References - Springer978-3-540-40934-2/1.pdf · 450 References Barut, A. O. ... production and...

31
References Ablowitz, M. J. & H. Segur (1981). Solitons and the Inverse Scattering Trans- form. Philadelphia: Society for Industrial and Applied Mathematics. Abraham, M. (1903). Prinzipen der Dynamik des Elektrons. Annalen der Physik, 10, 105. Abraham, M. (1904). Zur Theorie der Strahlung. Annalen der Physik, 14, 236. Abraham, M. (1905). Theorie der Elektrizit¨ at. Vol. II. 5th edition 1923. Leipzig: Teubner. Abraham, R. & J. E. Marsden (1967). Foundations of Mechanics. 2nd edition 1978. Reading: Benjamin-Cummings. Abrikosov, A. A. (1957). On the magnetic properties of superconductors of the second group. Soviet Physics – JETP, 5, 1174. Actor, A. (1979). Classical solutions of SU(2) Yang–Mills theories. Reviews of Modern Physics, 51, 461. Arzeli` es, H. (1966). Rayonnement et dynamique du corpuscule charg´ e forte- ment acc´ el´ er´ e. Paris: Gauthier–Villars. Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. Trans- lated from the Russian edition 1974. Heidelberg: Springer. Atiyah, M. & N. Hitchin (1988). The Geometry and Dynamics of Magnetic Monopoles. Princeton: Princeton University Press. Baker, B. B. & E. T. Copson (1939). The Mathematical Theory of Huygens’ Principle. 2nd edition 1950. Oxford: Clarendon. Balachandran, A., S. Borchardt & A. Stern (1978). Lagrangian and Hamil- tonian description of Yang–Mills particles. Physical Review, D 17, 3247. Balachandran, A. P., G. Marmo, B. Skagerstam & A. Stern (1982). Gauge Symmetries and Fiber Bundles - Applications to Particle Dynamics. Lecture Notes in Physics 188. Berlin: Springer. Bander, M. (1981). Theories of quark confinement. Physics Reports, 75, 205. Barut, A. O. (1964). Electrodynamics and Classical Theory of Fields and Par- ticles. New York: Colier–Macmillan. 2nd edition 1980. New York: Dover.

Transcript of References - Springer978-3-540-40934-2/1.pdf · 450 References Barut, A. O. ... production and...

References

Ablowitz, M. J. & H. Segur (1981). Solitons and the Inverse Scattering Trans-form. Philadelphia: Society for Industrial and Applied Mathematics.

Abraham, M. (1903). Prinzipen der Dynamik des Elektrons. Annalen derPhysik, 10, 105.

Abraham, M. (1904). Zur Theorie der Strahlung. Annalen der Physik, 14,236.

Abraham, M. (1905). Theorie der Elektrizitat. Vol. II. 5th edition 1923.Leipzig: Teubner.

Abraham, R. & J. E. Marsden (1967). Foundations of Mechanics. 2nd edition1978. Reading: Benjamin-Cummings.

Abrikosov, A. A. (1957). On the magnetic properties of superconductors ofthe second group. Soviet Physics – JETP, 5, 1174.

Actor, A. (1979). Classical solutions of SU(2) Yang–Mills theories. Reviews ofModern Physics, 51, 461.

Arzelies, H. (1966). Rayonnement et dynamique du corpuscule charge forte-ment accelere. Paris: Gauthier–Villars.

Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. Trans-lated from the Russian edition 1974. Heidelberg: Springer.

Atiyah, M. & N. Hitchin (1988). The Geometry and Dynamics of MagneticMonopoles. Princeton: Princeton University Press.

Baker, B. B. & E. T. Copson (1939). The Mathematical Theory of Huygens’Principle. 2nd edition 1950. Oxford: Clarendon.

Balachandran, A., S. Borchardt & A. Stern (1978). Lagrangian and Hamil-tonian description of Yang–Mills particles. Physical Review, D 17, 3247.

Balachandran, A. P., G. Marmo, B. Skagerstam & A. Stern (1982). GaugeSymmetries and Fiber Bundles - Applications to Particle Dynamics. LectureNotes in Physics 188. Berlin: Springer.

Bander, M. (1981). Theories of quark confinement. Physics Reports, 75, 205.Barut, A. O. (1964). Electrodynamics and Classical Theory of Fields and Par-

ticles. New York: Colier–Macmillan. 2nd edition 1980. New York: Dover.

450 References

Barut, A. O. (1974). Electrodynamics in terms of retarded fields. PhysicalReview, D 10, 3335.

Barut, A. O. & H. Beker (1974). Classical relativistic scattering of two dyons.Nuovo Cimento, A 19, 309.

Barut, A. O. & R. Haugen (1972). Theory of conformally invariant mass.Annals of Physics, 71, 519.

Barut, A. O. & R. Raczka (1977). Theory of Group Representations and Ap-plications. 2nd edition 1980. Warszawa: PWN–Polish Scientific Publishers.

Barut, A. O. & D. Villarroel (1975). Radiation reaction and mass renormal-ization in scalar and tensor fields and linearized gravitation. Journal ofPhysics, A 8, 156.

Barut, A. O. & N. Zanghi (1984). Classical model of the Dirac electron. Phys-ical Review Letters, 52, 2009.

Bateman, H. (1910a). On the conformal transformations of a space of fourdimensions and their application to geometric optics. Proceedings of theLondon Mathematical Society, 7, 70.

Bateman, H. (1910b). The transformation of the electrodynamical equations.Proceedings of the London Mathematical Society, 8, 223.

Batygin, V. V. & I. N. Toptygin (1978). Problems in Electrodynamics. Trans-lated from the second Russian edition 1970. London: Academic.

Belinfante, F. J. (1939). On the spin angular momentum of mesons. Physics,6, 887.

Belinfante, F. J. (1940). On the current and density of the electric charge,the energy, the linear momentum and the angular momentum of arbitraryfields. Physics, 7, 449.

Berezin, F. A. (1987). Introduction to Superanalysis. Berlin: Springer.Berezin, F. A. & M. S. Marinov (1975). Classical spin and Grassmannian

variables. JETP Letters, 21, 320.Berezin, F. A. & M. S. Marinov (1977). Particle spin dynamics as the Grass-

mann variant of classical mechanics. Annals of Physics, 104, 336.Bilaniuk, O.-M. & E. C. G. Sudarshan (1969). Particles beyond the light

barrier. Physics Today, 22 (# 5), 43.Birkhoff, G. D. (1927). Dynamical Systems. Revised edition 1966. Providence:

American Mathematical Society.Blagoevic, M. & P. Senjanovic (1988). The quantum field theory of electric

and magnetic charge. Physics Reports, 157, 233.Blokhintsev, D. I. & V. V. Orlov (1953). Propagation of signals in the Born–

Infeld electrodynamics. Zhurnal Eksperimental’noi i Teoretitcheskoi Fiziki,25, 513 (in Russian).

Bogoliubov, N. N., A. A. Logunov, A. I. Oksak & I. T. Todorov (1990). GeneralPrinciples of Quantum Field Theory. Translated from the Russian edition1987. Dordrecht: Kluwer.

Bogoliubov, N. N. & O. A. Parasiuk (1957). Uber die Multiplikation derKausalfunktionen in der Quantentheorie der Felder. Acta Mathematica, 97,227.

References 451

Bogoliubov, N. N., B. V. Struminsky & A. N. Tavkhelidze (1965). On com-posite models in the elementary particle theory. Preprint JINR D-1968.

Bogomol’ny, E. B. (1976). Stability of classical solutions. Soviet Journal ofNuclear Physics, 24, 449.

Boillat, G. (1970). Nonlinear electrodynamics: Lagrangians and equations ofmotion. Journal of Mathematical Physics, 11, 941.

Bondi, H. (1967). Assumption and Myth in Physical Theory. Cambridge: Cam-bridge University Press.

Born, M. (1934). On the quantum theory of the electromagnetic field. Pro-ceedings of the Royal Society (London), 143, 410.

Born, M. & L. Infeld (1934). Foundations of the new field theory. Proceedingsof the Royal Society (London), A 144, 425.

Boulware, D. G., L. S. Brown & R. D. Peccei (1970). Deep-inelastic electro-production and conformal symmetry. Physical Review, D 2, 293.

Bourbaki, N. (1968). Elements de Mathematique, Groupes et algebres de Lie.Chapitres 4, 5 et 6, Vol. 34. Paris: Hermann.

Bremermann, H. (1966). Distributions, Complex Variables, and FourierTransforms. 2nd edition 1983. Reading: Addison–Wesley.

Brown, L. M. (Editor) (1993). Renormalization: From Lorentz to Landau (andbeyond). Berlin: Springer.

Brink, L., S. Deser, B. Zumino, P. Di Vecchia & P. Howe (1976). Local super-symmetry for spinning particles. Physics Letters, B 64, 435.

Bunge, M. (1959). Causality. The Place of the Causal Principle in ModernScience. Cambridge: Harvard University Press.

Byckling, E. & K. Kajantie (1973). Particle Kinematics. New York: Wiley.Cabibbo, N. & E. Ferrari (1962). Quantum electrodynamics with Dirac mono-

poles. Nuovo Cimento, 23, 1147.Caldirola, P. (1956). A new model of the classical electron. Nuovo Cimento,

3, Supplimento 2, 297.Callan, C., S. Coleman & R. Jackiw (1970). A new improved energy-momen-

tum tensor. Annals of Physics, 59, 42.Cao, T. Y. (1999). Conceptual Foundations of Quantum Field Theory. Cam-

bridge: Cambridge University Press.Cartan, E. (1924). Sur les varietes a connexion affine et la theorie de la rela-

tivite generalisee. Annales Scientifiques de l’Ecole Normale Superieure, 41,1.

Cartan, H. (1967). Calcul differentiel formes differntielles. Paris: Hermann.Casalbuoni, R. (1976a). Relatively and supersymmetries. Physics Letters, B

62, 49.Casalbuoni, R. (1976b). Pseudoclassical description of spinning particle.

Nuovo Cimento, A 33, 115.Cheng, T.-P. & L.-F. Li (1984). Gauge Theory of Elementary Particle Physics.

Oxford: Clarendon.

452 References

Chew, G. F. & S. C. Frautschi (1961). Dynamical theory for strong interac-tions at low momentum transfers but arbitrary energies. Physical Review,123, 1478.

Close, F. E. (1979). An Introduction to Quarks and Partons. New York: Aca-demic.

Coleman, S. (1966). The invariance of the vacuum is the invariance of world.Journal of Mathematical Physics, 7, 787.

Coleman, S. (1983). The magnetic monopole fifty years later. In The Unityof the Fundamental Interactions, Proceedings of the 19th Course of the In-ternational School of Subnuclear Physics. Edited by A. Zichichi. London:Plenum, pp. 21-117.

Coleman, S. (1985). Aspects of Symmetry: Selected Erice Lectures. Cambridge:Cambridge University Press.

Corben, H. C. (1968). Classical and Quantum Theories of Spinning Particles.San Francisco: Holden-Day.

