $16 $32 $48

Nett cost $30 $126 $222 $318

% increase 0% 420% 740% 1,060%

Page 12: refrigeration-optimisation (англ) day-2-m40.pdf

Impact on R404A plant running costs

Typical HFC leakage 20%/annum500‐2,000kgs R404A typical for many sitesHence 100‐400kgs leakage per annumCurrently $3,000 to $12,000 annual refrigerant costsAt $30/ton carbon tax, this will increase to $22,000 to $88,000 per annum.A major leak causing full refrigerant loss could cost >$400,000 in one hit!!

Page 13: refrigeration-optimisation (англ) day-2-m40.pdf

13

Freon

Ammonia

Page 14: refrigeration-optimisation (англ) day-2-m40.pdf

Energy Savings Opportunities

Page 15: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigeration energy savings opportunitiesStrategy Typical plant Optimized plant

Variable head pressure 12% 3%

Compressor control 15% 5%

Remote control optimisation 8% 5%

Heat recovery 2% 0%

Defrost management 2% 1%

Variable cold store temperatures 2% 0%

Variable evaporator fan speeds 2% 0%

Condensate sub‐cooling 4% 2%

Design review 10% 2%

Maintenance review 2% 0%

TOTAL 45% 18%

Page 16: refrigeration-optimisation (англ) day-2-m40.pdf

Where is the energy used?Single stage indirect refrigeration system:

16

Compressor

Cooling tower

Pump Pump

Expansion device

Air cooler

Heat exchangers

Page 17: refrigeration-optimisation (англ) day-2-m40.pdf

Refrigeration Plant stability – first priority

Plant stability:  stable operating conditions + smooth response to changesStable operation = efficient operation.Instabilities caused by:

On/off condenser fan operationSimple level control mechanism on vesselsCompressor cycling in response to load changesPoor control strategies

Hence achieving STABLE plant operation is generally a pre‐requisite to effective reduction of energy use.

Page 18: refrigeration-optimisation (англ) day-2-m40.pdf

Plant stability – discharge pressures

T_cond

0

5

10

15

20

25

30

35

8/02

/ 00:

00

8/02

/ 16:

40

9/02

/ 09:

20

10/0

2/ 0

2:00

10/0

2/ 1

8:40

11/0

2/ 1

1:20

12/0

2/ 0

4:00

12/0

2/ 2

0:40

13/0

2/ 1

3:20

14/0

2/ 0

6:00

14/0

2/ 2

2:40

15/0

2/ 1

5:20

16/0

2/ 0

8:00

17/0

2/ 0

0:40

17/0

2/ 1

7:20

18/0

2/ 1

0:00

19/0

2/ 0

2:40

19/0

2/ 1

9:20

20/0

2/ 1

2:00

21/0

2/ 0

4:40

21/0

2/ 2

1:20

22/0

2/ 1

4:00

Plant controlled by on/off condenser fan operation

Page 19: refrigeration-optimisation (англ) day-2-m40.pdf

Plant stability – impact on remaining plant

0

20

40

60

80

100

120

8/02

/ 00:

00

8/02

/ 01:

00

8/02

/ 02:

00

8/02

/ 03:

00

8/02

/ 04:

00

8/02

/ 05:

00

8/02

/ 06:

00

8/02

/ 07:

00

8/02

/ 08:

00

8/02

/ 09:

00

8/02

/ 10:

00

8/02

/ 11:

00

8/02

/ 12:

00

8/02

/ 13:

00

8/02

/ 14:

00

8/02

/ 15:

00

8/02

/ 16:

00

8/02

/ 17:

00

8/02

/ 18:

00

8/02

/ 19:

00

8/02

/ 20:

00

8/02

/ 21:

00

8/02

/ 22:

00

8/02

/ 23:

00

0

200

400

600

800

1000

1200

COMP_1_LOADED_PERCENTAGE COMP_2_LOADED_PERCENTAGE SUCTION_PRESS_TRANS HEAD_PRESS_TRANS

Discharge pressure oscillates

Suction pressure also oscillates Compressor load state

responds to pressure fluctuations

Page 20: refrigeration-optimisation (англ) day-2-m40.pdf

100%100%

Fan Fan powerpower

Air flowAir flow0%0%

Staged Staged

controlcontrol

Speed Speed

controlcontrol

Saving fan power with a VSD 100%100%

Savings Savings due to due to VSDVSD

Page 21: refrigeration-optimisation (англ) day-2-m40.pdf

Fan VSD savings10kW fan motor

Run fan 50% of the time = 5kW average use

Run fan at 50% fan speed =1.25kW average use

Save 3.75 kW = $5,000/annum

10kW VSD costs <<$5,000!!!

