References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf ·...

26
78 References

Transcript of References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf ·...

Page 1: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

78

References

Page 2: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

79

1. Alberti KG, Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15:539-553

2. World Health Organization Study Group on Diabetes Mellitus: In Technical Report

series 727. Geneva: World Health Organization (WHO) 1985. 3. Harris M, Zimmet P: Classification of diabetes mellitus and other categories of

glucose intolerance. International Textbook of Diabetes Mellitus. Second Edition. Chichester: John Wiley and Sons Ltd 1997; 9-23.

4. Gavin J, Alberti IL, Davidson M et al.: Report of the Expert Committee on the

Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20:1183-1197.

5. Paglia MJ, Coustan DR: Gestational diabetes: evolving diagnostic criteria. Curr Opin

Obstet Gynecol 2011; 23(2):72-75. 6. Ferrara A, Ehrlich SF: Strategies for diabetes prevention before and after pregnancy

in women with GDM. Curr Diabetes Rev 2011; 7(2):75-83.

7. Burguet A: Long-term outcome in children of mothers with gestational diabetes.

Diabetes Metab 2010; 36:682-694. 8. Kuzuya T, Nakagawa S, Satoh J: Report of the Committee on the classification and

diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 2002; 55(1):65-85. 9. Unwin N, Whiting D, Gan D, Jacqmain O, Ghyoot G: International Diabetes

Federation Diabetes Atlas. IDF Diabetes Atlas International Diabetes Federation, Belgium; Fourth 2009.

10. Ramachandran A, Snehalatha C, Kapur A et al.: Diabetes Epidemiology Study Group

in India (DESI). High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 2001; 44:1094-1101.

11. Mohan V, Sandeep S, Deepa R, Shah B, Varghese C: Epidemiology of type 2

diabetes: Indian scenario. Indian J Med Res 2007; 125:217-230.

Page 3: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

80

12. Menon VU, Kumar KV, Gilchrist A et al.: Prevalence of known and undetected diabetes and associated risk factors in central Kerala - ADEPS. Diabetes Res Clin Pract 2006; 74:289-294.

13. Kutty VR, Joseph A, Soman CR: High prevalence of type 2 diabetes in an urban settlement in Kerala, India. Ethn Health 1999; 4:231-239.

14. Kutty VR, Soman CR, Joseph A, Pisharody R, Vijayakumar K: Type 2 diabetes in

southern Kerala: Variation in prevalence among geographic divisions within a region. Natl Med J India 2000; 13:287-292.

15. Michael J. Fowler: Microvascular and Macrovascular Complications of Diabetes.

Clinical Diabetes 2008; 26:77-82. 16. Vijay Viswanathan, Satyavani Kumpat: Pattern and Causes of Amputation in

Diabetic Patients – A Multicentric Study from India. Journal of association of physicians of India 2011; 59:148-1451.

17. Mohan V, Deepa R, Rani SS, Premalatha G: Prevalence of coronary artery disease

and its relationship to lipids in a selected population in South India: The Chennai Urban Population Study (CUPS No. 5). J Am Coll Cardiol 2001; 38:682-687.

18. Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R ,Mohan V: Prevalence of diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES). Invest Ophthalmol Vis Sci 2005; 46:2328-233.

19. Unnikrishnan RI, Rema M, Pradeepa R, Deepa M, Shanthirani CS, Deepa R, Mohan

V: Prevalence and risk factors of diabetic nephropathy in an urban South Indian population. The Chennai Urban Rural Epidemiology Study (CURES 45). Diabetes Care 2007; 30(8):2019-2024.

20. McKeigue PM, Shah B, Marmot MG: Relation of central obesity and insulin

resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337:382-386.

21. Abate N, Chandalia M: Ethnicity and type 2 diabetes: focus on Asian Indians. J

Diabetes Complications 2001; 15:320-327. 22. Ramachandran A, Snehalatha C, Viswanathan V, Viswanathan M, Haffner SM: Risk

of non insulin dependent diabetes mellitus conferred by obesity and central adiposity in different ethnic groups: A comparative analysis between Asian Indians, Mexican Americans and Whites. Diabetes Res Clin Pract 1997; 36:121-125.

Page 4: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

81

23. Raji A, Seely EW, Arky RA, Simonson DC: Body fat distribution and insulin

resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab 2001; 86: 5366-5371.

24. Abate N, Chandalia M, Snell PG, Grundy SM: Adipose tissue metabolites and insulin resistance in non-diabetic Asian Indian men. J Clin Endocrinol Metab 2004; 89:2750-2755.

25. Yajnik CS: The lifecycle effects of nutrition and body size on adult adiposity,

diabetes and cardiovascular disease. Obes Rev 2002; 3:217-224. 26. Yajnik CS, Fall CH, Coyaji KJ, et al.: Neonatal anthropometry: the thin-fat Indian

baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord 2003; 27:173-180.

27. Krishnaveni GV, Hill JC, Veena SR, et al.: Truncal adiposity is present at birth and in

early childhood in South Indian children. ndian Pediatr 2005; 42(6):527-538. 28. Mohan V, Shanthirani CS, Deepa R: Glucose intolerance (diabetes and IGT) in a

selected south Indian population with special reference to family history, obesity and life style factors. The Chennai Urban Population Study (CUPS 14). J Assoc Physicians India 2003; 51:771-777.