Coulomb, Ch. A. (1785). Second memoire sur l’electricite et le magnetisme.Ou l’on determine, suivant quelles lois le fluide magnetique, ainsi que lefluide electrique, agissent, soit par repulsion, soit par attraction. Histoire etMemoires de l’Academie royale des sciences, 1785, 612.

Courant, R. (1962). Partial Differential Equations. Methods of MathematicalPhysics. By R. Courant & D. Hilbert. Vol. II. New York: Wiley.

Creutz, M. (1974). Confinement and critical dimensionality of space-time.Physical Review Letters, 43, 553.

Creutz, M. (1983). Quarks, gluons and lattices. Cambridge: Cambridge Uni-versity Press.

Cunningham, E. (1909). The principle of relativity in electrodynamics and anextension thereof. Proceedings of the London Mathematical Society, 8, 77.

Denman, H. H. (1966). On linear friction in Lagrange equation. AmericanJournal of Physics, 34, 1147.

De Rham, G. (1955). Varietes differentiables. Paris: Hermann.Deser, S., R. Jackiw, & S. Templeton (1982). Three-dimensional massive gauge

theories. Physical Review Letters, 48, 975.Deser, S., R. Jackiw, & S. Templeton (1985). Topologically massive gauge

theories. Annals of Physics, 149, 372.De Witt, B. S., (1962). Quantum theory without electromagnetic potentials.

Physical Review, 125, 2189.De Witt, B. S., (1965). Dynamical Theory of Groups and Fields. New York:

Gordon & Breach.Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of

the Royal Society (London), 117, 610.Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. 4th edition

1958. Oxford: Clarendon.Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic field.

Proceedings of the Royal Society (London), 133, 60.

References 453

Dirac, P. A. M. (1936). Wave equations in conformal space. Annals of Math-ematics, 37, 429.

Dirac, P. A. M. (1938). Classical theory of radiating electron. Proceedings ofthe Royal Society (London), A167, 148.

Dirac, P. A. M. (1948). The theory of magnetic poles. Physical Review, 2ndseries, 74, 817.

Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. New York: Belfar.Dothan, Y. M., M. Gell-Mann & Y. Ne’eman (1965). Series of hadron energy

levels as representations of non-compact group. Physics Letters, 17, 148.Dresden, M. (1993). Renormalization in historical perspective – The first

stage. In Renormalization: From Lorentz to Landau (and beyond). Editedby L. M. Brown. Berlin: Springer, pp. 29-55.

Dubrovin, B. A., A. T. Fomenko & S. P. Novikov (1992). Modern Geometry –Metods and Applications. Translated from the second Russian edition 1986.Heidelberg: Springer.

Dyson, F. J. (1949). The S matrix in quantum electrodynamics. PhysicalReview, 75, 1736.

Efimov, G. V. (1968). On a class of relativistic invariant distributions. Com-munications in Mathematical Physics, 7, 138.

Efimov, G. V. (1970). Nonlocal quantum scalar field theory. Soviet Journal ofParticles and Nuclei, 1, 255.

Efimov, G. V. & M. A. Ivanov (1993). The Quark Confinement Model ofHadrons. London: The Institute of Physics Publishing.

Eguchi, T, P. B. Gilkey & A. J. Hanson (1980). Gravitation, gauge theoriesand differential geometry. Physics Reports, 66, 213.

Ehrenfest, P. (1917). In what way does it become manifest in the fundamentallaws of physics that space has three dimensions? Proceedings of the Ams-terdam Academy of Sciences, 20, 200.

Ehrenfest, P. (1920). Welche Rolle spielt die Dreidimensionalitat des Raumesin den Grundgesetzen der Physik? Annalen der Physik, 61, 440.

Einstein, A. (1905a). Zur Elektrodynamik der bewegter Korper. Annalen derPhysik, 17, 891.

Einstein, A. (1905b). Ist die Tragheit eines Korpers von seinem Energieinhaltabhangig? Annalen der Physik, 18, 639.

Eliezer, C. J. (1947). The interaction of electrons and an electromagnetic field.Reviews of Modern Physics, 19, 147.

Englert, F. & R. Brout (1964). Broken symmetry and the mass of gauge vectormesons. Physical Review Letters, 13, 321.

Erber, T. (1961). The classical theory of radiation reaction. Fortschritte derPhysik, 9, 343.

Euler, L. (1744). Methodus inveniendi Lineas Curvas maximi minimive pro-prietate gaudentes sive solutio problematis isoperimetrici latissimo sensuaccepti. Lausannae et Geneve: Bousquet.

Faddeev, L. & A. Slavnov (1980). Gauge Fields. Translated from the Russianedition 1978. Reading: Benjamin-Cummings.

454 References

Faraday, M. (1839). Experimental Researches in Electricity. London: Taylor.Fock, V. (1926). Uber die invariante Form der Wellen- und der Bewegungs-

gleichungen fur einen geladenen Massenpunkt. Zeitschrift fur Physik, 39,226.

Fokker, A. D. (1929a). Ein invarianter Variationssatz fur die Bewe-gung meherer elektrischer Massenteilchen. Zeitschrift fur Physik, 58,386. English translation is available at http://www.nonloco-physics.000freehosting.com/.

Fokker, A. D. (1929b). Wederkeerigheid in de Werking van Geladen Deelt-jes. Physica, 9, 33. English translation is available at http://www.nonloco-physics.000freehosting.com/.

Fradkin, E. S., & A. A. Tseytlin (1985). Non-linear electrodynamics fromquantized strings. Physics Letters, B 163, 123.

Frank, P. (1932). Das Kausalgesetz und seine Grenzen. Vienna: Springer.Frenkel, J. (1925). Zur Elektrodynamik punktformiger Elektronen. Zeitschrift

fur Physik, 32, 518.Frenkel, J. (1926). Die Elektrodynamik des Rotierenden Electrons. Zeitschrift

fur Physik, 37, 243.Fritzsch, H., M. Gell-Mann & H. Leutwyler (1973). Advantages of the color

octet gluon picture. Physics Letters, B 47, 365.Fulton, T., F. Rohrlich & L. Witten (1962). Conformal invariance in physics.

Reviews of Modern Physics, 34, 442.Fushchich, W. I. & A. G. Nikitin (1987). Symmetries of Maxwell’s Equations.

Dordrecht: Reidel.Gaillard, M. K. & B. Zumino (1981). Duality rotations for interacting fields.

Nuclear Physics, B 193, 221.Galilei, G. (1632). Dialogo dei due massimi sistemi del mundo. Florence: Lan-

dini. English translation: Dialogues Concerning Two New Sciences. Nor-wich: Andrew.

Galvao, C. A. P. & C. Teitelboim (1980). Classical supersymmetric particles.Journal of Mathematical Physics, 21, 1863.

Gates, S. J., M. T. Grisaru, M. Rocek & W. Siegel (1983). Superspace: OrOne Thousand and One Lessons in Supersymmetry. Reading: Benjamin-Cummings. E-print hep-th/0108200.

Gauss, C. F. (1813). Theoria attractionis corporum spheroidicorum elliptico-rum homogeneorum methodo nova tractata. Gottingen.

Gel’fand, I. M., R. A. Minlos & Z. Ya. Shapiro (1963). Representations of theRotational and Lorentz Groups and their Applications. Translated from theRussian edition 1958. Oxford: Pergamon.

Gel’fand, I. M. & G. E. Shilov (1964). Generalized Functions. Vol. I. Trans-lated from the second Russian edition 1959. Volume II (1968). Translatedfrom the Russian edition 1958. New York: Academic.

Gell-Mann, M. (1964). A schematic model of baryons and mesons. PhysicsLetters, 8, 214.

References 455

Gell-Mann, M. & M. Levy (1960). The axial vector current in beta decay.Nuovo Cimento, 16, 705.

Georgi, H. (1982). Lie Algebras in Particle Physics: From Isospin to UnifiedTheories. Reading: Benjamin-Cummings.

Gervais, J.-L. & B. Sakita (1971). Generalization of dual models. NuclearPhysics, B 34, 477.

Gibbons, G. V. (2003). Aspects of Born–Infeld theory and string/M-theory.Revista Mexicana de Fisica, 49 S1, 19. E-print hep-th/0106059.

Ginzburg, V. L. & L. D. Landau (1950). On the theory of superconductivity.Zhurnal Eksperimental’noi i Teoretitcheskoi Fiziki, 20, 1064 (in Russian).

Gitman, D. M. & I. V. Tyutin (1990). Quantization of Fields with Constraints.Translated from the Russian edition 1986. Heidelberg: Springer.

Glashow, S. (1961). Partial-symmetries of weak interactions. Nuclear Physics,22, 579.

Godbillon, C. (1969). Geometrie differentielle et mecanique analytique. Col-lection methodes. Paris: Hermann.

Goddard, P. & D. I. Olive (1978). Magnetic monopoles in gauge field theories.Reports on Progress in Physics, 41, 1357.

Goldstein, H. (1950). Classical Mechanics. 2nd edition 1980. Reading: Addi-son–Wesley.

Goldstone, J. (1961). Field theories of ‘superconductor’ solutions. Nuovo Ci-mento, 19, 154.

Gol’fand, Yu. A. & E. P. Likhtman (1971). Extension of the generator algebraof the Poincare group and breakdown of P -invariance. JETP Letters, 13,323.

Gordon, W. (1926). Der Compton Effekt nach der Schrodingerschen Theorie.Zeitschrift fur Physik, 40, 117.

Goto, T. (1971). Relativistic quantum mechanics of a one-dimensional me-chanical continuum and subsidiary condition of dual resonance model.Progress of Theoretical Physics, 46, 1560.

Green, G. (1828). An essay on the application of mathematical analysis to thetheories of electricity and magnetism. Nottingham.

Green, M. B., J. H. Schwarz & E. Witten (1987). Superstring Theory. Vols. 1and 2. Cambridge: Cambridge University Press.

Greenberg (1964). Spin and unitary-spin independence in a paraquark modelof barions and mesons. Physical Review Letters, 13, 598.

Greene, B. (1999). The Elegant Universe. London: Vintage.Gross, D. & F. Wilczek (1973). Ultraviolet behavior of non-Abelian gauge

theories, Physical Review Letters, 30, 1343.Grunbaum, A. (1963). Philosophical Problems of Space and Time. New York:

Knopf. 2nd enlarged edition 1973. Dordrecht: Reidel.Guralnik, G. C., C. R. Hagen & T. W. B. Kibble (1964). Global conservation

laws and massless particles. Physical Review Letters, 13, 585.Haag, R. (1955). Die Selbstwechselwirkung des Elektrons. Zeitschrift fur

Naturforschung, 10a, 752.

456 References

Hamilton, W. R. (1834). On a general method in dynamics, by which the studyof the motions of all free systems of attracting or repelling points is reducedto the search and differentiation of the central relation or characteristicfunction. Philosophical Transactions of the Royal Society, London. 2, 247.

Han, M. Y. & Y. Nambu (1965). Three-triplet model with double SU(3)symmetry. Physical Review, B 139, 1006.

Hanson, A. J. & T. Regge (1974). The relativistic spherical top. Annals ofPhysics, 87, 498.

