Reflections on Symmetries and Neutrinos Adam Para.

38
Reflections on Symmetries and Neutrinos Adam Para

Transcript of Reflections on Symmetries and Neutrinos Adam Para.

Page 1: Reflections on Symmetries and Neutrinos Adam Para.

Reflections onSymmetries and Neutrinos

Adam Para

Page 2: Reflections on Symmetries and Neutrinos Adam Para.

• Special Relativity• General Relativity• Quantum Mechanics• Quantum Field Theory• Standard Model of Elementary Particles and their Interactions

• Role of symmetry in physics

Revolutionary Developments in XX Century Physics

Page 3: Reflections on Symmetries and Neutrinos Adam Para.

Mathematics – Physics Connection• Mathematics is the language of physics. Mathematical concepts adopted

or invented by physicists to express precisely and concisely the physical ideas:– Calculus– Complex numbers/functions– Differential geometry– Group theory– Hilbert spaces, hermitian operators– Differential forms

• Symmetries: mathematical concept with profound physics consequences– Conservation laws– Interactions

• Spontaneously broken (hidden) symmetries [Is parity really violated ???]

Page 4: Reflections on Symmetries and Neutrinos Adam Para.

Symmetry• What is a symmetry?

– Symmetry operation leaves the system unchanged/undistinguishable

– Property of a system having symmetry operations– Examples:

• Space is uniform: translations and/or rotations do not change the laws of physics

• Red/blue/green quarks have the same strong interactions: we can change(rotate, mix) the quarks definition without any physical consequences

• CPT: if we replace particles by antiparticles, reflect the space and time coordinated then all the process will proceed with the same rates/probabilities

• Symmetry of what?– ‘World we live in’

Page 5: Reflections on Symmetries and Neutrinos Adam Para.

What is (the Mathematical Model of?) Our World

We live/move here, on our Home Manifold: 3+1+N dimensional space-time, N≥0

Internal Space:•Phase of the wave function U(1)•SU(2) rotation phase•SU(3) (color) rotation phase•Quark mixing matrix•Lepton Mixing Matrix• . . .

Page 6: Reflections on Symmetries and Neutrinos Adam Para.

Where are the Extra Dimensions???

• Everywhere, but they are compactified to a tiny Calabi-Yau manifold at every point of ‘our’ space-time

• Excitations corresponding to the quantized momentum in these dimenions → Kaluza-Klein ‘tower’

• We (all particles of a Standard Model) are confined to a 3+1 dimensional hyperspace (brane) embedded in 3+1+N dimensional Universe

• Only graviton is allowed to travel in ‘bulk’. And this is the reason why gravity appears to be so weak on our brane

Page 7: Reflections on Symmetries and Neutrinos Adam Para.

Symmetries of Our World• Continuous (translations,

rotations)• Discrete (reflections, C,T)

• 3+1 space-time:– Lorentz transformations– Reflections

• Internal space:– U(1) phase– SU(2) phase (weak

interactions)– SU(3) strong interactions– Families (KM, MNS mixing

matrix)– Lepton-quark symmetry?

• Extra dimensions (Calabi-Yau manifolds)

Page 8: Reflections on Symmetries and Neutrinos Adam Para.

Global Symmetries ↔Conservation Laws (Noether 1915)

• If the Euler-Lagrange equation of motion is invariant under a coordinate transformation

then there exist an integral of motion, i.e. a conserved quantity

• Every continuous global symmetry operation has an associated conserved quantity

• Examples/consequences of Neother’s theorem:– Invariance under space translation ↔ momentum conservation– Invariance under time translation ↔ energy conservation– Invariance under space rotations ↔ angular momentum conservation

', ( ), ( , )t q t t q q t

Page 9: Reflections on Symmetries and Neutrinos Adam Para.

Connection Between Symmetries and Conservation Laws in Quantum Mechanics

• What took long time to discover in classical physics is self-evident in Quantum Mechanics:

• Operators related to conserved physical quantities are generators of the corresponding symmetry operations

;

;

( )

x x

z z

p p ix

E H it

L L i x yy x

Page 10: Reflections on Symmetries and Neutrinos Adam Para.

Local Symmetries ↔ Interactions(Weyl 1919, Yang-Mills 1952)

• ‘Physics’ ↔ equations of motions ↔ lagrangian

Is evidently invariant under the global phase transformation ↔ charge conservation

• But it requires that the phase is redefined instantaneously in the whole universe ↔ problems with special relativity. Can we propagate the phase redefinition ?