29. Yue DK, Molyneaux LM, Ross GP, Constantino MI, Child AG, Turtle JR.: Why does

ethnicity affect prevalence of gestational diabetes? Diabetic Medicine 1996; 13:748-752.

30. Ma RC, Chan JC: Pregnancy and diabetes scenario around the world: China. Int J

Gynaecol Obstet 2009; 104 (Suppl 1):S42-45. 31. Barnett A, Eff C, Leslie R, Lyke D: Diabetes in identical twins. A study of 200 pairs.

Diabetologia 1981; 20:87-93. 32. Scragg, R, Baker, J, Metcalf, P: Prevalence of diabetes mellitus and impaired glucose

tolerance in a New Zealand multiracial workforce. New Zealand Medical Journal 1991; 104:395-397.

33. Ostbyte T, Welby TJ, Prior IA, Salmond E, Stokes YM; Type 2 (non-insulin-

dependent) diabetes mellitus, migration and westernization: The Tokelau Island Migrant Study. Diabetologia 1989; 32:585-590.

Page 5: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

82

34. Neel JV: "Diabetes mellitus: a "thrifty" genotype rendered detrimental by

"progress"?". Am. J. Hum. Genet 1962; 14:353-362. 35. Hales CN, Barker DJ: The thrifty phenotype hypothesis. Br Med Bull 2001; 60:5-20. 36. Hamilton MT, Hamilton DG, Zderic TW: Role of low energy expenditure and sitting

in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007; 56(11):2655-2667.

37. DeFronzo RA, Bonadonna RC, Ferrannini E: Pathogenesis of NIDDM: A balanced

overview. Diabetes Care 1992; 15:318-368. 38. Consoli A: Role of liver in pathophysiology of NIDDM. Diabetes Care 1992; 15(3):

430-441. 39. Kanzaki M: Insulin receptor signals regulating GLUT4 translocation and actin

dynamics. Endocr J 2006; 53(3):267-293. 40. Lin Y, Sun Z: Current views on type 2 diabetes. J Endocrinol 2010; 204(1):1-11. 41. Benito M: Tissue specificity on insulin action and resistance: past to recent

mechanisms. Acta Physiol (Oxf) 2011; 201(3):297-312. 42. Prentki M, Nolan CJ: Islet beta cell failure in type 2 diabetes. J Clin Invest 2006;

116(7):1802-1812. 43. Boden G: Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol

Diabetes Obes 2011; 18(2):139-143. 44. Nishimura S, Manabe I, Nagasaki M ,et al.: Adipogenesis in obesity requires close

interplay between differentiating adipocytes, stromal cells and blood vessels. Diabetes 2007; 56(6):1517-1526.

45. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose

tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95(5):2409-2415.

46. Hotamisligil GS: Inflammatory pathways and insulin action. Int J Obes Relat Metab

Disord 2003; 27(Suppl 3):53-55.

Page 6: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

83

47. Arner P: The adipocyte in insulin resistance: key mole-cules and the impact of the thiazolidinediones. Trends Endocrinol Metab 2003; 14:137-145.

48. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM: Tumor necrosis factor

alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91:4854-4858.

49. Howard JK, Flier JS: Attenuation of leptin and insulin signaling by SOCS proteins.

Trends Endocrinol Metab 2006; 17(9):365-371. 50. Kahq S, Porte DJ: The pathophysiology of type II (noninsulin dependent) diabetes mellitus: implications for treatment. In Diabetes Mellitus. Stamford, Appleton &

Lange 1997; 487-512.

51. Zhoa YP, Grill VE: Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994; 93:870-876.

52. Randle PJ, Garland PB, Hales CN, Newsholme E A: The glucose fatty-acid cycle: its

role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; i785-789.

53. Randle PJ, Garland PB, Newsholme EA, Hales CN: The glucose fatty-acid cycle in

obesity and maturity onset diabetes mellitus. Ann NY Acad Sci 1965; 131:324-333. 54. Randle PJ, Newsholme EA, Garland PB: Regulation of glucose uptake by muscle.

Effects of fatty acids, ketone bodies and pyruvate, and of alloxan, diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 1964; 93:652-665.

55. Shulman GI: Cellular mechanisms of insulin resistance. J Clin Invest 2000;

106(2):171-176. 56. Leahy JL: Pathogenesis of type 2 diabetes mellitus. Arch Med Res 2005; 36(3):197-

209. 57. Weyer C, Bogardus C, Mott DM, Pratley RE: The natural history of insulin secretory

dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest 1999; 104:787-794.

Page 7: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

84

58. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52:102-110.

59. Prentki M, Nolan CJ: Islet beta cell failure in type 2 diabetes. J Clin Invest 2006;

116(7):1802-1812. 60. Brownlee M: A radical explanation for glucose-induced β cell dysfunction. J. Clin

Invest 2003; 112:1788-1790. 61. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB:

Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction. J. Clin. Invest 2003; 112:1831-1842.

62. Robertson RP: Chronic oxidative stress as a central mechanism for glucose toxicity in

pancreatic islet beta cells in diabetes. J. Biol. Chem 2004; 279:42351-42354. 63. Chen C, Thorens B, Bonner-Weir S, Weir GC, Leahy JL: Recovery of glucose-

induced insulin secretion in a rat model of NIDDM is not accompanied by return of the B-cell GLUT2 glucose tansporter. Diabetes 1992; 41:1320-1327.