Hanson, A. J., T. Regge & C. Teitelboim (1976). Constrained HamiltonianSystems. Rome: Accademia Nazionale dei Lincei.

Hara, O. (1971). On origin and physical meaning of Ward-like identity indual-resonance model. Progress of Theoretical Physics, 46, 1549.

Hasenfratz, P. & G. ’t Hooft (1976). Fermion-boson puzzle in a gauge theory.Physical Review Letters, 36, 1119.

Hawking, S. W. & G. F. R. Ellis (1973). The Large Scale of Spacetime. Cam-bridge: Cambridge University Press.

Heaviside, O. (1889). On the electromagnetic effects due to the motion ofelectrification through a dielectric. Philosophical Magazine, 27, 324.

Heaviside, O. (1892). Electrical Papers. Vols. I and II. London: Macmillan.Heaviside, O. (1893, 1899, 1912). Electromagnetic Theory. Vols. I, II, and III.

London: The Electrician Co. 2nd edition 1922. London: Benn. 3rd edition1951. London: Spon.

Heaviside, O. (1902). The waste of energy from a moving electron. Nature,67, 6.

Hehl, F. W. & Y. N. Obukhov (2003). Foundation of Classical Electrodynam-ics: Charge, Flux, and Metric. Boston: Birkhauser.

Heinz, U. (1984). A relativistic colored spinning particle in an external colorfield. Physics Letters, B 144, 228.

Helmholtz, H. (1858). Ueber Integrale der hydrodynamischen Gleichungen,welche den Wirbelbewegungen entsprechen. Journal fur die reine und ange-wandte Mathematik, 55, 25.

Hertz, H. (1887). Uber sehr schnelle elektrische Schwingungen. Annalen derPhysik, 31, 421.

Hertz, H. (1888). Uber die Einwirkung einer geradlinigen elektrischen Schwin-gung auf eine benachbarte Strombahn. Annalen der Physik, 34, 155.

Hestenes, D. (1986). New Foundation of Classical Mechanics. 3rd edition 1990.Dordrecht: Kluwer.

Higgs, P. S. (1964). Broken symmetries, massless particles and gauge fields.Physics Letters, 12, 132.

Higgs, P. S. (1966). Spontaneous symmetry breakdown without masslessbosons. Physical Review, 145, 1156.

Hilbert, D. (1915). Grundlagen der Physik. Nachrichten von der KoniglichenGesellschaft der Wissenschaften zu Gottingen. Mathematisch-PhysikalischeKlasse, 3, 395.

References 457

Hill, E. L. (1951). Hamilton’s principle and the conservation theorems of math-ematical physics. Reviews of Modern Physics, 23, 253.

Hoyle, F. & J. V. Narlikar (1995). Cosmology and action-at-a-distance electro-dynamics. Reviews of Modern Physics, 67, 113.

Hoyle, F. & J. V. Narlikar (1996). Lectures on Cosmology and Action at aDistance Electrodynamics. Singapore: World Scientific.

Huang, K. (1952). On the Zitterbewegung of the Dirac electron. AmericanJournal of Physics, 20, 479.

Iofa, M. Z. & V. Ya. Fainberg (1969). Wightman formulation for nonlocalizedfield theory. Soviet Physics – JETP, 56, 1644.

Iwanenko, D. & A. Sokolow (1953). Die Klassische Feldtheorie. Translatedfrom the Russian edition 1951. Berlin: Akademie.

Jackiw, R. & N. Manton (1980). Symmetries and conservation laws in gaugetheories. Annals of Physics, 127, 257.

Jackiw, R. & C. Rebbi (1976). Spin from isospin in a gauge theory. PhysicalReview Letters, 36, 1116.

Jackiw, R. & P. Rossi (1980). Stability and bifurcation in Yang–Mills theory.Physical Review, D 21, 426.

Jackson, J. D. (1962). Classical Electrodynamics. 2nd edition 1975, 3rd edition1998. New York: Willey.

Jackson, J. D. & L. B. Okun (2001). Historical roots of gauge invariance.Reviews of Modern Physics, 73, 663.

Jaffe, A. (1967). High energy behavior in quantum field theory, I. Strictlylocalizable fields. Physical Review, 158, 1454.

Jaffe, A. & J. Glimm (1987). Quantum Physics. Heidelberg: Springer.Jaffe, A. & C. M. Taubes (1980). Vortices and Monopoles. Boston: Birkhauser.Jaffe, A. & E. Witten (1999). Quantum Yang–Mills theory. Available at

http://www.claymath.org/prize-problems/.Jammer, M. (1954). Concepts of Space – A History of the Theories of Space

in Physics. Cambridge: Harvard University Press. 3rd edition 1993. NewYork: Dover.

Jammer, M. (1961). Concepts of Mass in Classical and Modern Physics. Cam-bridge: Harvard University Press.

Jammer, M. (1962). Concepts of Force. New York: Harper and Brothers.Johnson, C. V. (2003). D-Branes. Cambridge: Cambridge University Press.Julia, B. & A. Zee (1975). Poles with both magnetic and electric charges in

non-Abelian gauge theory. Physical Review, D 11, 2227.Kallen, G. (1964). Elementary Particle Physics. Reading: Addison–Wesley.Kastrup, H. A. (1962). Zur physikalischen Deutung und darstellungstheoreti-

schen Analyse der konformen Transformationen von Raum und Zeit. An-nalen der Physik, 7, 388.

Kiritsis, E. (1998). Introduction to Superstring Theory. Leuven: Leuven Uni-versity Press. E-print hep-th/9709062.

Kirzhnits, D. A. (1972). Weinberg model and the ‘hot’ universe. JETP Letters,15, 745.

458 References

Kirzhnits, D. A. & A. D. Linde (1972). Macroscopic consequences of the Wein-berg model. Physics Letters, B 42, 471.

Klapdor-Kleingrothaus, H. V. & K. Zuber (1997). Teilchenastrophysik. Stutt-gart: Teubner. English translation 1999: Particle Astrophysics. London: TheInstitute of Physics Publishing.

Klein, F. (1872). Programm zum Eintritt in die philosophische Fakultat derUniversitat zu Erlangen. Erlangen: Deichert. Reprinted in MathematischeAnnalen, 43, 63, 1893.

Klein, O. (1926). Quantum Theorie und funfdimensionale Relativitatstheorie.Zeitschrift fur Physik, 37, 895.

Klein, O. (1938). On the theory of charged fields. In New Theories in Physics.Conference organized by the International Union of Physics and the PolishIntellectual Co-operation Committee. Warsaw, 30 May-3 June, 1938. Paris:International Institute of Intellectual Co-operation (Scientific Collection),pp. 77-93.

Konopleva, N. & V. Popov (1981). Gauge Fields. Translated from the Russianedition 1972. Chur, Switzerand: Harwood Academic.

Kosyakov, B. P. (1976). Finite self-interaction of the classical electromagneticfield. Theoretical and Mathematical Physics, 27, 423.

Kosyakov, B. P. (1991). Field of arbitrarily moving colored charge. Theoreticaland Mathematical Physics, 87, 632.

Kosyakov, B. P. (1992). Radiation in electrodynamics and the Yang–Millstheory. Soviet Physics – Uspekhi, 35, 135.

Kosyakov, B. P. (1994). Exact solutions of the Yang–Mills equations with thesource in the form of two point color charges. Theoretical and MathematicalPhysics, 99, 409.

Kosyakov, B. P. (1998). Exact solutions in the Yang–Mills–Wong theory. Phys-ical Review, D 57, 5032. E-print hep-th/9902039.

Kosyakov, B. P. (1999). Exact solutions of classical electrodynamics and theYang–Mills– Wong theory in even-dimensional space-time. Theoretical andMathematical Physics, 119, 493. E-print hep-th/0207217.

Kosyakov, B. P. (2001). Physical meaning of renormalizability. Physics ofParticles and Nuclei, 32, 488. E-print hep-th/0011235.

Kosyakov, B. P. (2003). On the inert properties of particles in classical theory.Physics of Particles and Nuclei, 34, 808. E-print hep-th/0208035.

Kotkin, G. L. & V. G. Serbo (1971). Collection of Problems in Classical Me-chanics. Translated from the Russian edition 1969. Oxford: Pergamon.

Kudar, J. (1926). Zur vierdimensionalen Formulierung der undulatorischenMechanik. Annalen der Physik, 81, 632.

Lagrange, J. L. (1788). Mecanique Analytique. Paris: Desaint.Lanczos, C. (1929). Die tensoranalytischen Beziehunger der Diracschen Gle-

ichung. Zeitschrift fur Physik, 57, 447.Lanczos, C. (1949). The Variational Principles of Mechanics. 4nd edition

1970. Toronto: University of Toronto Press.

References 459

Landau, L. D. & E. M. Lifshitz (1971). The Classical Theory of Fields. Trans-lated from the 5th Russian edition 1967. New York: Addison–Wesley.

Larmor, J. (1897). On the theory of magnetic influence on spectra; and onthe radiation from moving ions. Philosophical Magazine, 44, 503.

Larmor, J. (1900). Ether and Matter. Cambridge: Cambridge University Press.Lepage, G. P. (2005). High-precision nonperturbative QCD. Annals of

Physics, 315, 193.Lie, S. (1888, 1890, 1893). Theorie der Transformationsgruppen. Unter Mit-

wirkung von F. Engel, in three volumes. Leipzig: Teubner.Lienard, A. (1898). Champ electrique et champ magnetique produit par une

charge electrique concentree en un point et animee d’un mouvement quel-conque L’Eclairage electrique, 16, 5; 53; 106.

Lightman, A. P., W. H. Press, R. H. Price & S. A. Teukolsky (1975). ProblemBook in Relativity and Gravitation. Princeton: Princeton University Press.

Lions, L. (1985). Quark search experiments at accelerators and in cosmic rays.Physics Reports, 129, 225.

London, F. (1927). Quantenmechanische Deutung der Theorie von Weyl.Zeitschrift fur Physik, 42, 375.

Lopez, C. A. & D. Villarroel (1975). Bound and emitted angular momenta ofa classical accelerated point charge. Physical Review, D 11, 2724.

Lorentz, H. A. (1892). La theorie electromagnetique de Maxwell et son appli-cation aux corps mouvemants. Archives Neerlandaises des sciences exasteset naturelles, 25, 363.

Lorentz, H. A. (1904a). Weiterbildung der Maxwellischen Theorie: Elektro-nentheorie. Encyklopadie der Mathetische Wissenschaften, 2, 145.

Lorentz, H. A. (1904b). Electromagnetic phenomena in a system moving withany velocity smaller than that of light. Proceedings of the Amsterdam Acad-emy of Sciences, 6, 809.

Lorentz, H. A. (1909). The Theory of Electrons and its Applications to thePhenomena of Light and Radiant Heat. 2nd edition 1915. Leipzig: Teubner.

Lorenz, L. V. (1867). Uber die Identitat der Schwingungen des Lichts mitden elektrischen Stromen. Annalen der Physik und Chemie, 131, 243; Onthe identity of the vibrations of light with electrical currents. PhilosophicalMagazine, Series 4, 34, 287.