( ) L i m

iqe

( )iq xe

Page 11: Reflections on Symmetries and Neutrinos Adam Para.

• No, the lagrangian is not invariant under the local phase transformation

• How to define a lagrangian invariant under the local transformation? Need additional vector field

↔ new interaction

( )L L iq x

( ) ; ( )L i iq A m A A x

int

L iq A

Profound consequences:Maxwell equationsMassless photonsInteractions of matter with radiation

Page 12: Reflections on Symmetries and Neutrinos Adam Para.

Geometry and Interactions

• Geometry of spacetime ↔ gravitation (general relativity)• Local Symmetry of the Internal Space (Gauge Symmetry)

↔ electromagnetic, weak and strong interactions – Universal couplings – Massless vector bosons (long range interactions)

• Spontaneous symmetry breaking ↔ mass of intermediate vector bosons

Page 13: Reflections on Symmetries and Neutrinos Adam Para.

Neutrinos• SU(2) partners of charged leptons• The only elementary fermions with Q=0• Left-handed only (no longer)• Only weakly interactions• Incredibly light (formerly massless)• Self-conjugate (own antiparticles)? Or not?

• What do they have to do with symmetries??:• Saviors/daughters of symmetries• Symmetries killers• Symmetries messengers• Symmetries probes• … examples follow…

Page 14: Reflections on Symmetries and Neutrinos Adam Para.

Two body decay

m1 m2

2 2 22 12

222

2

M m mE p

Mm

Energy-momentum conservation =>

Energy of the decay products always the same

M

Page 15: Reflections on Symmetries and Neutrinos Adam Para.

1913-1930: Puzzle of decay

• (Bohr)

• Continuous spectrum of particles

• Energy is not conserved?? (Bohr)

• No translational symmetry of space-time?

•… or ?

• Conflict between ‘theory’ and ‘Experiment’

Page 16: Reflections on Symmetries and Neutrinos Adam Para.

Dec 1930: An Act of Faith in Theory:Incomplete Experiment?

P h y s i k a l i s c h e s I n s t i t u t D e r E i d g . T e c h n i s c h e n H o c h s h u l e Z u r i c h

Z u r i c h 4 d e c . 1 9 3 0 G l o a r i a s t r .

D e a r R a d i o a c t i v e L a d i e s a n d G e n t l e m e n A s t h e b e a r e r p f t h e s e l i n e s w i l l e x p l a i n t o y o u i n m o r e d e t a i l – a n d I b e g y o u t o l i s t e n t o h i m w i t h b e n e v o l e n c e – I h a v e c o n s i d e r e d , i n c o n n e c t i o n w i t h t h e ‘ w r o n g ’ s t a t i s t i c s o f 1 4 N a n d 6 L i a s w e l l a s w i t h t h e c o n t i n u o u s s p e c t r u m , a w a y o u t f o r s a v i n g t h e ‘ l a w o f c h a n g e ’ o f s t a t i s t i c s a n d t h e c o n s e r v a t i o n o f e n e r g y : i . e . t h e p o s s i b i l i t y t h a t i n s i d e t h e n u c l e i t h e r e a r e p a r t i c l e s e l e c t r i c a l l y n e u t r a l , t h a t I w i l l c a l l n e u t r o n s , w h i c h h a v e s p i n ½ a n d f o l l o w t h e e x c l u s i o n p r i n c i p l e a n d t h a t i n a d d i t i o n d i f f e r f r o m p h o t o n s b e c a u s e t h e y d o n o t m o v e w i t h t h e v e l o c i t y o f l i g h t . T h e m a s s o f n e u t r o n s s h o u l d b e o f t h e s a m e o r d e r o f m a g n i t u d e o f t h a t o f t h e e l e c t r o n s a n d a n y h o w n o t g r e a t e r t h a n 0 . 0 1 p r o t o n i c m a s s e s . T h e c o n t i n u o u s s p e c t r u m w o u l d t h e n b e u n d e r s t a n d a b l e , a s s u m i n g t h a t i n t h e d e c a y t o g e t h e r w i t h t h e e l e c t r o n , i n a l l c a s e s , a l s o a n e u t r o n i s e m i t t e d , i n s u c h a w a y t h a t t h e s u m o f t h e e n e r g y o f t h e n e u t r o n a n d o f t h e e l e c t r o n r e m a i n s c o n s t a n t . T h e q u e s t i o n i s n o w t o s e e w h i c h f o r c e s a c t o n t h e n e u t r o n s . T h e m o s t p r o b a b l e m o d e l a p p e a r s t o m e t o b e , f o r w a v e m e c h a n i c a l r e a s o n s ( t h e d e t a i l c a n b e g i v e n t o y o u b y t h e b e a r e r o f t h e s e l i n e s ) , f o r t h e n e u t r o n a t r e s t t o b e a m a g n e t i c d i p o l e p f a c e r t a i n m o m e n t . T h e e x p e r i m e n t a l d a t a c e r t a i n l y r e q u i r e f o r t h e i o n i z i n g p o w e r o f s u c h a n e u t r o n t o b e n o t g r e a t e r t h a n t h a t o f a g a m m a r a y a n d t h e r e f o r e s h o u l d n o t b e g r e a t e r t h a n