64. Poitout V, Robertson RP: Minireview: Secondary beta-cell failure in type 2 diabetes -

A convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143:339-342. 65. Laedtke T, Kjems L, Pørksen N, Schmitz O, Veldhuis J, Kao PC, Butler PC:

Overnight inhibition of insulin secretion restores pulsatility and proinsulin/insulin ratio in type 2 diabetes. Am. J. Physiol. Endocrinol Metab 2000; 279:E520-E528.

66. Greenwood RH, Mahler RF, Hales CN: Improvement in insulin secretion in diabetes

after diazoxide. Lancet 1976; 1:444-447. 67. Dupre J, Ross SA, Watson D, Brown JC: Stimulation of insulin secretion by gastric

inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37:826-828. 68. Ehses JA, Casilla VR, Doty T, et al.: Glucose-dependent Insulinotropic Polypeptide

(GIP) Promotes {beta}-(INS-1) cell survival via cyclic AMP-mediated caspase-3 inhibition and regulation of p38 MAP kinase. Endocrinology 2003; 144:4433-4445.

69. Drucker DJ: The biology of incretin hormones. Cell Metab 2006; 3:153-165.

Page 8: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

85

70. Rizza RA: Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 2010; 59(11):2697-2707.

71. Patel S, Lipina C, Sutherland C: Different mechanisms are used by insulin to repress

three genes that contain a homologous thymine-rich insulin response element. FEBS Lett 2003; 549(1-3):72-76.

72. Butler PC, Rizza RA: Contribution to postprandial hyperglycemia and effect on initial

splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes 1991; 40:73-81.

73. Reaven GM, Chen Y-DI, Coulston AM, et al.: Insulin secretion and action in

noninsulin-dependent diabetes mellitus. Am J Med 1983; 30:85-93. 74. Boden G, Chen X, Capulong E, Mozzoli M: Effects of free fatty acids on

gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001; 50:810–816.

75. Ramachandran A, Snehalatha C, Sivasankari S, Hitman GA, Vijay V: Parental

influence on the spectrum of type 2 diabetes in the offspring among Indians. J Assoc Physicians India 2007; 55:560-562.

76. Waterfield T, Gloyn AL: Monogenic β-cell dysfunction in children: clinical

phenotypes, genetic etiology and mutational pathways. Pediatr Health 2008; 2:517-532.

77. McCarthy MI: Growing evidence for diabetes susceptibility genes from genome scan

data. Curr Diab Rep 2003; 3:159-167. 78. Hattersley AT, McCarthy MI: What makes a good genetic association study? Lancet

2005; 366:1315-1323. 79. Altshuler D, Hirschhorn JN, Klannemark M, et al: The common PPARgamma

Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26:76-80.

80. Gloyn AL, Weedon MN, Owen KR, et al: Large-scale association studies of variants

in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52(2):568-572.

Page 9: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

86

81. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2

(TCF7L2) genes confers risk of type 2 diabetes. Nat Genet 2006; 38:320-323. 82. Cauchi S, El Achhab Y, Choquet H: TCF7L2 is reproducibly associated with type 2

diabetes in various ethnic groups: a global meta-analysis. J Mol Med 2007; 85(7):777-782.

83. Wheeler E, Barroso I: Genome-wide association studies and type 2 diabetes. Brief

Funct Genomics 2011; 10(2):52-60. 84. Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies

novel risk loci for type 2 diabetes. Nature 2007; 445:881-885. 85. Frayling TM, Timpson NJ, Weedon MN, et al.: A common variant in the FTO gene is

associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889-894.

86. Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of

type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341-1345.

87. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, Novartis Institutes of BioMedical Research, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316:1331-1336.

88. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association

signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316:1336-1341.

89. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al.: A variant in CDKAL1

influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39:770-775. 90. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000

cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-678.

Page 10: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

87

91. Zeggini E, Scott LJ, Saxena R, et al.: Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40:638-645.

92. Dupuis J, Langenberg C, Prokopenko I, et al.: New genetic loci implicated in fasting

glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42:105-116.

93. Qi L, Cornelis MC, Kraft P, et al.: Genetic variants at 2q24 are associated with

susceptibility to type 2 diabetes. Hum Mol Genet 2010; 19:2706-2715. 94. Voight BF, Scott LJ, Steinthorsdottir V, et al.: Twelve type 2 diabetes susceptibility

loci identified through large-scale association analysis. Nat Genet 2010; 42:579-589. 95. Yasuda K, Miyake K, Horikawa Y, et al.: Variants in KCNQ1 are associated with

susceptibility to type 2 diabetes mellitus. Nat Genet 2008; 40:1092-1097. 96. Unoki H, Takahashi A, Kawaguchi T, et al.: SNPs in KCNQ1 are associated with

susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 2008; 40:1098-1102.

97. Tsai FJ, Yang CF, Chen CC, et al.: A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 2010; 6:e1000847-e1000847.

98. Sandhu MS, Weedon MN, Fawcett KA, et al.: Common variants in WFS1 confer risk

of type 2 diabetes. Nat Genet 2007; 39:951-953. 99. Winckler W, Weedon MN, Graham RR, et al.: Evaluation of common variants in the

six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 2007; 56:685-693.