Mach, E. (1883). Die Mechanik in ihrer Entwickelung historisch-kritisch dar-gestellt. 5th edition 1904. Leipzig: Brockhaus. English translation 1942: TheScience of Mechanics. London: Open Court.

Madore, J. (1995). An Introduction to Noncommutative Differential Geome-try and its Physical Applications. 2nd edition 1999. Cambridge: CambridgeUniversity Press.

Mandelstam, S. (1958). Determination of the pion-nucleon scattering ampli-tude from dispersion relations and unitarity: General Theory. Physical Re-view, 112, 1344.

Mandelstam, S. (1962). Quantum electrodynamics without potentials. Annalsof Physics, 19, 1.

460 References

Mandelstam, S. (1980). General introduction to confinement. Physics Reports,67, 109.

Mandula, J. E. (1976). Classical Yang–Mills potentials. Physical Review, D14, 3497.

Manton, N. S. (1977). The forces between ’t Hooft–Polyakov monopoles. Nu-clear Physics, B 126, 525.

Markov, M. A. (1939). Note on quantum field theory. Doklady Akademii NaukSSSR, 24, 233 (in Russian).

Marsden, J. E. & T. S. Ratiu (1994). Introduction to Mechanics and Symme-try. 2nd edition 1998. Berlin: Springer.

Marshal, C. (1990). The Three-Body Problem. 2nd edition 2004. New York:Elsevier.

Martin, J. L. (1959). Generalized classical dynamics, and the ‘classical ana-logue’ of a Fermi oscillator. Proceedings of the Royal Society (London), 251,536.

Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. 3rd editionin two volumes, with supplementary notes by J. J. Thomson, 1891. Oxford:Clarendon.

Meiman, N. N. (1964). The causality principle and asymptitic behavior of thescattering amplitude. Soviet Physics JETP, 47, 188.

Meyer-Ortmanns, H. (1996). Phase transitions in quantum chromodynamics.Reviews of Modern Physics, 68, 473.

Mie, G. (1912). Grundlagen einer Theorie der Materie. Annalen der Physik,37, 511; 39, 1.

Minkowski, H. (1909). Raum und Zeit. Physikalische Zeitschrift, 10, 104.Misner, C. W., K. S. Thorne & J. A. Wheeler (1973). Gravitation. San Fran-

cisco: Freeman.Mohapatra, R. N. (1986). Unification and Supersymmetry. 3rd edition 2003.

Berlin: SpringerMorse, P. M. & H. Feshbach (1953). Methods of Mathematical Physics. New

York: McGraw-Hill.Naimark, M. A., (1964). Linear Representations of the Lorentz Group. Trans-

lated from the Russian edition 1958. Oxford: Pergamon.Nambu, Y. (1970a). Quark models and the factorization of the Veneziano

amplitude. In Symmetries in Quark Model. Edited by R. Chand. New York:Gordon & Breach, pp. 269-279.

Nambu, Y. (1970b). Duality and Hydrodynamics. Lectures at the Copenhagensymposium.

Nambu, Y. (1974). Strings, monopoles and gauge fields. Physical Review, D10, 4262.

Nambu, Y. (1976). The confinement of quarks. Scientific American, 235 (# 5),48.

Nambu, Y. & G. Jona-Lasinio (1961). Dynamical model of elementary parti-cles based on an analogy with superconductivity. I, Physical Review. 122,345.

References 461

Ne’eman, Y. & Dj. Sijacki (1985). SL(4, R) classification for hadrons. PhysicsLetters, B 157, 267.

Ne’eman, Y. & Dj. Sijacki (1988). Hadrons in an SL(4, R) classification. Phys-ical Review, D 37, 3267.

Ne’eman, Y. & Dj. Sijacki (1993). Hadrons in an SL(4, R) classification. II.Mesons and C, P assignments. Physical Review, D 47, 4133.

Neumann, C. (1870). Die Prinzipien der Galilei–Newton’schen Theorie. Leip-zig: Teubner.

Neveu, A. & J. H. Schwarz (1971). Factorizable dual model of pions. NuclearPhysics, B 31, 86.

Newton, I. (1686). Philosophiæ Naturalis Principia Mathematica. London:Streater. English translation (1962): Mathematical Principles of NaturalPhilosophy. Berkeley: University of California Press.

Nielsen, H. B. & P. Olesen (1973). Vortex-line models for dual strings. NuclearPhysics, B 61, 45.

Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Ge-sellschaft der Wissenschaften zu Gottingen. Mathematisch-PhysikalischeKlasse, 2, 235.

Ogiyevetsky, V. I. & E. Sokachev (1975). Primitive representations of thesl(3, R) algebra. Theoretical and Mathematical Physics, 23, 845.

Ostrogradsky, M. (1831). Note sur la theorie de la chaleur. (Lu le 5 Novem-bre 1828). Memoires de l’Academie Imperiale des Sciences de Saint-Peters-bourg, VIme serie, mathematique, physique, et naturelle, 1, 129.

Ostrogradsky, M. V. (1838). Memoire sur le calcul des variations de integralesmultiples. (Lu le 24 janvier 1834). Memoires de l’Academie Imperiale desSciences de Saint-Petersbourg, VIme serie, mathematique, physique, et na-turelle, 1, livr. 2.

Ostrogradsky, M. V. (1850). Memoire sur les equations differentielles relativesaux problemes des isoperimetres. (Lu le 29 Novembre 1848). Memoires del’Academie Imperiale des Sciences de Saint-Petersbourg, VIme serie, math-ematique, physique, et naturelle, 4, 385.

Pais, A. (1948). Developments in the Theory of the Electron. Princeton:Princeton University Press.

Pais, A. (1982). “Subtle is the Lord...” The Science and the Life of AlbertEinstein. Oxford: Oxford University Press.

Pais, A. & G. E. Uhlenbeck (1950). On field theories with non-localized action.Physical Review, 79, 145.

Palmieri, C. & B. Vitale (1970). On the inversion of Noether’s theorem in theLagrangian formalism. Nuovo Cimento, 66 A, 299.

Paley, R. E. A. C. & N. Wiener (1934). Fourier Transforms in the ComplexDomain. New York: American Mathematical Society Publications.

Parisi, G. (1975). Quark imprisonment and vacuum repulsion. Physical Re-view, D 11, 970.

Parisi, G. & N. Sourlas (1979). Random magnetic fields, supersymmetry, andnegative dimensions. Physical Review Letters, 43, 744.

462 References

Parrot, S. (1987). Relativistic Electrodynamics and Differential Geometry.Berlin: Springer.

Pauli, W. (1936). Contributions mathematiques a la theorie des matrices deDirac. Annales de l’Institut Henri Poincare, 6, 109.

Pauli, W. (1958). Theory of Relativity. Translated from an article ‘Rela-tivitatstheorie’ in the Enzyklopadie der Mathematischen Wissenschaften,Band 5, Leipzig: Teubner, 1918, with supplementary notes by the author.Oxford: Pergamon.

Pavsic, M. & V. Tapia (2001). Resource letter on geometrical results for em-beddings and branes. E-print gr-qc/0010045.

Pegg, D. T. (1975). Absorber theory of radiation. Reports on Progress inPhysics, 38, 1339.

Perkins, H. D. (1972). Introduction to High Energy Physics. Reading:Addison–Wesley. 4th edition 2000. Cambridge: Cambridge University Press.

Peshkin, M. & A. Tonomura (1989). The Aharonov–Bohm Effect. Berlin:Springer.

Planck, M. (1906). Das Prinzip der Relativitat und die Grundgleichungen derMechanik. Verhandlungen der deutschen physikalische Gesellschaft, 8, 136.

Planck, M. (1908). Bemerkungen zum Prinzip der Aktion Reaktion inder allgemeinen Dynamik. Verhandlungen der deutschen physikalischeGesellschaft, 10, 728.

Plass, G. N. (1961). Classical electrodynamic equations of motions with ra-diative reaction. Reviews of Modern Physics, 33, 37.

Poincare, H. (1896). Remarques sur une experience de M. Birkeland. ComptesRendus, 123, 530.

Poincare, H. (1898). La mesure du temps. Revue de metaphysique et de morale,6, 1.

Poincare, H. (1900). La theorie de Lorentz et le principe de reaction. ArchivesNeerlandaises des sciences exastes et naturelles, 5, 252.

Poincare, H. (1902). Science et hypothese. Paris: Flammarion.Poincare, H. (1904). L’etat actuel et l’avenir de la Physique mathematiqie.

Bulletin des Sciences Mathematiques, 28, 302.Poincare, H. (1905). Sur la dynamique de l’electron. Comptes Rendus, 140,

1504.Poincare, H. (1906). Sur la dynamique de l’electron. Rendiconti del Circolo

Matematico di Palermo, 21, 129.Polchinski, J. (1999). String Theory. Volume 1. Cambridge: Cambridge Uni-

versity Press.Politzer, H. D. (1973). Reliable perturbative results for strong interactions?

Physical Review Letters, 30, 1346.Polyakov, A. M. (1974). Particle spectrum in quantum field theory. JETP

Letters, 20, 194.Pontryagin, L. S. (1939). Topological Groups. Translated from the Russian

edition 1938. 2nd edition 1966. New York: Gordon & Breach.

References 463

Poynting, J. H. (1884a). On the transfer of energy in the electromagnetic field.Philosophical Transactions of the Royal Society, London. 175, 343.

Poynting, J. H. (1884b). On the connexion between electric current and elec-tric and magnetic inductions in the surrounding field. Philosophical Trans-actions of the Royal Society, London. 176, 277.

Prasad, M. K. & C. M. Sommerfield (1975). Exact classical solution for the’t Hooft monopole and the Julia–Zee dyon. Physical Review Letters, 35,760.

Proca, A. (1936). Sur la theorie ondulatoire des electrons positifs et negatifs.Le journal de physique et le radium. 7, 347.

Rafanelli, K. (1984). Theory of the relativistic spinning particle: Hamiltonianformulation and world-line invariance. Physical Review, D 30, 1707.

Rainich, G. Y. (1925). Electrodynamics in general relativity. Transactions ofthe American Mathematical Society, 27, 106.

Rajaraman, R. (1982). Solitons and Instantons in Quantum Field Theory.Amsterdam: Noth-Holland.

Ramond, P. (1971). Dual theory for free fermions. Physical Review, D 3, 2415.Rarita, W. & J. Schwinger (1941). On a theory of particles with half-integer

spin. Physical Review, 60, 61.Reichenbach, H. (1958). The Philosophy of Space and Time. New York: Dover.Rivas, M. (2001). Kinematical Theory of Spinning Particles. Dordrecht:

Kluwer.Rohrlich, F. (1960). Self energy and stability of the classical electron. Ameri-

can Journal of Physics, 28, 639.Rohrlich, F. (1965). Classical Charged Particles. 2nd edition 1990. Redwood

City: Addison–Wesley.Rosen, J. (1968). The conformal group and causality. Annals of Physics, 47,

468.Rosenfeld, L. (1940). Sur le tenseur d’impulsion-energie. Memoires de l’Acade-

mie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 18, 1.Rubakov, V. (2002). Classical Theory of Gauge Fields. Translated from the

Russian edition 1999. Princeton: Princeton University Press.Salam, A. (1968). Weak and electromagnetic interactions. In Proceedings of

the 8th Nobel Symposium. Edited by N. Svartholm. Stockholm: Almqvist &Wiksell, pp. 367-377.

