Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by...

12
Ozobot Bit Classroom Application: Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University [email protected] Topics Physics, Refraction of Light, Snell’s Law, Index of Refraction, Sine Function, Wavelength, Frequency, Velocity, Normal, Incident Ray, Refracted Ray, Air, Glass, Diamond, Experiment, Data Collection Ages Grades 10-12, College Duration 50 minutes O Z O B O T S T R E A M APPROVED

Transcript of Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by...

Page 1: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

Ozobot Bit Classroom Application: Refraction of Light Simulation

Created by

Richard Born

Associate Professor Emeritus

Northern Illinois University

[email protected]

Topics

Physics, Refraction of Light, Snell’s Law,

Index of Refraction, Sine Function, Wavelength, Frequency,

Velocity, Normal, Incident Ray, Refracted Ray, Air, Glass,

Diamond, Experiment, Data Collection

Ages

Grades 10-12, College

Duration 50 minutes

A

PPROVED

OZO

BOT STREA

M

APPROVED

Page 2: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

1    

 

Ozobot Bit Classroom Application:

Refraction of Light Simulation

By Richard Born Associate Professor Emeritus

Northern Illinois University [email protected]

 

Introduction  

If  you  have  ever  seen  a  rainbow  in  the  sky,  then  you  have  seen  refraction  in  action.    Maybe  you  have  seen  a  white  beam  of  light  split  into  a  rainbow  of  colors  when  passed  through  a  prism.    Put  a  pencil  at  an  oblique  angle  into  a  glass  of  water  and  the  pencil  appears  to  bend.    If  you  have  a  fiber  optic  cable  as  part  of  your  electronics  entertainment  system,  refracted  light  is  essential  to  its  operation.    Refraction  of  light  is  almost  everywhere  and  happens  when  light  travels  from  one  medium  to  another,  changing  speed  in  the  process.  

The  study  of  refraction  is  central  to  any  introductory  course  in  physics,  and  is  often  found  in  physical  science  courses  as  well.    Using  this  Ozobot  Bit  classroom  application  to  study  the  refraction  of  light  via  simulation  offers  a  couple  of  advantages  over  traditional  methods  that  use  actual  light  and  refraction  apparatus.    With  Ozobot  Bit  simulating  a  ray  of  light  as  it  moves  on  the  provided  OzoMap,  students  can  see  how  light  is  refracted  when  entering  a  diamond,  seldom  done  in  the  actual  classroom  due  to  the  expense  and  small  size  of  diamonds.    In  addition,  with  Ozobot  moving  at  speeds  that  are  a  very  tiny  fraction  of  the  speed  of  light,  students  can  get  a  feel  for  just  how  much  glass  or  diamond  slows  down  light.  

Snell’s  Law  (aka,  The  Law  of  Refraction)  

In  order  to  deal  with  refraction  quantitatively,  concepts  related  to  Snell’s  Law,  the  Law  of  Refraction,  need  to  be  understood.    Snell’s  Law,  can  be  described  in  mathematical  terms  by  the  equation  

!"#!!!"#!!

=    !!!!  =  !!

!!  =  !!

!!  .  

Figure  1  serves  as  an  aid  to  understanding  this  equation.    A  ray  of  light  in  the  top  half  of  Figure  1  is  incident  upon  the  boundary  between  two  media.    Medium  1  is  shown  as  air,  while  medium  2  could  be  water,  glass,  diamond,  or  any  other  more  optically  dense  medium.    The  normal  to  the  boundary,  by  definition,  is  a  line  perpendicular  to  the  boundary  between  the  two  media.    The  refracted  ray  is  bent  toward  the  normal  in  such  a  way  that  the  angle  𝜃!  it  makes  with  the  normal  is  less  than  the  angle  𝜃!  that  the  incident  ray  makes  with  the  normal.    It  is  important  to  note  that  𝜃!  and  𝜃!  are  measured  between  the  rays  and  the  normal,  not  between  the  rays  and  the  boundary  between  the  two  refractive  media.    In  accordance  with  the  wave  model  of  light,  the  light  green  lines  on  each  of  the  rays  represent  wave  fronts.    The  wavelength  𝜆!in  air  is  greater  than  the  wavelength  𝜆!  in  the  more  optically  dense  medium  2.    Similarly,  the  velocity  v1  of  the  waves  in  air  is  greater  than  the  velocity  v2  of  the  waves  in  the  more  optically  dense  medium.  