100. Gudmundsson J, Sulem P, Steinthorsdottir V, et al.: Two variants on chromosome

17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet2007; 39:977-983.

101. Franks PW, Rolandsson O, Debenham SL, et al.: Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 2008; 51:458-463.

Page 11: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

88

102. Prokopenko I, Langenberg C, Florez JC, et al.: Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009; 41:77-81.

103. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet2009; 41:82-88.

104. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al.: A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009; 41:89-94.

105. Rung J, Cauchi S, Albrechtsen A, et al.: Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009; 41:1110-1115.

106. Yajnik CS, Janipalli CS, Bhaskar S, et al.: FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 2009 Feb; 52(2):247-252.

107. Sanghera DK, Ortega L, Han S, et al.: Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 2008; 9:59.

108. Radha V, Vimaleswaran KS, Babu HN, et al.: Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity. Diabetes Care 2006; 29: 1046-1051.

109. Frayling TM, Timpson NJ, Weedon MN, et al.: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889-894.

110. Ramya K, Radha V, Ghosh S, Majumder PP, Mohan V: Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south Indians (CURES-79). Diabetes Technol Ther 2011; 13(1):33-42.

111. Chandak GR, Janipalli CS, Bhaskar S,et al.: Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 2007 Jan; 50(1):63-67.

Page 12: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

89

112. Humphries SE, Gable D, Cooper JA,et al.: Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women.J Mol Med 2006 Dec; 84(12):1005-1014.

113. Chauhan G, Spurgeon CJ, Tabassum R, et al.: Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010; 59(8):2068-2074.

114. Sanghera DK, Demirci FY, Been L, et al.: PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 2010; 59(4):492-501.

115. Haseeb A, Iliyas M, Chakrabarti S, et al.: Single-nucleotide polymorphisms in peroxisome proliferator-activated receptor gamma and their association with plasma levels of resistin and the metabolic syndrome in a South Indian population. J Biosci 2009; 34(3):405-414.

116. Bhatti JS, Bhatti GK, Mastana SS, Ralhan S, Joshi A, Tewari R: ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes in North Indians. Mol Cell Biochem 2010; 345(1-2):249-257.

117. Murugesan D, Arunachalam T, Ramamurthy V, Subramanian S. Association of polymorphisms in leptin receptor gene with obesity and type 2 diabetes in the local population of Coimbatore. Indian J Hum Genet 2010 May; 16(2):72-77.

118. Bid HK, Konwar R, Saxena M, Chaudhari P, Agrawal CG, Banerjee M: Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J Postgrad Med 2010; 56(3):176-181.

119. Bodhini D, Radha V, Ghosh S, Sanapala KR, Majumder PP, Rao MR, Mohan V. Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in Southern Indians. Metabolism 2011; 60(5):681-688.

120. Chidambaram M, Radha V, Mohan V: Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 2010; 59(12):1760-1766.

121. Adak S, Sengupta S, Chowdhury S, Bhattacharyya M: Co-existence of risk and protective haplotypes of Calpain 10 gene to type 2 diabetes in the eastern Indian population. Diab Vasc Dis Res 2010; 7(1):63-68.

Page 13: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

90

122. Vimaleswaran KS, Radha V, Jayapriya MG, Ghosh S, Majumder PP, Rao MR,

Mohan V: Evidence for an association with type 2 diabetes mellitus at the PPARG locus in a South Indian population. Metabolism 2010; 59(4):457-462.

123. Chambers JC, Zhang W, Zabaneh D, et al.: Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009; 58(11):2703-2708.

124. Sanghera DK, Been L, Ortega L,et al.: Testing the association of novel meta-analysis-derived diabetes risk genes with type II diabetes and related metabolic traits in Asian Indian Sikhs. J Hum Genet 2009; 54(3):162-168.

125. Bid HK, Konwar R, Agrawal CG, Banerjee M: Association of IL-4 and IL-1RN (receptor antagonist) gene variants and the risk of type 2 diabetes mellitus: a study in the north Indian population. Indian J Med Sci. 2008; 62(7):259-266.

126. Bhat A, Koul A, Rai E, Sharma S, Dhar MK, Bamezai RN: PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum Genet. 2007; 121(5):609-614.

127. Radha V, Vimaleswaran KS, Ayyappa KA, Mohan V: Association of lipoprotein lipase gene polymorphisms with obesity and type 2 diabetes in an Asian Indian population. Int J Obes (Lond) 2007; 31(6):913-918.

128. Singh PP, Naz I, Gilmour A, Singh M, Mastana S: Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India. Diabetes Res Clin Pract 2006; 74(1):95-102.

129. Baker WA, Hitman GA, Hawrami K, et al.: Apolipoprotein D gene polymorphism: a new genetic marker for type 2 diabetic subjects in Nauru and south India. Diabet Med 1994; 11(10):947-52.

130. Mahajan A, Tabassum R, Chavalli S, Dwivedi OP, Chauhana G, Tandon N, Bhardwaj D: Obesity dependent association of TNF LTA locus with type 2 diabetes in North Indians. J Mol Med 2010; 88(5):515-522.