Salam, A. & J. C. Ward (1964). Electromagnetic and weak interactions.Physics Letters, 13, 168.

Salingaros, N. (1985). Particle in external electromagnetic field. II. The exactvelocity in a constant and uniform field. Physical Review, D 31, 3150.

Scherk, J. & J. H. Schwarz (1974). Dual models for non-hadrons. NuclearPhysics, B 81, 118.

Schott, G. A. (1912). Electromagnetic Radiation. Cambridge: Cambridge Uni-versity Press.

Schott, G. A. (1915). On the motion of the electron. Philosophical Magazine,29, 49.

464 References

Schouten, J. A. (1949). On meson fields and conformal transformations. Re-views of Modern Physics, 21, 421.

Schrodinger, E. (1930). Uber die kraftfreie Bewegung in der relativistischenQuantenmechanik. Sitzungsberichte der Koniglich Preußischen Akademieder Wissenschaften zu Berlin. Physikalish-mathematische Klasse, 24, 418.

Schwartz, L. (1967). Analyse Mathematique. Cours professe a l’Ecole Poly-technique. Vol. II. Paris: Hermann.

Schwartz, L. (1950–1951). Theorie des distributions I, II, nouvelle edition1973. Paris: Hermann.Schwarz, A. S. (1991). Quantum Field Theory and Topology. Translatedfrom the Russian edition 1989. Berlin: Springer.

Schwarzschild, K. (1903). Zur Elektrodynamik: I. Zwei Formen desPrinzips der kleinsten Action in der Elektronentheorie. II. Die ele-mentare elektrodynamische Kraft. Nachrichten von der Gesellschaft derWissenschaften zu Gottingen. Mathematisch-Physikalische Klasse, 128,126; 128, 132. English translation is available at http://www.nonloco-physics.000freehosting.com/.

Schweber, S. S. (1961). An Introduction to Relativistic Quantum Field Theory.New York: Row.

Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman,Schwinger and Tomonaga. Princeton: Princeton University Press.

Schwinger, J. (1959). Euclidean quantum electrodynamics. Physical Review,115, 721.

Seiberg, N. & E. Witten (1999). String theory and noncommutative geometry.Journal of High Energy Physics, 09, 032. E-print: hep-th/09908142.

Shaw, R. (1955). The problem of particle types and other contributions to thetheory of elementary particles. Ph.D. Thesis. University of Cambridge.

Siegel, W. (1999). Fields. E-print: hep-th/9912205.Snyder, H. (1947). Quantized space-time. Physical Review, 71, 8.Sobolev, S. L. (1936). Methode nouvelle a resoudre le probleme de Cauchy

pour les equations lineaires hyperboliques normales. MatematitcheskiıSbornik, 1 (43), 39.

Sokolov, A. A. & I. M. Ternov (1986). Radiation from Relativistic Electrons.Translated from the second Russian edition 1983. New York: AIP Transla-tion Series.

Sommerfeld, A. (1948). Elektrodynamik. Vorlesungen uber theoretischePhysik. Band 3. Wiesbaden: Diesterich’sche Verlagsbuchhandlung.

Sorg, M. (1974). Classical, covariant finite-size model of the radiating electron.Zeitschrift fur Naturforschung, 29a, 1671.

Spivak, M. (1965). Calculus on Manifolds. New York: Benjamin.Spivak, M. (1974). A Comprehensive Treatise on Differential Geometry, in

five volumes. 2nd edition 1979. Boston: Publish or Perrish.Stelle, K. S. (1977). Renormalization of higher derivative quantum gravity.

Physical Review, D 16, 953.

References 465

Stelle, K. S. (1978). Classical gravity with higher derivatives. General Rela-tivity and Gravitation, 9, 353.

Stiegler, U. (1996). The nucleon spin structure. Physics Reports, 277, 1.Stokes, G. G. (1849). On some cases of fluid motion. Transactions of the

Cambridge Philosophical Society, 8, 105.Strazhev, V. I. & L. M. Tomil’chik (1973). Current state of the Dirac monopole

problem. Soviet Journal of Particles and Nuclei, 4, 78.Sudarshan, E. C. G. & N. Mukunda (1973). Classical Dynamics: A Modern

Perspective. New York: Wiley.Synge, J. L. (1940). On the electromagnetic two-body problem. Proceedings

of the Royal Society, (London) A 177, 118.Synge, J. L. (1956). Relativity: The Special Theory. 2nd edition 1972. Ams-

terdam: North Holland.Synge, J. L. (1960). Relativity: The General Theory. Amsterdam: North Hol-

land.Synge, J. L. (1970). Point particles and energy tensor in special relativity.

Annali di Matematica Pura ed Applicata, 84, 33.Szebehely, V. (1967). Theory of Orbits. The Restricted Problem of Three Bod-

ies. New York: Academic.Takahashi, Y. (1969). An Introduction to Field Quantization. Oxford: Perga-

mon.Taub, A. H. (1948). Orbits of charged particles in constant fields. Physical

Review, 73, 786.Teitelboim, C. (1970). Splitting of Maxwell tensor: Radiation reaction without

advanced fields. Physical Review, D 1, 1572.Teitelboim, C., D. Villarroel & Ch. G. van Weert (1980). Classical electrody-

namics of retarded fields and point particles. Rivista del Nuovo Cimento,3, series 3, 1.

Tetrode, H. (1922). Uber den Wirkungzusammenhang der Welt. Eine Er-weiterung der klassischen Dynamik. Zeitschrift fur Physik, 10, 317. Englishtranslation is available at: www.nonloco-physics.000freehosting.com/.

Thomson, J. J. (1881). On the electric and magnetic effects produced by themotion of electrified bodies. Philosophical Magazine, 11, 227.

Thomson, J. J. (1897). Cathode rays. Philosophical Magazine, 44, 294.’t Hooft, G. (1974). A magnetic monopole in the Yang–Mills theory. Nuclear

Physics, B 79, 276.’t Hooft, G. (Editor) (2004). 50 Years of Yang–Mills theory. Singapore: World

Scientific.’t Hooft, G. & M. Veltman (1972). Renormalization and regularization of

gauge fields. Nuclear Physics, B 44, 189.Titchmarsh, E. C. (1932). The Theory of Functions. 2nd edition 1939. Oxford:

Oxford University Press.Tiwari, S. C. (2003). Superluminal Phenomena in Modern Perspective –

Faster-than-light Signals: Myth or Reality? New York: Rinton.

466 References

Umezawa, H. (1965). Dynamical rearrangement of symmetries. I. The Nambu–Heisenberg model. Nuovo Cimento, A 40, 450.

Umow, N. (1874). Ableitung der Bewegungsgleichungen der Energie in con-tinuirlichen Korpern. Zeitschrift der Mathematik und Physik (Schomilch),XIX, 418.

Van der Vaart, H. R. (1967). Variational principles for certain nonconservativesystems. American Journal of Physics, 35, 419.

Velo, G. & D. Zwanziger (1969). Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential. Physical Review,186, 1337.

Veltman, M. J. G. (2003). Facts and Mysteries in Elementary Particle Physics.Singapore: World Scientific.

Veneziano, G. (1968). Construction of a crossing-symmetric, Regge-behavedamplitude for linearly rising trajectories. Nuovo Cimento, A 57, 190.

Veneziano, G. (1974). An introduction to dual models of strong interactionsand their physical motivations. Physics Reports, C 9, 199.

Vladimirov, V. S., I. V. Volovich & E. I. Zelenov (1994). P-Adic Analysis andMathematical Physics. Singapore: World Scientific.

Volkov, D. V. & V. P. Akulov (1972). On a possible universal interaction ofneutrino. JETP Letters, 16, 438.

von Laue, M. (1909). Die Wellenstrahlung einer bewegten Punktladung nachdem Relativitatsprinzip. Annalen der Physik, 28, 436.

von Laue, M. (1911). Das Relativitatsprinzip. Braunschweig: Vieweg.Wald, R. M. (1984). General Relativity. Chicago: The University of Chicago

Press.Wataghin, G. (1934). Bemerkung uber die Selbstenergie der Elektronen.

Zeitschrift fur Physik, 88, 92.Weinberg, S. (1967). A model of leptons. Physical Review Letters, 19, 1264.Weinberg, S. (1972). Gravitation and Cosmology. New York: WileyWeinberg, S. (1973). Non-Abelian gauge theories of the strong interactions.

Physical Review Letters, 31, 494.Weinberg, S. (1995, 1996, 2000). The Quantum Theory of Fields, in three vol-

umes: I. Foundations, II. Modern Applications, III. Supersymmetry. Cam-bridge: Cambridge University Press.

Wess, J. (1960). The conformal invariance in quantum field theory. NuovoCimento, 18, 1086.

Wess, J. & J. Bagger (1983). Supersymmetry and Supergravity. 2nd edition1992. Cambridge: Cambridge University Press.

Wess, J. & B. Zumino (1972). A Lagrangian model invariant under supergaugetransformation. Physics Letters, B 49, 52.

Weyl, H. (1918). Raum, Zeit, Materie. 8th edition 1993. Berlin: Springer.Space, Time, Matter. Translated from the 4th German edition 1952. NewYork: Dover.

Weyl, H. (1929). Elektron und Gravitation. I. Zeitschrift fur Physik, 56, 330.

References 467

Wheeler, J. A. (1957). On the nature of quantum geometrodynamics. Annalsof Physics, 2, 604.

Wheeler, J. A. & R. P. Feynman (1945). Interaction with the absorber as themechanism of radiation. Reviews of Modern Physics, 17, 157.

Wheeler, J. A. & R. P. Feynman (1949). Classical electrodynamics in termsof direct interparticle action. Reviews of Modern Physics, 21, 425.

Whitham, G. B. (1974). Linear and Non-Linear Waves. New York: Wiley.Whittaker, E. T. (1904). A Treatise on the Analytical Dynamics of Parti-

cles and Rigid Bodies. 4th edition 1959. Cambridge: Cambridge UniversityPress.

Whittaker, E. T. (1910). A History of the Theories of Aether and Electricity,The Classical Theories. Revised and enlarged 1951. London: Nelson.

Whittaker, E. T. (1953). A History of the Theories of Aether and Electricity,The Modern Theories 1900 – 1926. London: Nelson.

Wick, G. C. (1954). Properties of Bethe–Salpeter wave functions. PhysicalReview, 96, 1124.

Wiechert, E. (1900). Elektrodynamische Elementargesetze. Archives Neerlan-daises des sciences exastes et naturelles (2), 5, 549.

Wigner, E. P. (1939). On unitary representations of the inhomogeneousLorentz group. Annals of Mathematics, 40, 149.