1310 e c m . I d o n o t c o n s i d e r a d v i s a b l e , f o r t h e m o m e n t , t o p u b l i s h s o m e t h i n g a b o u t t h e s e i d e a s a n d f i r s t I a p p l y t o w i t h c o n f i d e n c e , d e a r R a d i o a c t i v e s , w i t h t h e q u e s t i o n : w h a t d o y o u t h i n k a b o u t t h e p o s s i b i l i t y o f p r o v i d i n g t h e e x p e r i m e n t a l p r o o f o f s u c h a n e u t r o n , i f i t w o u l d p o s s e s s a p e n e t r a t i n g p o w e r e q u a l o r t e n t i m e s g r e a t e r o f t h a t o f g a m m a r a y s ? I a d m i t t h a t m y s o l u t i o n m a y a p p e a r t o y o u n o t v e r y p r o b a b l e , b e c a u s e i t t h e n e u t r o n w o u l d e x i s t , t h e y w o u l d h a v e b e e n o b s e r v e d l o n g s i n c e . B u t o n l y w h o d a r e s w i n s , a n d t h e g r a v i t y o f t h e s i t u a t i o n i n r e g a r d t o t h e c o n t i n u o u s ? s p e c t r u m i s e n l i g h t e n e d b y t h e o p i n i o n o f m y p r e d e c e s s o r i n t h e c h a i r M r . D e b y e , w h o l o n g s i n c e t o l d m e i n B r u s s e l s : ‘ O h , t h e b e s t t h i n g t o d o i s n o t t o t a l k a b o u t , l i k e f o r n e w t a x e s ’ . F o r t h i s r e a s o n o n e s h o u l d c o n s i d e r s e r i o u s l y a n y w a y t o w a r d s s a f e t y . T h u s , d e a r R a d i o a c t i v e s , c o n s i d e r a n d j u d g e . U n f o r t u n a t e l y I c a n n o t c o m e p e r s o n a l l y t o T u b i n g e n , b e c a u s e I a m n e c e s s a r y h e r e f o r a b a l l t h a t w i l l t a k e p l a c e i n Z u r i c h t h e n i g h t f r o m 6 t o 7 D e c e m b e r . W i t h m a n y g r e e t i n g s t o y o u a s w e l l a s t o M r . B a c k . Y o u r d e v o t e d s e r v a n t , W . P a u l i

“I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do.”

W. Pauli

Neutrino – a daughter of symmetry

A

A’

e

Page 17: Reflections on Symmetries and Neutrinos Adam Para.

1956: A Fateful Year. For Neutrinos Too.

• 1956, Savannah River, Reines and Cowen:”We are happy to inform you (Pauli) that we have definitely detected neutrinos…”

• A downfall of parity: T.D. Lee, C.N. Yang. • Two –component neutrino theory: a neutrino has no mirror image.

(A vampire-neutrino?) Massless neutrino.• V-A theory of weak interactions (Feynmann, Gell-Mann)

Page 18: Reflections on Symmetries and Neutrinos Adam Para.

• A search for new symmetries: Sakata/Nagoya/Nagoya-Kyoto model

• Symmetry of strong interactions (SU(3)?) – Baryons are bound states of 3 ‘fundamental’ baryons/ur-baryons: p,n,– Mesons are baryon-antibaryon bound states

• Leptons-baryons connection/symmetry: baryons are bound states of new field B+ and leptons: p = < B+ >, n = < eB+ >, p = < B+ >

At the Same Time in Japan…

p

e

n

Page 19: Reflections on Symmetries and Neutrinos Adam Para.

1962: Lederman, Schwartz, Steinberger

• Two different kinds of neutrinos! If Sakata symmetry holds – there must be a new heavy baryon X

• Prediction of a new heavy baryon (==charm!). Niu 1971 – discovery of charm particle (m(C)=1.78 GeV)

• Maki-Nakagawa-Sakata: two neutrinos should, in general, mix. MNS neutrino mixing matrix!