Page 14: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

91

131. Tabassum R, Mahajan A, Chauhan G Dwivedi O P, Ghosh S, Tandon N, Bharadwaj D: Evaluation of DOK5 as a susceptibility gene for type 2 diabetes and obesity in North Indian population. BMC Med Genet 2010; 11:35.

132. Tabassum R, Chavalli S, Dwivedi O P, Tandon N, Bhardwaj D: Genetic variants of FOXA2: risk of T2D and effects on metabolic triats in North Indians. J Hum Genetics 2008; 53(11-120):957-965.

133. Vimaleswaran K S, Radha V, Ghosh S et al.: Uncoupling protein 2 and 3 gene polymorphism and there association with type 2 diabetes in Indians. Diabetes technol Ther 2011; (1):19-25.

134. Bogan JS, Kandror KV: Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Curr Opin Cell Biol 2010; 22:506-512.

135. Kelley DE, Mintun MA, Watkins SC, et al.: The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 1996 Jun 15; 97(12):2705-2713.

136. Lee OH, Lee HH, Kim JH, Lee BY: Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011; 25(5):768-773.

137. Furukawa H, Mawatari K, Koyama K,et al.: Telmisartan increases localization of glucose transporter 4 to the plasma membrane and increases glucose uptake via peroxisome proliferator-activated receptor γ in 3T3-L1 adipocytes. Eur J Pharmacol 2011. Ahead of print.

138. Yamamoto N, Kawabata K, Sawada K, et al.: Cardamonin Stimulates Glucose Uptake through Translocation of Glucose Transporter-4 in L6 Myotubes. Phytother Res 2011 Feb 9. doi: 10.1002/ptr.3416.

139. Vishnu Prasad CN, Suma Mohan S, Banerji A, Gopalakrishnapillai A: Kaempferitrin inhibits GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009 Feb 27; 380 (1):39-43.

140. Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A: Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 2010; 584(3):531-536.

Page 15: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

92

141. Mohan S S, Perry JJ, Poulose N, Nair BG, Anilkumar G: Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn 2009; 26(4):455-64.

142. Mohan S, Sheena A, Poulose N, Anilkumar G: Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. PLoS One 2010; 5(12):e14217.

143. Abel ED, Peroni O, Kim JK, et al.: Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001; 409: 729-733.

144. Yang Q, Graham TE, Mody N, et al.: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-362.

145. Ost A, Danielsson A, Lidén M, Eriksson U, Nystrom FH, Strålfors P: Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J 2007; 21:3696-3704.

146. Graham TE, Yang Q, Blüher M, et al.: Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006 15; 354(24):2552-2563.

147. Stefan N, Hennige AM, Staiger H, et al.: High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans.Diabetes Care 2007; 30(5):1173-1178.

148. Gavi S, Stuart LM, Kelly P, Melendez MM, Mynarcik DC, Gelato MC, McNurlan MA.: Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in non-obese subjects without type 2 diabetes. J Clin Endocrinol Meta 2007; 92:1886-1890.

149. Lee JW, Im JA, Lee HR, Shim JY, Youn BS, Lee DC: Visceral adiposity is associated with serum retinol binding protein-4 levels in healthy women. Obesity (Silver Spring) 2007; 15(9):2225-2232.

150. Klöting N, Graham TE, Berndt J, et al.: Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 2007; 6(1):79-87.

Page 16: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

93

151. Stefan N, Hennige AM, Staiger H, et al.: High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 2007; 30(5):1173-1178.

152. Fernández-Real JM, Moreno JM, Ricart W: Circulating retinol-binding protein-4 concentration might reflect insulin resistance-associated iron overload. Diabetes 2008; 57(7):1918-1925.

153. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, et al.: A membrane receptor for retinol binding protein mediates the cellular uptake of vitamin A. Science 2007; 315:820-825.

154. White T, Lu T, Metlapally R, et al.: Identification of STRA6 and SKI sequence variants in patients with anophthalmia/ microphthalmia. Mol Vis 2008; 14:2458-2465.

155. Chassaing N, Golzio C, Odent S, et al.: Phenotypic spectrum of STRA6 mutations:

from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 2009; 30(5):E673-681.

156. West B, Bove KE, Slavotinek AM: Two novel STRA6 mutations in a patient with anophthalmia and diaphragmatic eventration. Am J Med Genet 2009; 149(3):539-542.

157. Golzio C, Martinovic-Bouriel J, Thomas S, et al.: Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 2007; 80(6):1179-1187.

158. Pasutto F, Sticht H, Hammersen G, et al.: Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 2007; 80(3):550-560.

159. Szeto W, Jiang W, Tice DA, et al.: Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res 2001; 61:4197-4205.

160. Munkhtulga L, Nakayama K, Utsumi N, et al.: Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Hum Genet 2007; 120:879-888.

Page 17: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

94

161. Kovacs P, Geyer M, Berndt J, et al.: Effects of genetic variation in the human retinol

binding protein-4 gene (RBP4) on insulin resistance and fat depot-specific mRNA expression. Diabetes 2007; 56:3095-3100.

162. Hu C, Jia W, Zhang R, et al.: Effect of RBP4 gene variants on circulating RBP4 concentration and type 2 diabetes in a Chinese population. Diabet Med 2008; 25: 11-18.