Wilson, K. G. (1974). Confinement of quarks. Physical Review, D 10, 2445.Wilson, K. G. (1979). Problems in physics with many scales of length. Scien-

tific American, 241 (# 2), 158.Wilson, K. G. (1983). The renormalization group and critical phenomena.

Reviews of Modern Physics, 55, 583.Witten, E. (1986). Noncommutative geometry and string field theory. Nuclear

Physics, B 268, 253.Wong, S. K. (1970). Field and particle equation for the classical Yang-Mills

field and particles with isotopic spin. Nuovo Cimento, A 65, 689.Woodard, R. P. (2006). Avoiding dark energy with 1/R modifications of grav-

ity. In Proceedings of the 3rd Aegean Summer School, Chios, Greece, 26September – 1 October, 2005. E-print astro-ph/0601672.

Wu, T. P. & C. N. Yang (1969). Some solutions of the classical isotopic gaugefield equations. In Properties of Matter Under Unusual Conditions. Editedby H. Mark and S. Fernbach. New York: Interscience, pp. 349-354.

Wu, T. P. & C. N. Yang (1975). Concept of nonintegrable phase factor andglobal formulation of gauge fields. Physical Review, D 12, 3845.

Yang, C. N. (1974). Integral formalism for gauge fields. Physical Review Let-ters, 33, 445.

Yang, C. N. & R. Mills (1954). Conservation of isotopic spin and isotopicgauge invariance. Physical Review, 96, 191.

Yoneya, T. (1974). Connection of dual models to electrodynamics and gravi-dynamics. Progress of Theoretical Physics, 51, 1907.

Young, L. C. (1969). Lectures on the Calculus of Variations and OptimalControl Theory. Philadelphia: Saunders.

468 References

Zumino, B. (1960). Gauge properties of propagators in quantum electrody-namics. Journal of Mathematical Physics, 1, 1.

Zwanziger, D. (1971). Local-Lagrangian quantum field theory of electric andmagnetic charges. Physical Review, D 3, 880.

Zweig, G. (1964). An SU(3) model for strong interaction symmetry and itsbreaking I, and II. CERN preprints No. 8182/TH.401, and 8419/TH.412.Reprinted in Developments in the Quark Theory of Hadrons. (1980). Vol. 1,1964–1978. Edited by D. B. Lichtenberg and S. P. Rosen. Reading: HadronicPress.

Index

Abraham term, 280, 284, 405

Abraham–Lorentz equation, 276, 284

absorption, 262, 361, 404–406

acausality, 221, 232, 247, 393

action, 76, 195

Born–Infeld, 242, 385, 389, 408

Chern–Simons, 382, 407

Fokker, 403, 404, 406

Larmor, 202, 211, 220, 225, 382

Nambu, 235

Poincare–Planck, 85, 202, 210, 378

Polyakov, 292

Yang–Mills, 290, 383

action at a distance, 87, 104, 124, 403

action principle, 197, 236

action–reaction, 51, 52, 104, 113, 120

extended principle, 52, 129, 134, 386

addition of velocities, 7, 10

adjoint representation, 62, 287, 418

advanced solution

to the Maxwell–Lorentz equations,185

to the Yang–Mills equations, 316

aether, 48

affine manifold, 32

Aharonov–Bohm effect, 192

Ampere’s molecular current, 148

law, 138, 139

angular dependence of radiation, 262

angular momentum, 83, 85, 88, 98, 110,207, 263, 335, 342, 345

intrinsic (spin), 98, 120, 207

orbital, 98, 110, 208

ansatz, 142, 147, 189, 284, 340, 343, 350Maxwell–Lorentz theory, 183six-dimensional theory, 186, 377Yang–Mills–Wong theory, 310, 319

anticommutation relations, 200, 424antineutrino, 205antiparticle, 132, 133, 222antiquark, 295, 308, 315, 339, 343antisymmetrization, 26asymptotic condition, 269, 272, 277,

283, 356, 357, 361, 395, 401atomic nucleus, 296automorphism, 14, 19, 38, 49, 222, 315auxiliary variable, 87, 93, 247, 288axial vector, 36, 61, 66, 298, 427

background field, 331, 332, 334, 344,345, 347

Barut regularization, 281–284barycenteric see center of mass, 330,

335baryon, 295, 305, 329, 345, 346, 351basis

matrix, 62, 315, 330, 336, 408, 425orthonormal, 17, 23, 142overcomplete, 320, 421vector, 11

Bianchi identity, 135, 226, 291, 292,383, 387

binary system, 109, 110, 226, 335, 342binding energy, 109, 110Biot–Savart law, 148, 191bivector, 26, 179–183, 186, 187, 190Bondi k-calculus, 6, 49

470 Index

boost, 8, 10, 41, 43, 54, 127, 390, 427Bose–Einstein condensation, 347bound state, 111boundary condition

advanced, 168, 169, 320, 402Dirichlet, 237, 243Neumann, 237, 238, 241, 243periodic, 237retarded, 167, 168, 170–172, 185, 398

brane, 235, 242, 248, 250, 408Dirichlet (D-brane), 237

Brillouin zone, 304

Cabibbo–Ferrari vector potentials, 189,193, 226

canonical equations, 94, 96, 101transformations, 80, 89

Cartan basis, 286, 326, 344, 421, 422differential form, 60, 135, 140, 152subalgebra, 318, 321, 418, 421

Cartan-Weyl basis, 326, 331, 347, 421,422

Cauchy problem, 70, 72, 79, 137, 165for the wave equation, 161, 244

causal cycle, 47causality, 38, 47, 50, 169, 408center of mass, 1, 85, 101, 102, 239, 240,

244, 330frame, 88, 114–117, 119, 123–125

centrifugal term, 106, 107, 384nonrelativistic, 109

characteristic surface, 251, 319charge

chromomagnetic, 339, 350color, 62, 63, 285–287, 293, 308–315,

317–320, 322–331, 333, 342, 347,350, 353, 355

electric, 52, 59, 129, 187, 191, 192elementary, 59magnetic, 52, 61, 110, 119, 133, 150,

187, 188, 190, 191, 226, 292, 340charge density, 130charge quantization, 59charge-coupling, 59, 134charge-source, 128–130, 133, 134chromoelectric flux, 339, 350classical electron radius, 360Clifford algebra, 424, 425clocks, 3, 7

atomic, 4, 6, 44light, 4moving, 44, 51synchronized, 10

closed system, 75, 88, 202, 265collisions, 107, 113, 156, 308, 349

elastic, 114, 117, 118, 245head-on, 107, 113inelastic, 114, 351

color cell, 325, 345neutrality, 307singlet, 289, 314, 329, 344

completeness condition, 23, 29complexification, 316, 344Compton wavelength, 343, 359confinement, 307, 308, 330, 339, 343,

349, 409conformal invariance, 216, 218, 219,

222, 314, 329, 344, 406, 432, 447special, 217, 221, 224, 428, 429, 431,

433conformal transformation, 217, 219,

407, 433conservation

angular momentum, 52, 83, 88, 98,111, 226, 238, 283, 347

charge, 85, 128–130, 132–134, 228,230–233, 241

energy, 82, 114, 118, 246, 363four-momentum, 84, 101, 114, 207momentum, 52, 82, 114

conservation lawcovariant, 291global, 114, 134, 198local, 130, 188, 213, 229, 231, 246,

260, 305, 361conserved quantity, 81, 83, 217, 275constant of motion, 81constraint, 72, 94, 142contraction of indices, 25coordinate variation (local/total), 76coordinates

affine, 15Cartesian, 34, 40, 75, 144, 209, 386curvilinear, 34, 75, 80, 83, 209, 210cylindrical, 139, 337generalized, 75light cone, 159, 239, 257polar, 75, 83, 87, 105, 337

Index 471

rectilinear, 79, 83, 444

spherical, 144, 151, 191, 373, 444

transverse, 239, 241

Coulomb potential, 144, 150

Coulomb singularity, 144, 173, 174, 390

counter-acceleration, 362

coupling constant

electromagnetic, 294

Fermi, 201

gravitational, 248, 408

pseudoscalar, 61

scalar, 59

strong force, 294

vector, 62

weak hypercharge/isospin, 294

Yang–Mills, 285

Yukawa, 201, 203, 218

covariant retarded variables, 171, 174,179, 183, 192, 318

covector, 14, 17, 24, 25, 32, 33, 219, 224

curl, 36, 125, 142, 158, 190

current, 229, 257, 393, 398

axial, 234

Chern–Simons, 293

color charge, 290, 291, 317

electric charge, 130, 135, 187, 232

magnetic charge, 188, 226

Noether, 198, 207, 208, 217, 218, 230

stationary, 138, 146, 148

curvature, 255

principal fiber bundle, 301

world line, 275, 365, 367, 374, 377,382, 404

cutoff, 266, 271, 332, 359

d’Alembert formula, 244

d’Alembertian, 154, 167, 394, 444

damped oscillator, 89, 120

decay, 108, 117, 131

deconfinement, 308

degrees of freedom

color, 286, 305, 347, 349

field, 75, 154, 189, 402, 404, 408

initial, 357, 370, 403

mechanical, 52, 113, 246, 357

rearranged, 249, 362, 401, 406

redundant, 228, 242

delta-function, 129, 131, 150, 167, 168,183, 279, 338, 403, 437, 439, 443,444

derivative

covariant, 230, 232, 255, 288, 289

directional, 411

exterior, 153, 412, 415

normal, 161, 165

partial, 87, 159, 196, 210, 230, 250

total, 88, 199, 290, 292

variational, 210

DeWitt vector potential, 157, 192

diffeomorphism invariance, 386

dilatation, 217–219, 223, 427–429,431–433, 439, 444, 447

dimension

of a vector space , 12

dipole moment, 146, 149, 182

Dirac equation, 119, 140, 200, 298, 424

matrices, 200, 240, 302, 423–425

regularization, 278, 382

spinor, 200, 204, 231, 425, 426

dispersion law, 250, 251

displacement current, 138, 139

distributions, 14, 129, 140, 366, 437,438, 440–442, 444, 447

divergence, 259, 282, 310, 402

cubic, 378

infrared, 375

linear, 276, 378, 385

ultraviolet, 359, 365, 375, 377, 378,402

divergence (differential operator), 36,49, 125, 148, 189

divergence term, 200, 208, 225, 226, 310

Doppler shift, 7

Dothan–Gell-Mann–Ne’eman SL(3, R)

symmetry, 345, 350

double covering, 314, 419, 423

dual vector space, 14

duality

invariance, 225, 226, 228, 230, 389,409

transformation, 225, 226, 228, 388,407

dynamical law, 51, 54, 61, 92, 123, 366

rest frame, 102

dyon, 61, 121, 191, 226, 351

472 Index

effective theory, 359eigenvalue, 42, 155, 192, 345einbein, 93, 95, 97, 102, 368electrodynamics, 131, 319, 349, 372

classical, 130, 283Maxwell–Lorentz, 139, 291, 390nonlinear, 127, 385–388, 408, 433nonlocal, 393–396, 398, 408, 444quantum, 306, 359, 365

electromagnetic field, 59, 119, 123, 342constant, 69–72, 74, 141homogeneous, 70, 72, 74null, 65, 67, 69, 74, 97, 260static, 141uniform, 69, 71

electromagnetic field invariants, 65electromotive force, 138electron, 109, 140, 351, 359

dressed, 246, 360free, 110, 364planetary, 384radiating, 284, 366

electron modelextended, 133, 284, 366point, 131, 140, 284, 358

electron volt, 294embedding, 53, 54, 56, 58, 92, 104, 346energy, 55, 86

indefinite, 274, 275, 363, 364kinetic, 55, 79, 107, 110, 250, 361positive definite, 255, 274, 363potential, 79, 86, 106, 250, 384rest, 109, 335

energy balance, 245, 246, 275, 365energy density, 212, 245energy-momentum, 243energy-momentum balance, 249, 273

global, 288local, 275, 356, 362, 368, 381, 404

equation of continuity, 130, 147, 208equation of motion, 54

linear, 127, 141, 143, 216linearized, 245, 331overdetermined, 142, 147, 152, 158,