• Neutrinos a guide in postulating/establishing symmetries of Nature, predicting new particles.

X

e

n p

Page 20: Reflections on Symmetries and Neutrinos Adam Para.

Conception of the Standard Model

• Glashow, Weinberg, Salam + many others: local SU(2)xU(1) gauge symmetry (local redefinition of up-down members of the weak doublets) as a possible model for unified electromagnetic and weak interactions

• Spontaneous symmetry breaking (Higgs) as a way to avoid problems with massless bosons/long range

• Predictions: – weak neutral current interactions– Intermediate vector bosons, W/Z– Mass of IVB ~ 80 GeV

• Free parameter: weak mixing angle

Page 21: Reflections on Symmetries and Neutrinos Adam Para.

1973: Golden Event (Gargamelle)• Heavy liquid bubble chamber exposed to a medium energy beam of muon antineutrinos:

• a single energetic electron appearing in the middle of the fiducial volume• the only plausible interpretation

+ e- → + e- • Existence of neutral currents established. • Explanation of previously reported ‘unexplained background events’.

•Later, in 1984, SPS collider: existence of W± and Z0 established. Neutrinos (a.k.a. missing energy) an important signature

Neutrino (beam) a tool to discover new interactions.Neutrino a signature for weak decays of new particles.

Page 22: Reflections on Symmetries and Neutrinos Adam Para.

1970-ies, Quantum Chromodynamics

• The success of the gauge symmetry approach for weak/electromagnetic interactions

• Spectacular success of QED• Asymptotic freedom (Gross, Politzer, Wilczek)

Quantum Chromodynamics: Strong interactions related to a local symmetry of SU(3) color phase

Strong interactions: neutrinos not involved (?)

Page 23: Reflections on Symmetries and Neutrinos Adam Para.

Probing Nucleon with Neutrinos

q p p

2 2 2

22

q

q

m x P

m xP q

2 2

02 2 N

q qx

Pq M q

Probe momentum distribution of partons inside the nucleon

Neutrino scatters off a parton inside the nucleon

Page 24: Reflections on Symmetries and Neutrinos Adam Para.

Strong Interactions of Partons

2

122

2

2

( )

log

( , )

)

,

2

( ,

( )

s

x

qq qg

Q dy

x xP

q x Q

q y g y Q

Q

y yQ P

y

•Pqq(x/y) = probability of finding a quark with momentum x within a quark with momentum y

•Pgq(x/y) = probability of finding a q with momentum x within a gluon with momentum y

2

22

4 1( ) 2 (1 )

3 (1 )

1( ) 1

2

qq

gq

zP z z

z

P z z z

Page 25: Reflections on Symmetries and Neutrinos Adam Para.

Establishing the QCD

Observed quark distributions vary with Q2

In a quantitative agreement with the QCD predictions

Neutrinos: a tool to establish a theory of strong interactions/ local gauge SU(3) symmetry

Page 26: Reflections on Symmetries and Neutrinos Adam Para.

Keep Unifying?

• Given the success of electroweak unification: do all forces become one at some high energies? And is this unified force a consequence of a local gauge symmetry? Try :

• A single coupling constant , g5, for all interactions/vector bosons

(5) (3) (2) (1)SU SU SU U

5( ) D m i g A m

24 8 20 23

241 1 9 21

1 1

2 2A A G X A B

Page 27: Reflections on Symmetries and Neutrinos Adam Para.

Electroweak sector in SU(5)

2

gD i gTA YB

5 5

3

5g g g g

22

2 2

3sin

8W

g

g g

with

hence At the GUT energy scale!

22

2 2 2

1 1ln

( ) ( ) 4i

i ii i

gqb

q M M

But the coupling constants ‘run’ with energy

2

2 2

2

e

2

xp

22

2

sin (

3 55sin ( ) ( ) ln

8

) 0.2

sin 0.2325 0.0008

06

48

W

W

W

W

M

qq q

M Neutrino experiments a severe test for putative Grand Unifications. exclude SU(5) as a GUT

Page 28: Reflections on Symmetries and Neutrinos Adam Para.

Families

• Who ordered them?? • Perhaps nobody, but here they are, inviting a number of

interesting questions,or trying to tell us something– What is the origin of quark-lepton relation/symmetry?

(Anomalies cancellation: qi=0)– Which quark families relate to which lepton families?

(u,d,e,e? or perhaps u,d,? Or perhaps ? Re: proton decay/stability)

– How many familes?