163. Shea JL, Loredo-Osti JC, Sun G: Association of RBP4 gene variants and serum HDL cholesterol levels in the Newfoundland population. Obesity (Silver Spring) 2010; 18(7):1393-1397.

164. O’Rahilly S, Krook A, Morgan R, et al.: Insulin receptor and insulin-responsive glucose transporter (GLUT 4) mutations and polymorphisms in a Welsh type 2 (non-insulin-dependent) diabetic population. Diabetologia 1992; 35(5):486-489.

165. Choi WH, O’Rahilly S, Buse JB, et al.: Molecular scanning of insulin-responsive glucose transporter (GLUT4) gene in NIDDM subjects. Diabetes 1991; 40(12): 1712-1718.

166. Baroni MG, Oelbaum RS, Pozzilli P, et al.: Polymorphisms at the GLUT1 (HepG2)

and GLUT4 (muscle/adipocyte) glucose transporter genes and non-insulin-dependent diabetes mellitus (NIDDM). Hum Genet 1992; 88(5):557-561.

167. Pontiroli AE, Capra F, Veglia F, et al.: Genetic contribution of polymorphism of the GLUT1 and GLUT4 genes to the susceptibility to type 2 (non-insulin-dependent) diabetes mellitus in different populations. Acta. Diabetologia 1996; 33(3):193-197.

168. Matsutani A, Koranyi L, Cox N, Permutt MA: Polymorphisms of GLUT2 and GLUT4 genes. Use in evaluation of genetic susceptibility to NIDDM in blacks. Diabetes 1990; 39(12):1534-1542.

169. Laurie L. Baggio and Daniel J. Drucker: Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007; 132:2131-2157.

170. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y: Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964; 24:1076-1082.

Page 18: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

95

171. Brown JC, Dryburgh JR, Ross SA, Dupré J: Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res 1975; 31:487-532.

172. Kreymann B, Williams G, Ghatei MA, Bloom SR: Glucagonlike peptide-1 7-36: A physiological incretin in man. Lancet 1987; 2:1300-1304.

173. Takeda J, Seino Y, Tanaka K, et al.: Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA 1987; 84(20):7005-7008.

174. Buchan AM, Polak JM, Capella C, Solcia E, Pearse AG: Electron immunochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry 1978, 56:37-44.

175. Dupre J, Ross SA, Watson D, Brown JC: Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37:826-828.

176. Ehses JA, Lee SST, Pederson RA, McIntosh CHS: A new pathway for glucose-dependent insulinotropic polypeptide (GIP) receptor signaling– Evidence for the involvement of phospholipase A, in GIP-stimulated insulin secretion. J Biol Chem 2001; 276:23667-23673.

177. Wheeler MB, Gelling RW, McIntosh CH, Georgiou J, Brown JC, Pederson RA: Functional expression of the rat pancreatic islet glucose- dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology 1995; 136:4629-4639.

178. Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D: Glucose-Dependent Insulinotropic Polypeptide Is a Growth Factor for b (INS-1) Cells by Pleiotropic Signaling. Mol Endocrinol 2001; 15:1559-1570.

179. Beguin P, Nagashima K, Nishimura N, Gonoi T, Seino S: PKA mediated phosphorylation of the human K-ATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J 1999; 18:4722-4732.

180. Ding WG, Gromada J: Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 1997; 46:615-621.

Page 19: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

96

181. McIntosh CH, Wheeler MB, Gelling RW, Brown JC, Pederson RA: GIPRs and signal-transduction mechanisms. Acta Physiol Scand 1996; 157:361-365.

182. Ehses JA, Casilla VR, Doty T, et al.: Glucose-dependent Insulinotropic Polypeptide (GIP) Promotes {beta}-(INS-1) cell survival via cyclic AMP-mediated caspase-3 inhibition and regulation of p38 MAP kinase. Endocrinology 2003; 144:4433-4445.

183. Eckel RH, Fujimoto WY, Brunzell JD: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes 1979; 28:1141-1142.

184. Miyawaki K, Yamada Y, Ban N, et al.: Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8:738-742.

185. Creutzfeldt W, Ebert R, Willms B, Frerichs H, Brown JC: Gastric inhibitorypolypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia 1978; 14:15-24.

186. Flatt PR, Bailey CJ, Kwasowski P, Swanston-Flatt SK, Marks V: Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 1983; 32:433-435.

187. Xie D, Cheng H, Hamrick M, et al.: Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 2005; 37:759-769.

188. Nauck MA, Stöckmann F, Ebert R, Creutzfeldt W: Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29:46-52.

189. Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ: Reduced postprandial

concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50:609-613.

190. Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114:189-196.

191. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM: Human duodenal enteroendocrinecells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol 2006; 290:E550-E559.

Page 20: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

97

192. Toft-Nielsen MB, Damholt MB, Madsbad S, et al.: Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86:3717-3723.

193. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W: Preserved incretin activity of glucagon-like peptide1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91:301-307.

194. Meier JJ, Gallwitz B, Salmen S, et al.: Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003; 88:2719-2725.

195. Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W: Normalization of fasting hyperglycaemia by exogenous glucagon- like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36:741-744.

196. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF: Insulinotropic action of glucagon like peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 1992; 15:270-276.