Page 3: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

2    

 

Figure  1  

n1  is  the  index  of  refraction  of  medium  1,  and  n2  is  the  index  of  refraction  of  medium  2,  both  with  respect  to  a  vacuum.    The  index  of  refraction  of  a  vacuum  is,  by  definition,  1.    The  index  of  refraction  of  air  at  STP  (Standard  Temperature,  0°C,  and  Pressure,  1  atmosphere)  is  1.000277.    For  most  practical  purposes,  we  can  assume  that  the  index  of  refraction  of  air  is  1.    Factors  typically  affecting  the  index  of  refraction,  other  than  the  medium,  include  temperature,  pressure,  and  the  color  of  the  light.  

The  OzoMaps  for  this  Classroom  Lesson  

There  are  actually  two  OzoMaps  for  this  lesson—one  for  a  ray  of  light  traveling  from  air-­‐to-­‐glass  and  one  for  air-­‐to-­‐diamond.      For  reference  purposes  while  discussing  this  classroom  lesson,  Figure  2  shows  the  OzoMap  for  air-­‐to-­‐glass.    Full  page  versions  of  both  maps  that  can  be  used  with  Ozobot  Bit  appear  on  the  final  two  pages  of  this  document.  

Four  incident  light  rays,  labeled  A,  B,  C,  and  D,  are  shown  in  air.    Ozobot  Bit  should  always  be  placed  at  the  top  of  any  of  these  incident  rays,  facing  the  direction  indicated  by  the  arrow,  and  with  Ozobot  Bit’s  leading  edge  aligned  with  the  curved  gray  line  near  the  top  of  each  of  the  rays.    Ozobot  Bit  will  follow  the  incident  ray,  and  upon  reaching  the  boundary  between  air  and  glass,  he  will  slow  down  and  bend  toward  a  normal  to  the  boundary,  following  the  refracted  ray.    As  mentioned  earlier,  Ozobot  Bit  is  simulating  a  ray  of  light,  exhibiting  behavior  of  real  light,  but  at  extremely  small  speeds  compared  to  that  of  light.    The  speeds  are  such  that  students  can  measure  the  speed,  both  for  air  and  water,  using  an  ordinary  stop  watch.    This  is  accomplished  by  measuring  the  time  required  for  Ozobot  Bit  to  travel  from  the  first  to  the  second  blue  line  on  each  of  the  rays.    It  should  be  noted  that  each  of  the  pairs  of  blue  lines  is  equally  spaced,  so  the  times  are  inversely  proportional  to  the  speeds—long  times  giving  slower  speed  and  short  times  giving  higher  speeds.  By  the  use  of  a  protractor,  students  can  also  measure  the  angles  of  incidence  and  angles  of  refraction  of  the  rays.    

Page 4: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

3    

Knowing  the  angles  of  incidence  and  refraction,  and  the  fact  that  the  index  of  refraction  of  air  is  1,  students  can  use  Snell’s  law  to  determine  the  index  of  refraction  of  glass.    From  Snell’s  Law,  the  index  of  refraction  should  be  equal  to  the  ratio  of  the  speed  of  light  in  air  to  its  speed  in  glass.  

 

Figure  2  

Running  the  Ozobot  Bit  Program  

1. There  are  two  OzoBlockly  programs  accompanying  this  classroom  application.    Load  the  OzoBlockly  program  AirToGlass.ozocode  when  using  the  air  to  glass  OzoMap.    Load  the  OzoBlockly  program  AirToDiamond.ozocode  when  using  the  air  to  diamond  OzoMap.  

2. Make  sure  that  Ozobot  Bit  is  calibrated  on  paper  before  running  the  program.  3. Make  sure  that  Ozobot  Bit  has  clean  wheels  and  plenty  of  battery  charge.  4. Place  Ozobot  Bit  at  any  of  the  locations  labeled  either  A,  B,  C,  or  D  facing  the  direction  shown  by  the  gray  

arrow  and  with  Ozobot’s  leading  edge  on  the  curved  gray  line.      5. Start  Ozobot  Bit  by  double-­‐pressing  the  start  button.    Ozobot  Bit  should  display  a  green  LED  while  moving  

on  the  air  to  glass  OzoMap.    He  should  show  a  red  LED  while  moving  on  the  air  to  diamond  OzoMap.    This  provides  a  good  way  to  make  sure  that  you  are  running  the  correct  program  on  the  correct  OzoMap.    