Page 22: refrigeration-optimisation (англ) day-2-m40.pdf

Variable head pressure control Compressor power reduces ~3% per 1ºC reduction in condensing temperatureMany plants run at constant head pressure setpoint throughout yearAt cool ambient  and /or part load conditions significant savings can be achieved by allowing head pressure to reduceAdditional savings achievable by operating condenser fans at variable speed, rather than staging fans

Page 23: refrigeration-optimisation (англ) day-2-m40.pdf

Compressor + condenser fan Summer conditions 

X

X

Minimum total power

Page 24: refrigeration-optimisation (англ) day-2-m40.pdf

Compressor + condenser fan Winter conditions 

X

X

Minimum total power

Page 25: refrigeration-optimisation (англ) day-2-m40.pdf

Example: VHPC with ambient sensor (left) and VSDs on condensers (below)

Page 26: refrigeration-optimisation (англ) day-2-m40.pdf

Screw compressor capacity controlSlide vs variable speed

Courtesy: University of Wisconsin

Page 27: refrigeration-optimisation (англ) day-2-m40.pdf

Unloaded screw compressor

27

Problem: Compressor at 70%

slide position!Solution: VSDs for screw 

compressors

Page 28: refrigeration-optimisation (англ) day-2-m40.pdf

Mode A Mode B Mode C Mode D

C1 @ 100%; 50Hz

C1 @ 100%; 28Hz

C1 @ 100%; 25Hz

C2 @ 75 %

C2 @ 100 %

C1 OFF;

C2 OFF

0-100% loading

Single compressor operation Dual compressor operation

Two‐compressor plantefficient loading 

Page 29: refrigeration-optimisation (англ) day-2-m40.pdf

Mode A Mode B Mode C Mode D

C1 @ 100%; 50Hz

C1 @ 100%; 28Hz

C1 @ 100%; 25Hz

C2 @ 75 %

C2 @ 100 %

C1 OFF;

C2 OFF

100-0% unloading

Single compressor operation Dual compressor operation

Two‐compressor plantefficient unloading 

Page 30: refrigeration-optimisation (англ) day-2-m40.pdf

Slide position transducers on Hitachi (l) and Stal (below)

Page 31: refrigeration-optimisation (англ) day-2-m40.pdf

The plant control challengeOperating conditions vary

Summer/winter ambient conditionsProduction changesSeasonal productionDay/night/weekend operation

Optimum operating conditions are a moving target

Changing plant operating conditionsChanging services costs and ratesPlant changes and improvements

Page 32: refrigeration-optimisation (англ) day-2-m40.pdf

Principle of remote control optimisation

SCADA

PLCPlant

Power meters

Server on site

Remote workstation

For remote optimisation

For remote optimisation

Optimised settings

DataData

Optimised settings over-ride PLC settings

SCADA

Plant

Power meters

PLC Server on site

Remote work-station

• PLC contains standard site programming • PLC serviced by local personnel• Server turned off during service or troubleshooting 

work• Energy saver algorithms on server, cannot be affected 

by PLC changes• Verification easily done by comparing performance with 

server ON and OFF

Page 33: refrigeration-optimisation (англ) day-2-m40.pdf

Heat recoveryFreezer room subfloor heating (<20ºC)

Domestic Hot Water/ Hand wash (40ºC)

Space heating (40‐60ºC)

Washdown water (55‐60ºC)

CIP, sterilisation (80‐90ºC)

Boiler feedwater (any)

Page 34: refrigeration-optimisation (англ) day-2-m40.pdf

Heat recovery with high stage desuperheater

Page 35: refrigeration-optimisation (англ) day-2-m40.pdf

Variable evaporator fan speeds

Most evaporator fans run 24/7

Alternatives:•Fit VSDs to fans (one VSD per evaporator)•Reduce fan speed when doors closed say >30 minutes•Reduce fan speed at night/on weekends•Run low speed (20%), then pulse speed to 70% to mix air

Page 36: refrigeration-optimisation (англ) day-2-m40.pdf

Evaporator fans on VSD

Freezer evaporator fan motor – 1.5kWRefrigeration power required to remove heat –0.75 kW, hence 2.25 kW totalAnnual power costs for 24/7 operation: $3,000!Use VSD at 70% average fan speed – 0.5kW fan power + 0.25kW = 0.75kW totalAnnual power costs for 24/7 operation: $1,000!Annual savings: $2,000 PER FAN!!