197. Nitz I, Fisher E, Weikert C, et al.: Association analyses of GIP and GIPR polymorphisms with traits of the metabolic syndrome. Mol Nutr Food Res 2007; 51(8):1046-1052.

198. Guo S, Rena G, Cichy S, et al.: Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274(24):17184-17192.

199. Schmoll D, Walker KS, Alessi DR, et al.: Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and independent effects of insulin on promoter activity. J Biol Chem 2000; 275(46):36324-36333.

200. Nakae J, Kitamura T, Silver DL, et al.: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001; 108(9):1359-1367.

Page 21: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

98

201. Haeusler RA, Kaestner KH, Accili D. FoxOs function synergistically to promote glucose production. J Biol Chem 2010; 285(46):35245-35248.

202. Ogg S, Paradis S, Gottlieb S, et al.: The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997; 389(6654):994-999.

203. Lin K, Dorman JB, Rodan A, et al.: daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278(5341):1319-22.

204. Murphy CT, McCarroll SA, Bargmann CI, et al.: Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424:277-283.

205. Hosaka T, Biggs WH, Tieu D et al.: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 2004; 101: 2975-2980.

206. O'Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK.: Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 1990; 249: 533-537.

207. Unterman TG, Fareeduddin A, Harris MA, Goswami RG, Porcella A, Costa RH, Lacson RG: Hepatocyte nuclear factor-3 (HNF-3) binds to the insulin response sequence in the IGF binding protein-1 (IGFBP-1) promoter and enhances promoter function. Biochem. Biophys. Res. Commun 1994; 203:1835-1841.

208. Cichy SB, Uddin S, Danilkovich A, Guo S, Klippel A, Unterman TG: Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J. Biol.Chem 1998; 273:6482-6487.

209. Hoffman NJ, Elmendorf JS: Signaling, cytoskeletal and membrane mechanisms regulating GLUT4 exocytosis. Trends Endocrinol Metab 2011, In Press.

210. Barthel A, Schmoll D, Unterman TG: FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 2005; 16(4):183-189.

Page 22: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

99

211. Brunet A, Bonni A, Zigmond MJ, et al.: Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 1999; 96:857-868.

212. Nakae J, Park BC, Accili D: Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem 1999; 274:15982-15985.

213. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM: Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398:630-634.

214. Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T: Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol.Chem 1999; 274:17184-17192.

215. Schmoll D, Walker KS, Alessi DR,et al.:Regulation of glucose-6-phosphatase gene expression by protein kinase Ba and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and independent effects of insulin on promoter activity. J. Biol. Chem 2000; 275:36324-36333.

216. Nakae J, Kitamura T, Silver DL, Accili D: The forkhead transcription factor FoxO1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest 2001; 108:1359-1367.

217. Yeagley D, Guo S, Unterman T, Quinn PG :Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of forkhead and insulin response sequences. J. Biol. Chem 2001; 276:33705-33710.

218. Dowell P, Otto TC, Adi S, Lane MD: Convergence of peroxisome proliferator activated receptor gamma and FoxO1 signaling pathways. J. Biol.Chem 2003; 278:45485-45491.

219. Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ:Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J. Biol. Chem 2001; 276:33554-33560.

Page 23: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

100

220. Kortylewski M, Feld F, Krüger KD et al.: Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism. J. Biol. Chem 2003; 278:5242-5249.

221. Hirota K, Daitoku H, Matsuzaki H, et al.: Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J. Biol. Chem 2003; 278:13056-13060.

222. Furuyama T, Kitayama K, Shimoda Y, et al.: Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 2004; 279:34741-34749.

223. Castrillon DH, Miao L, Kollipara R, et al.: Suppression of ovarian follicle activation in mice by the transcription factor FOXO3. Science 2003; 301:215-218.

224. Haeusler RA, Kaestner KH, Accili D: FoxOs function synergistically to promote glucose production. J Biol Chem 2010; 285(46):35245-35248.

225. Onuma H, Vander Kooi BT, Boustead JN, et al.: Correlation between FOXO1 (FKHR) and FOXO3 (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol 2006; 20(11):2831-2847.

226. Luo W, Cao J, Li J, et al.: Adipose tissue-specific PPARgamma deficiency increases resistance to oxidative stress. Exp Gerontol 2008; 43(3):154-163.

227. Williamson DL, Raue U, Slivka DR, et al.: Resistance exercise, skeletal muscle FOXO3, and 85-year-old women. J Gerontol A Biol Sci Med Sci 2010; 65(4): 335-343.

228. Glauser DA, Schlegel: The emerging role of FOXO transcription factors in pancreatic beta cells. J Endocrinol 2007; 193(2):195-207.

229. Müssig K, Staiger H, Machicao F, et al.: Association of common genetic variation in the FOXO1 gene with beta-cell dysfunction, impaired glucose tolerance, and type 2 diabetes. J Clin Endocrinol Metab 2009; 94(4):1353-1360.

230. Böttcher Y, Tönjes A, Enigk B, et al.: A SNP haplotype of the forkhead transcription factor FOXO1 gene may have a protective effect against type 2 diabetes in German Caucasians. Diabetes Metab 2007; 33(4):277-283.

Page 24: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

101

231. Flachsbart F, Caliebe A, Kleindorp R, et al.: Association of FOXO3 variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 2009; 106(8):2700-2705.