6. Ozobot  Bit  will  then  behave  as  described  in  the  previous  section  of  this  document.    When  Ozobot  Bit  reaches  the  end  of  the  refracted  ray,  his  LED  will  turn  aqua  for  seven  seconds,  and  then  go  back  to  either  red  or  green,  giving  the  student  time  to  lift  and  move  Ozobot  Bit  back  to  the  start  of  another  incident  ray  without  the  need  to  turn  Ozobot  Bit  off  and  then  on  again.    This  saves  wear  and  tear  on  Ozobot  and  saves  student  time  during  data  collection.  

Page 5: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

4    

Experiment  #1:    In  this  experiment  you  will  measure  the  angles  of  incidence  and  refraction,  compute  their  sines,  and  then  compute  the  index  of  refraction,  n2.    A  data  table  is  provided  for  you  to  record  your  results  at  the  top  of  page  6  for  the  air-­‐to-­‐glass  experiment  and  at  the  top  of  page  7  for  the  aid-­‐to-­‐diamond  experiment.    When  measuring  the  angles  of  incidence  and  refraction,  remember  that  they  must  be  measured  relative  to  a  normal  to  the  boundary  between  air  and  the  medium.  In  addition  to  a  protractor  for  measuring  the  angles,  it  may  be  helpful  to  have  a  straight  edge  to  extend  rays  to  the  boundary  between  the  two  media,  and  an  index  card  (with  its  right  angles)  to  aid  in  drawing  normals  to  the  boundary.    With  care,  you  should  be  able  to  measure  the  angles  of  incidence  and  refraction  to  the  nearest  half-­‐degree.  You  can  use  a  calculator  to  determine  the  sines  of  the  angles,  but  make  sure  the  calculator  is  set  to  degrees  (not  radians).        Record  the  average  value  of  the  right-­‐most  column  in  the  cell  in  the  bottom  right  corner  of  the  data  table.    This  average  should  be  your  best  estimate  of  the  index  of  refraction,  n2,  of  the  media.  

Experiment  #2:    In  this  experiment  you  will  determine  the  relative  speeds  of  light  in  air  as  compared  to  the  medium  (either  glass  or  diamond).    Ozobot  Bit  has  been  programmed  to  have  speeds  that  are  much  slower,  but  approximately  in  proportion  to  the  actual  speeds  of  light  in  air  and  the  more  optically  dense  medium.    This  will  allow  you  to  visually  get  a  feel  for  just  how  much  optically  dense  media  slow  down  light.    This  is  something  that  we  cannot  observe  with  our  eyes  when  working  with  actual  light,  as  the  speeds  of  light  is  so  phenomenally  fast.    There  are  two  OzoBlockly  programs  accompanying  this  classroom  application.    Load  the  OzoBlockly  program  AirToGlass.ozocode  when  using  the  air  to  glass  OzoMap.    Load  the  OzoBlockly  program  AirToDiamond.ozocode  when  using  the  air  to  diamond  OzoMap.  

Be  sure  to  follow  the  instructions  in  the  section  of  this  document  entitled  “Running  the  Ozobot  Bit  Program”.    A  data  table  is  provided  for  you  to  record  your  results  at  the  bottom  of  page  6  for  the  air-­‐to-­‐glass  experiment  and  at  the  bottom  of  page  7  for  the  aid-­‐to-­‐diamond  experiment.    Use  a  stop  watch  to  measure  the  time  for  Ozobot  to  travel  from  the  first  to  the  second  blue  line  on  each  of  the  rays.    t1  is  the  time  for  the  incident  ray,  and  t2  is  the  time  for  the  refracted  ray.    Since  the  distance  between  each  of  the  pair  of  blue  lines  is  the  same  for  every  ray,  the  times  are  inversely  proportional  to  the  speeds—the  shorter  the  time,  the  faster  Ozobot  bit  is  traveling,  and  the  longer  the  time,  the  slower  he  is  traveling.    Therefore,  t2/t1  =  v1/v2,  and  as  shown  in  the  right-­‐most  column  of  the  data  table,  via  Snell’s  Law,  we  see  that  t2/t1  ultimately  gives  us  the  index  of  refraction  n2  of  the  glass  or  diamond.    We  thus  have  a  second  way  to  determine  the  index  of  refraction!  