Page 29: Reflections on Symmetries and Neutrinos Adam Para.

How Many Families?

2 2

12( ) e fpeak

e e fZ Z

fs

M

3Z had l N Neutrinos: families counter

Page 30: Reflections on Symmetries and Neutrinos Adam Para.

Are Neutrinos Different?

>45 years ago…A. n -> p + e- + B. - ->

Question: are the neutrinos produced in A and B the same? Or different? How can they be different???

Answer: Lederman, Schwartz, Steinberger (Nobel Prize 1987)

+

- only, never e-

Page 31: Reflections on Symmetries and Neutrinos Adam Para.

Three Kinds of Neutrinos

X

Y

e+,

e,

neutrino born in conjunction with electron, muon, tau is called an electron, muon, tau neutrino.

When it interacts it will produce an electron, muon, tau.

Family lepton number conservation Le,L,L↔ some new underlying symmetry??

Page 32: Reflections on Symmetries and Neutrinos Adam Para.

Massive Neutrinos Revolution

X

Y

e+

e1 1 2 2 3 3e e e e

U U U

• Electron (muon,tau) neutrino is not a mass eigenstate

• Electron (muon, tau) neutrino is a coherent mixture of mass eigenstates

1 2 3

1 2

1

2

3

2

1 2 3

e

e

e eU U U

U U U

U U U

Page 33: Reflections on Symmetries and Neutrinos Adam Para.

Neutrinos Oscillations

i

Amplitude

Amplitude

2

* 2imi

i i

LE

i

U Ue

A

Components of the initial state have different time evolution => (t) ≠ (0)

3-slit interference Experiment: mass difference difference in optical path length

Page 34: Reflections on Symmetries and Neutrinos Adam Para.

Neutrino Oscillations: Lessons and New Questions

• No family lepton numbers conservation/symmetry• Neutrinos have mass: right handed neutrinos exist, after all• Downfall of two-component neutrino theory?New questions • Do neutrinos violate CP? Origin of leptogenesis and baryon

number asymmetry of the Universe and our own existemce? Note: CP violation possibly responsible for leptogenesis has nothing to do with the CP measured in oscillation experiments.

• Is there a lepton number at all? Or are neutrinos Majorana particles?

Page 35: Reflections on Symmetries and Neutrinos Adam Para.

35

Parameterization of Mixing Matrix

1

2

13 13

13

12

23 23

23

13

12

1

2

2

3

12

1

0 0

0 0

0

0 1 0

0

0

0 0 1

0 0

0

0

0

0 0 1

i

i

i

i

c

c s

s c

s e

s e c

e

U

e

c s

s c

•Three mixing angles (like Euler rotation angles

•One complex phase (CP violation)

•Two Majorana phases

1311 12 1

21 22 23 2

31 32 31 3

1

2

3

e

s

UU U

U U U

U U U

B B

B B B

B B B

Page 36: Reflections on Symmetries and Neutrinos Adam Para.

Surprising Pattern of Mixing Angles: New Symmetries of Nature?

• Where do mixing angles come from?• Why are they so different (even pattern-wise) from quark

mixing angles• sin2223 very close to 1. Is it = 1.00? Maximal mixing

some new symmetry??• Sin2213 small. How small? If tiny, or zero, as opposed to the

other mixing angles – why?? Protected by some new symmetry??

Neutrinos as indicators of new symmetries?

Page 37: Reflections on Symmetries and Neutrinos Adam Para.

Are There any Discrete Symmetries Left?

• P, C is violated (maximally) in weak interactions• CP is violated, but• Lorentz invariance + local quantum field theory → CPT invariance• Wait… local quantum field theory?? Aren’t we made of strings? Non-local!• Suppose there is a weak violation (at our energy/distance scale) of CPT

communicated to all Standard Model particles. It must be extremely small ~ 10-14 (from Ko

L-Kos mass difference)

• But… perhaps the source of the CPT violation is located in the ‘bulk’. The only particle which would be subject to CPT violation is the right-handed neutrino!

• CPT violation in the neutrino sector? – Do neutrinos/antineutrinos oscillate in the same way?? – The same masses? – The same mixing angles? Limits rather poor so far, but be on lookout

(MINOS!)

Neutrinos messengers of CPT violations?

Page 38: Reflections on Symmetries and Neutrinos Adam Para.

(Kind of) Summary

• Symmetries (especially continuous ones) play a very important role in our understanding of our world

• We may not know the complete list of symmetries, yet

• Neutrinos are a surprisingly powerful tool for learning about symmetries of the Nature