232. Willcox BJ, Donlon TA, He Q et al.: FOXO3 genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 2008; 105(37):13987-13992.

233. Anselmi CV, Malovini A, Roncarati R et al.: Association of the FOXO3 locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 2009; 12(2): 95-104.

234. Soerensen M, Dato S, Christensen K, et al.: Replication of an association of variation in the FOXO3 gene with human longevity using both case-control and longitudinal data. Aging Cell 2010; 9(6):1010-1017.

235. Fontana L: The scientific basis of caloric restriction leading to longer life. Curr Opin Gastroenterol 2009; 25(2):144-150.

236. Smith DL Jr, Nagy TR, Allison DB: Calorie restriction: what recent results suggest for the future of ageing research. Eur J Clin Invest 2010; 40(5):440-450.

237. Banasik K, Ribel-Madsen R, Gjesing AP, et al.: The FOXO3 rs2802292 G-allele associates with improved peripheral and hepatic insulin sensitivity and increased skeletal muscle-FOXO3 mRNA expression in twins. J Clin Endocrinol Metab 2011; 96(1):E119-124.

238. Indian Genome Variation Consortium 2008: Genetic landscape of the people of India: a canvas for disease gene exploration. J. Genet 87:3-20.

239. Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic acids research 1988; 16(3):1215.

240. Ye S, Dhillon S, Ke X, Collins AR, Day IN: An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research 2001; 29:No. 17 e88.

241. Cotton RGH: Current methods of mutation detection. Mutat Res 1993; 285:125-144.

242. Arseni M, Alex S, Vladimir V, Nadia B, Ivo K, Varban G: Optimization of single-strand conformation polymorphism analysis in the presence of polyethylene glycol.Clinical Chemistry; 199743:30-33238.

Page 25: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

102

243. Novak A, Dedhar S: Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci

1999; 56:523-537.

244. Li ZZ, Lu XZ, Liu JB, Chen L: Serum Retinol-binding Protein 4 Levels in Patients with Diabetic Retinopathy. J Int Med Res 2010; 38(1):95-99.

245. Murata M, Saito T, Otani T, et al.: An increase in serum retinol-binding protein 4 in the type 2 diabetic subjects with nephropathy. Endocr J 2009; 56(2):287-294.

246. Yamada Y, Miyawaki K, Tsukiyama K, Harada N, Yamada C, Seini Y: Pancreatic and extrapancreatic effects of gastric inhibitory polypeptide. Diabetes 2006; 55(Suppl 2):S86-S91.

247. Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, McCarthy JJ: Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet 2010, 11:9.

248. Bush TL, Fried LP, Barrett-Connor E: Cholesterol, lipoproteins, and coronary heart disease in women. Clin Chem 1988; 34(8B):B60-70.

249. Isken F, Pfeiffer AF, Nogueiras R, Osterhoff MA, Ristow M, Thorens B, Tschöp MH, Weickert MO: Deficiency of Glucose-Dependent Insulinotropic Polypeptide (GIP) receptor prevents ovariectomy-induced obesity in mice. Am J Physiol Endocrinol Metab 2008; 295(2):E350-355.

250. Kim JR, Jung HS, Bae SW, et al.: Polymorphisms in FOXO gene family and association analysis with BMI. Obesity (Silver Spring) 2006; 14(2):188-193.

251. Kuningas M, Mägi R, Westendorp RG, et al.: Haplotypes in the human FOXO1 and FOXO3 genes; impact on disease and mortality at old age. Eur J Hum Genet 2007; 15(3):294-301.

252. Altshuler D, Daly M, Kruglyak L. Guilt by association. Nat Genet 2000; 26:135-137.

253. Takeuchi F, Serizawa M, Yamamoto K, et al.: Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 2009; 58:1690-1699.

Page 26: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2730/14/14_references.pdf · diabetic retinopathy in urban India .The Chennai Urban Rural Epidemiology Study (CURES).

103

254. Fuu-JenTsai, Chi-FanYang, Ching-ChuChen, et al.: A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese. PLoS Genet 2010; 6(2):e100847.

255. Reynet C, Kahn CR. Rad: A member of the Ras family overexpressed in muscle of type II diabetic humans. Science 1993; 262:1441-1444.

256. Saxena R, Hivert MF, Langenberg C et al.: Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010; 42(2):142-148.

257. Kawaguchi R, Yu J, Wiita P, Honda J, Sun H: An essential ligand-binding domain in the membrane receptor for retinol-binding protein revealed by large-scale mutagenesis and a human polymorphism. J Biol Chem 2008 30; 283(22):15160-15168.

258. Bendahhou S, Donaldson MR, Plaster NM, et al.: Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome. J Biol Chem 2003; 278(51): 51779-51785.

259. Ma D, Tang XD, Rogers TB, Welling PA: An andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J Biol Chem. 2007; 282(8):5781-5789.

260. Wang GJ, Yang P, Xie HG: Gene variants in noncoding regions and their possible consequences. Pharmacogenomics 2006; 7: 203-209.

261. Berry DC, Jin H, Majumdar A, Noy N.: Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc Natl Acad Sci USA 2011; 108(11):4340-4345.

262. Vaxillaire M, Froguel P: Monogenic forms of diabetes mellitus: an update. Endocrinol Nutr 2009; 56 Suppl 4:26-29.