184, 189equilibrium

neutral, 330, 331, 342unstable, 1, 107, 131, 370, 385

equivalence class, 43, 154

Euclidean metric, 25, 32, 150, 306quantum field theory, 306space, 16, 49, 125, 416, 417, 422, 430,

435spacetime lattice, 285, 301topology, 135

Euler–Lagrange equations, 79, 198Eulerian, 77, 196, 207event, 1, 6–8, 10, 48, 84, 216extremal, 79

falling to the center, 107, 384Faraday’s law, 138field, 28, 59, 119

acceleration, 261adjunct, 404, 406background, 331, 344, 345, 347boson, 95, 206, 305, 359, 435centrally symmetric, 83, 105charged, 230–232, 246, 247, 249, 258,

297, 298, 313, 338complex-valued, 28, 200, 228, 231,

234, 240, 253, 257, 258, 316, 344,386

Coulomb, 105, 144, 180, 182, 192Dirac, 200, 201, 203, 204, 216, 218,

233, 292, 426electromagnetic, 59, 87, 119, 123fermion, 201, 435free, 141, 158, 199, 218gluon, 291, 306, 344, 347gravitational, 5, 65interacting, 199, 247Klein–Gordon, 150, 165, 185, 201massive, 150, 199, 245, 256–258, 283,

359massless, 239, 257, 265, 294, 304, 340matter, 250, 300Proca, 204, 205, 245, 383Rarita–Schwinger, 204real-valued, 28, 204scalar, 28, 195, 204, 207self-interacting, 200spherically symmetric, 340spinor, 195, 200, 207tachyon, 249, 251, 253–255, 257tensor, 29, 195vector, 28, 195, 207Yang–Mills, 63

Index 473

field configurationof electric type, 67, 70of magnetic type, 187self-dual, 292, 341, 343stable, 146, 257, 308, 334, 398static, 141, 253

field equation, 198elliptic, 158hyperbolic, 124, 158, 232, 408

field four-momentumbound, 261, 274, 283, 375, 380emitted, 262, 459

field strength, 59field variation (local/total), 196flavor, 295, 305, 307flux

angular momentum, 263electric intensity, 137, 247energy, 212, 245Lienard–Wiechert term, 313, 317magnetic induction, 139, 337, 387radiation, 260, 272, 273, 378vortex lines, 336, 337

force, 51, 54attractive, 105–108, 114, 205, 308,

340central, 105, 108, 111, 114centrifugal, 149, 330external, 75, 113, 271, 273, 274, 361Newtonian, 52, 56repulsive, 105, 108, 131, 205, 349

2-form, 27canonical, 27, 31, 65, 67–69decomposable, 28, 67, 179, 182, 192

form factor, 393, 394, 397, 399, 400, 408forward hyperboloid, 72four-acceleration, 44

current, 130, 134, 138, 156, 170divergence, 136, 234momentum, 54vector, 21velocity, 44

Fourier mode, 142, 161, 250, 251, 358series, 141, 239, 244transform, 142, 143, 153, 163, 166,

167, 172, 173, 189frame of reference, 1

fixed (stationary), 56, 66inertial, 1–5

instantaneously comoving, 44–46, 53,54, 56, 172, 263, 270, 381

Lorentz, 1noninertial, 2, 182, 192, 209, 262rest, 9, 53, 54, 56, 57, 98, 99, 102,

175, 240retarded, 176

functionalbilinear, 15, 16linear, 14, 32, 411, 437multilinear, 15

fundamental representation, 292, 417

Galilean particle, 51, 55–57, 64, 85, 94,100, 101, 119

transformation, 10gauge field, 119

Abelian, 63, 296, 313, 318, 325, 329,340, 354, 355, 357

non-Abelian, 291, 305, 313, 316, 323,350, 354, 355, 357

gauge fixing condition, 155, 156, 185,237, 242, 320

Coulomb, 149, 156Fock–Schwinger, 157Lorenz, 155, 160, 185, 372, 404noncovariant, 239, 240orthonormal, 237, 238temporal, 156unitary, 258

gauge group, 237, 298, 305, 309color, 293weak hypercharge/isospin, 294

gauge invariance, 228, 231, 258, 301,305, 340, 399

mode, 154, 160, 228, 331transformation, 147, 154, 190

Gauss’ law, 138, 184, 186Gaussian units, 144, 201Gauss–Ostrogradskiı theorem, 49Gell-Mann matrices, 320, 419general linear group GL(n, R), 14general relativity, 48, 118, 247generator, 41, 94, 319, 331, 417, 421geodesic, 65, 85, 89geometry, 1, 2, 4, 5, 11, 49

affine, 15Euclidean, 16pseudoeuclidean, 1, 16

474 Index

Glashow–Salam–Weinberg model, 254,283, 294

Goldstone mode, 254, 257, 283model, 249, 253

gradient, 49, 147, 191Grassmann algebra, 104, 435Grassmannian variable, 103, 120, 241

even, 103, 131, 434, 435odd, 177, 434, 435

gravitational field, 65gravity, 248, 294, 363Green’s function, 141, 161, 192

advanced, 169, 170, 172, 182retarded, 167–174, 257, 372, 373, 407

ground state, 252, 254, 330, 344, 349,351

group velocity, 165, 199

hadron, 329, 330, 334, 345, 349matter, 308

Hamiltonian, 78, 94, 106, 191harmonic function, 143

mode, 161oscillator, 89, 100, 250, 345

Heaviside step function, 168, 323, 446units, 335, 385

Heisenberg uncertainty principle, 296Helmholtz equation, 150

theorem, 125, 139, 150Hessian matrix, 88, 89Higgs field, 297, 298, 337–339, 344, 350

mechanism, 257, 283, 294, 296, 297,305, 343

model, 254, 258, 307, 316, 335, 349Hodge duality operation, 27homogeneity

space, 5, 82spacetime, 215time, 5, 82

Huygens’ principle, 374hydrogen atom, 105, 109, 284, 384hyperbolic motion, 46, 71, 370, 371hyperplane, 32hypersurface, 34

locally adjusted, 271, 318, 326

identity of mass and energy, 118impact parameter, 112index

color, 62, 63, 285, 286, 289, 307

contravariant, 17, 25, 26, 42

covariant, 17, 26, 44

repeated, 12, 125, 144, 285, 412

spatial, 25, 41, 60

temporal, 126, 156

index summation rule, 144

infinite continuous group, 91

infinitesimal transformation, 81, 84, 88,91, 198, 207, 216, 225, 231, 237,257, 288, 290, 416, 417, 426, 431

instanton, 291, 307

integral of motion, 81

interaction

contact, 51, 113, 408

Coulomb, 105, 108, 328

direct-particle, 401, 408

electromagnetic, 86, 104, 105, 202,213

electroweak, 293, 296

four-fermion, 201, 202

fundamental, 2, 247, 284, 288, 304

Gursey, 200, 202

gauge invariant, 289, 292, 302, 305

instantaneous, 2, 10, 87

local, 131, 134

localizable, 393, 407

nonlocal, 393–400, 407, 439, 444, 447

of a particle with a scalar field, 64,96–97, 204

quartic, 199, 202

Schwarzschild, 202, 211

short-range, 113, 288, 295–296

string, 241

strong, 293–306

van der Waals, 146, 295

weak, 205, 293, 295, 304

Yukawa, 201, 297

interval

closed, 438

finite, 221, 439

null, 104, 164, 216, 280, 283, 401

small, 277, 398

spacelike, 38, 104, 157

timelike, 47–48, 80–81, 85, 278, 283

inverse square law, 182, 339, 408

inversion, 428

irreversibility, 89, 274, 401, 405

Index 475

isomorphism, 12, 14–15, 43, 226, 229,246, 323, 421, 431, 434

Jacobi identity, 62–63, 291, 420Jacobian, 37, 176, 219, 243

k-factor, 5–7Kepler problem, 75, 105–108, 120, 383Killing form, 63, 285, 420

degenerate (singular), 291, 323, 420positive definite, 291, 420

kinematical rest frame, 102kinematics

Newtonian, 6relativistic, 50, 117

Klein–Gordon equation, 150, 199, 250Kronecker delta, 13, 24, 30

Lagrange multiplier, 96, 103Lagrangian, 75, 195

t-dependent, 75acceptable, 91nonsingular, 88standard model, 294–296acceleration-dependent, 366–367coordinate-independent, 82Dirac, 200, 301duality invariant, 225, 388, 407electroweak interaction, 293–296, 304for a colored particle, 286Higgs, 254, 257higher derivative, 366Klein–Gordon, 199, 303rearranged, 252, 256, 282, 353, 401strong interaction, 295, 306time-independent, 82

Laplace equation, 143operator, 164, 175

Larmor formula, 269, 282lattice, 124, 300, 302, 398

spacing, 300Leibnitz’s rule, 162, 414length dimension, 203–204, 217, 235lepton, 294–295, 297Levi-Civita tensor, 25, 30, 60, 61, 126Lienard–Wiechert field, VII, 192

solution, 182vector potential, 172, 179, 185, 192

Lie algebra, 62–63, 119, 415

Abelian, 63, 417–418, 420, 428–429compact, 43, 416, 419, 421complex, 63, 343semisimple, 63, 216, 420, 428simple, 343, 420

Lie group, 14, 416classical/exceptional, 421

light cone, 22backward sheet, 22forward sheet, 22, 169, 374future, 22, 168, 176, 185past, 22, 169, 170, 172, 175

light propagation, 4, 5line element, 38, 64, 95, 209, 210, 217linear

combination, 11connection, 299

locality, VII, 134, 385Lorentz boost

contraction, 9factor, 8, 44, 47force, 61, 69, 119, 131group, 14, 38, 216invariance, 38, 164transformation, 8, 38

proper, 40proper orthochronous, 40, 207

Lorentz–Dirac equation, 274, 277, 284,357

magnetic dipole, 149, 182magnetic monopole, 61, 134, 140, 150

’t Hooft–Polyakov monopole, 292,339, 341, 350

Bogomol’ny–Prasad–Sommerfield,340, 341, 349

Dirac, 140, 150, 187Mandelstam variables, 118manifold, 33, 137, 411mass, 56, 57, 84, 99, 102

bareNewtonian, 52, 56renormalized, 269, 275, 282, 283,

354, 356, 375, 404rest, 56, 57, 71, 99, 102

mass renormalization, 269, 281, 359,402

mass shell, 114maximal electric field, 386

476 Index

maximal parity violation, 296, 298maximal velocity of motion, 2, 3, 10, 48Maxwell stress tensor, 213Maxwell’s equations, 123, 127, 134, 139,