Page 37: refrigeration-optimisation (англ) day-2-m40.pdf

Liquid refrigerant sub‐cooling

37

Compressor

Condenser

Evaporator

Expansion device

Sub-cool liquid HERE before expansion

X

Page 38: refrigeration-optimisation (англ) day-2-m40.pdf

Liquid refrigerant sub‐coolingFlash gas reduction reduces compressor power Sub‐cooling with condenser feedwaterWater‐cooled systems onlyMains water generally colder than ambientSub‐cool condensate with mains water 

Sub‐cooling with economizer suction (screw compressors only)

Intermediate suction pressure used to subcool condensate in heat exchangerBeneficial ONLY if slide unloader NOT used.

Page 39: refrigeration-optimisation (англ) day-2-m40.pdf

Condensate sub‐cooling with feedwater

39

Compressor EvaporativeCondenser

Evaporator

Expansion device

Mains water

Page 40: refrigeration-optimisation (англ) day-2-m40.pdf

40

Economizer on screw compressor

Page 41: refrigeration-optimisation (англ) day-2-m40.pdf

Review of Refrigeration Plant Design

Remove “Bottlenecks” that cause inefficiencies

Split suction lines to run higher temperature loads at 

higher suction pressure

Eg. Blast freezers and holding freezers

Eg. Chiller rooms and processing rooms

Eliminate liquid injection oil cooling on screw 

compressors

Page 42: refrigeration-optimisation (англ) day-2-m40.pdf

Liquid injection oil cooling on screw compressors

42

Problem: LI oilcooling reduces efficiency

Solution: Water cooledoil cooling

Page 43: refrigeration-optimisation (англ) day-2-m40.pdf

Typical “Bottlenecks”Undersized evaporators/condensers

Decreases suction, increases condensing temp

Direct expansion evaporatorsLimits variable head pressure control options

Excessively long wet/dry suction linesReduces suction pressure at compressor

Poorly designed wet suction risersReduces suction pressure at compressor

Undersized suction/discharge lines, or unnecessary line obstructions

Reduces suction, increases discharge pressure at compressor

Redundant suction regulation valvesReduces suction pressure at compressor

Page 44: refrigeration-optimisation (англ) day-2-m40.pdf

Example:  Poor suction line installation

Two stop lines in series!!

Redundant valve not removed from suction line

Page 45: refrigeration-optimisation (англ) day-2-m40.pdf

Air purging

45

Old gas purgers

Manual gas purging

Solution: Autopurgers

Air purging

Page 46: refrigeration-optimisation (англ) day-2-m40.pdf

Water accumulationWater enters with air, but accumulates in the systemAccumulates on the low temperature side, generally in accumulator/surge vesselsReduces suction pressure required to achieve setpoint evaporation temperatureSome devices (ice cream churns) act to remove water.Otherwise water purger required.

Page 47: refrigeration-optimisation (англ) day-2-m40.pdf

Effect of water on energy efficiency

Page 48: refrigeration-optimisation (англ) day-2-m40.pdf

Conclusions and Recommendations

Analyse your plant for energy savings opportunities – there are many!Opportunities not feasible a few years ago are now viable due to higher power costsMany opportunities are available at relatively minor cost, or require controls upgrade onlyImplement  viable opportunities NOWConvert  Freon systems to ammonia plant

Page 49: refrigeration-optimisation (англ) day-2-m40.pdf

NSW Office of Environment and Heritage funding support

Industrial Refrigeration Energy Efficiency project – studies, seminars, direct supportBusiness case studies subsidized by 70%$20,000 early adopter funding available100% funding for implementation support servicesEnergy Savings Certificates available for completed projects ($35/MWh/annum)