Discussion  Questions  

1.   Why  is  the  cell  in  the  right-­‐most  column  in  the  top  tables  for  light  ray  A  grayed  out?  

2.   How  well  do  the  values  for  the  index  of  refraction  compare  in  experiments  1  and  2?  

3.   How  well  do  the  values  that  you  obtained  for  the  index  of  refraction  of  glass  and  diamond  compare  to  the  generally  accepted  values  of  1.52  and  2.42,  respectively?  

4.   What  do  you  think  are  some  of  the  possible  sources  of  error  in  experiment  1?    In  experiment  2?  

5.   The  speed  of  light  in  air  is  3.00  x  108  meters/second.    What  would  its  speed  be  in  glass?    In  diamond?  

Page 6: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

5    

6.   If  you  shine  a  red  laser  light  beam  through  water  or  through  glass,  for  example,  the  color  of  the  light  does  not  change  when  it  is  in  the  water  or  glass.    It  is  still  red.    But  the  wavelength  in  air  is  greater  than  the  wavelength  in  the  more  optically  dense  medium,  as  per  Snell’s  Law.    Also,  the  speed  in  air  is  greater  than  the  speed  of  the  light  in  the  more  optically  dense  medium,  as  per  Snell’s  Law.    So,  it  can’t  be  wavelength  or  speed  that  determines  the  color  of  light.    Exactly  what  determines  the  color  of  light,  i.e.,  what  property  is  the  same  for  both  media?    To  help  you  address  this  question,  consider  the  well-­‐known  equation  that  relates  the  speed  of  a  wave,  its  frequency,  and  wavelength:    v  =  fλ.  

  Let  v1  =  f1λ1  describe  the  situation  in  air,  and  let  v2  =  f2λ2  describe  the  situation  in  the  more  optically  dense  medium,  like  glass  or  diamond.      Use  these  two  equations,  Snell’s  Law,  and  a  little  bit  of  algebra  to  show  that  f1  =  f2.    In  other  words,  the  frequency  is  the  same  in  both  media—it  is  the  frequency  of  light  that  determines  its  color.    

Page 7: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

6    

   

 

   

Page 8: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

7    

 

   

Page 9: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

8    

Typical  Experiment  Results  for  Teacher  

Experiment  1:  

 

Experiment  2:  

 

Page 10: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

9    

Answer  to  Questions  for  Teacher  

1.   0/0  is  undefinable.  

2.   The  agreement  is  reasonable,  typically  within  5%  of  each  other.  

3.   A  reasonable  way  to  answer  this  question  would  be  to  find  the  percentage  error  compared  to  the  generally  accepted  value.    For  example,  considering  the  air-­‐to-­‐glass  experimental  data:  

  Experiment  1:    (1.52  –  1.496)/1.52  x  100%  =  1.6%  error  

  Experiment  2:    (1.52  –  1.45)/1.52  x  100%  =  4.6%  error  

4.   Experiment  1:  Possible  errors  include:    Incorrect  reading  of  the  protractor,  not  placing  the  center  point  of  the  protractor  at  the  correct  location  on  the  map,  not  measuring  the  angle  between  the  ray  and  the  normal  to  the  boundary  between  the  media,  incorrect  computation  of  the  sines  

  Experiment  2:  Reaction  times  in  starting  and  stopping  the  stopwatch,  misreading  the  stopwatch  display  

5.   Using  the  generally  accepted  values  for  the  index  of  refraction  and  n2  =  v1/v2  from  Snell’s  Law:  

  Glass:      v2  =  v1/n2  =  3x108  m/sec  /  1.52  =  1.97x108  m/s  

  Diamond:    v2  =  v1/n2  =  3x108  m/sec  /  2.42  =  1.24x108  m/s  

6.   Hint:  Use  the  two  equations  v1  =  f1λ1  and  v2  =  f2λ2  to  get  the  ratio  f1/f2.    Then  using  Snell’s  Law  show  that  f1/f2  =  1.    This  means  that  f1  =  f2.    

Page 11: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

10    

 

   

Page 12: Refraction of Light Simulation · 2018. 11. 21. · Refraction of Light Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org

11