152, 188, 202, 216, 246, 372Maxwell–Lorentz theory, 139, 221, 232,

245, 282, 285, 305, 313, 355, 359,390, 395, 399, 401–403, 406

Meissner effect, 339, 342, 350meron, 308meson, 105, 295, 296, 308, 329, 335, 346metric, 17

Euclidean, 16indefinite, 9induced, 236intrinsic, 238Minkowski, 23, 25pseudo-Riemannian, 64, 65, 85pseudoeuclidean, 64

Millennium Problem, 349minimal coupling, 231, 234, 247, 292Minkowski force, 54, 58

space, 5, 9, 10, 20, 21, 37, 52momentum

conjugate to a coordinate, 78, 86conjugate to a field variable, 197linear, 52, 55, 82transfer, 115, 118

momentum density, 212motion

accelerated, 2, 46finite, 107, 109infinite, 107, 113self-accelerated, 357uniform, 1, 4, 51, 71, 100, 370

multiplication rule, 27, 286, 421multipole moment, 148muon, 201, 295, 351

n-form, 26closed, 414exact, 414, 415

N -quark case, 319, 355natural units, 83, 203, 218, 291, 296Ne’eman–Sijacki SL(4, R) classification

of hadrons, 345, 351neutrino, 95, 206Newton’s first law, 49, 51, 119

second law, 51, 54, 57, 79, 118, 124,274, 381

Newtonian gravitation, 2, 87, 409Nielsen–Olesen vortex, 336, 339, 349,

350Noether first theorem, 76, 82, 196, 198

converse, 84, 88identity, 215, 229, 233, 258, 292, 354second theorem, 92, 118

non-Galilean particle, 51, 56, 58, 119,357, 370

regime of motion, 101, 290, 370nonperturbative solution, 314norm, 16

indefinite, 16nucleon, 204, 205, 309, 346, 351

orthogonal group O(n), 19, 416, 431transformation (rotation), 19, 68

oscillatoranharmonic, 251damped, 75, 89, 277harmonic, 89, 90, 143, 251

pair creation and annihilation, 359Paley–Wiener theorem, 399parallel transport, 299, 301parameter of evolution, 44, 76, 95parametrization, 53, 76, 90, 95parametrized curve, 43, 90particle, 43

bare, 258, 260, 274, 278, 362, 378,380, 395, 404

charged, 59, 69, 95colored, 182, 288, 293, 305, 309dressed, 269, 273, 274, 284, 354, 360,

361, 364, 375, 378, 380, 401, 405free, VI, 55, 58, 89, 95, 98massless, 94, 97, 223, 224, 250, 455neutral, 59point, 52, 54rigid, 79, 367, 370, 378superluminal, 56, 275, 465

path ordering, 294, 299Pauli

blocking principle, 325matrices, 241, 314, 315, 418, 421

Pauli–Lubanski vector, 42Pfaffian, 31

Index 477

phase, 160factor, 298, 301, 306transition, 308, 349, 360

Planck’s constant, 83, 248, 325, 393length, 393, 408mass, 248

Poincare cohesive forces, 131, 202group, 38, 216invariance, 52, 90, 206lemma, 414transformation, 37

point, 10, 15Poisson bracket, 94, 101, 102

equation, 94, 101, 125, 142, 149polarization vector, 160Pontryagin density, 293potential, 106, 142

linearly rising, 109, 308, 313, 323,329, 355

scalar, 63, 142spherically symmetric, 86vector, 86, 141, 147, 152

Poynting vector, 213, 246prepotential, 186principle of least action, 76, 79, 81

of gauge invariance, 231, 457of relativity, 2, 48

productcross, 30exterior, 26, 181inner, 417scalar, 16semidirect, 216tensor, 24

projection operator ⊥, 32, 34, 70, 72,92, 150, 216, 274, 296

propagation of interactions, 2, 5vector, 160

proper length, 9time, 44, 95

pseudoorthogonal group O(m, n), 38puzzle of nucleon spin, 351

quantumchromodynamics, 62, 294, 342, 460electrodynamics, 306, 359, 365field theory, 83, 131, 295, 301, 306,

308, 336, 344, 385, 408, 447mechanics, 140, 216, 348

quark, V, 105, 291, 304bound, 324, 325, 330confined, 343, 394, 399dressed, 354, 356, 360free, 324, 328, 330, 409isolated, 307single, 309, 315, 323, 345, 349, 355

quark–antiquark pair, 295, 308quark-gluon plasma, 308quark/lepton generations, 295, 296quarkonium, 105

radar-location approach, 3radial part of ∇2, 144, 164, 174radiation, 108, 119, 121, 192, 260, 283,

354, 356, 375, 378, 401, 405radiation damping, 284, 361radiation rate, 283, 378, 379radiation reaction, 280, 284, 361, 363radius vector, 16, 22, 144, 175rank

Lie group, 321, 419tensor, 24

rapidity, 10rearranging degrees of freedom, 249,

253, 257, 283, 357Regge sequences as infinite multiplets,

345renormalizability, 297, 305, 359, 366reparametrization invariance, 90, 91

scale dimension, 217, 220invariance, 217, 218, 223, 246

Schott term, 361self-acceleration (runaway), 357

of a dressed particle, 362–364of a rigid particle, 371of a spinning particle, 101

self-energy, 131, 268, 269, 273, 282, 310,384, 390, 396, 398

self-field, 278, 402self-force, 390, 397, 400signal, 38, 167, 171, 183, 319, 320, 374,

388, 408destructive, 47light, 5superluminal, 50

signature, 21, 210, 431signum function, 150, 164, 279, 440

478 Index

similitude transformation, 217, 428simultaneous events, 6singularity, 173, 174

integrable, 260, 284, 390nonintegrable, 260, 284, 402

soliton, 159, 166, 192, 407space, 1

affine, 15, 19, 32, 33color, 62configuration, 75Euclidean, 16, 21event, 76, 80internal, 62isotopic-spin, 309pseudo-Riemannian, 137, 246pseudoeuclidean, 19

space dimension, 123, 135isotropy, 5, 83reflection, 40

spacetime, 1, 3spacetime dimension, 65, 216

reflection, 40special linear group SL(n, R), 181

relativity, 1, 4, 5, 44, 48, 49, 53, 118species doubling, 303, 304speed of light, 2, 51, 56, 83, 248, 393spin originating from isospin, 343, 347spinning particle, 43, 98, 101, 120, 305spinor, 195, 200, 204, 231, 425spontaneous symmetry breaking, 253,

305, 339, 342, 350spontaneous symmetry deformation,

316, 344, 360stability, 142, 149standard synchrony, 6, 48

time scale, 4, 5, 49star-shaped region, 415Stokes theorem, 36, 37, 50, 299stress-energy tensor

canonical, 197, 207, 209, 211, 245improved, 218metric, 210, 211symmetric, 209, 212, 246traceless, 218, 291

stringclosed, 235, 237, 239, 241, 244, 247Dirac, 151, 193, 238free, 241, 250Green–Schwarz, 240

interacting, 241Nambu, 237open, 235, 241, 247Polyakov, 238relativistic, 235, 247tension, 235, 247

strongly/weakly conserved current, 208structure constants, 62, 63, 344, 420,

421superconductivity, 338, 339, 348, 350superstring, 240supersymmetry, 240, 435, 447support, 257, 393, 438

delta-function, 168, 173, 338, 443, 444distribution, 441retarded Green’s function, 170, 173,

373, 374surface element, 34, 36, 176symmetry, 81, 84, 198, 289, 294, 297,

308, 316, 344, 367, 402internal, 198, 225, 229, 305local, 182, 229spacetime, 198, 216, 246, 345

symplectic group Sp(n), 421

tachyon, 56, 249, 275, 360, 365, 406tensor, 24test function space, 437tetrad (vierbein), 23, 67time 1

discrete, 61laboratory, 44, 48proper, 44

time dilation, 44reversal, 40, 61, 89

trajectory, 44, 72, 111, 121planar, 105Regge, 335, 336

translation, 19, 38, 216invariance, 52, 82, 84, 206

transverse mode, 155triangular function, 118two-particle problem, 104, 110, 113,

120, 376, 381, 384two-quark case, 323, 326, 327, 334, 349

uniform acceleration, 46, 58, 362, 363uniformity of light propagation, 4, 5unitary group U(n), 286, 320, 417

Index 479

representation, 292, 345, 419unstable system, 2

vacuum, 3, 48, 308, 342, 344, 351, 387vector

imaginary unit, 20lightlike (null), 22, 45normalized, 20, 171spacelike, 22, 171, 181tangent, 33, 64, 171, 209, 235timelike, 22, 181unit, 17, 64, 144, 171, 181zero, 11

vector bosons (W , Z), 305, 359vector space (complex/real), 11velocity, 2–5

angular, 105, 112, 120, 309, 310constant, 1, 3, 5, 11, 240, 392

velocity field, 261Veneziano model, 336

Ward–Takahashi identity, 192, 233wave

convergent, 169divergent, 168electromagnetic, 52, 192monochromatic, 6, 161plane, 74, 101, 120, 159–161, 165, 307shock, 408

wave equation, 141homogeneous, 141, 156, 158, 160, 167,

173, 270, 279, 319, 403inhomogeneous, 141, 155, 167

wave length, 161zone, 262

Weinberg angle, 294Weyl invariance, 240, 244

rescalings, 220, 238, 429Wilson loop, 300, 302Wong equation, 287, 290, 309, 310, 320

force, 63, 119, 284, 329, 356particle, 290, 305, 308, 342, 347

work, 56, 245, 275, 357, 361, 365world line, 5, 43

Λ- and V -shaped, 81, 133allowable, 47, 133, 284, 401helical, 119, 147, 284lightlike, 45, 56, 80, 95, 97smooth, 47, 80, 137, 175, 185spacelike, 45, 47, 57, 80straight, 5, 55, 147, 180, 184, 187timelike, 45, 47, 57, 80, 132, 134, 170,

175, 179, 185, 187, 190, 203world sheet, 190, 235

volume, 242Wu–Yang ansatz, 350

vector potential, 190, 193

Yang–Mills equations, 141, 183, 289,290, 307, 313, 316, 323, 325, 344,353, 355, 383, 422

Yang–Mills theory, 305, 306, 319, 383pure, 290, 308quantum, 119, 349

Yang–Mills–Wong theory, 183, 283, 285,291, 295, 307–310, 313, 316, 324,344, 347, 349, 350, 355, 357, 359,362, 364

Yukawa model, 204potential, 150, 173, 296

zitterbewegung, 58, 101, 370Zwanziger Lagrangian, 227, 247