REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/72802/14/14_references.… ·...

15
REFERENCES 1. Archipov, V. N. (1968). On modelling of the deformed state oflayered plates in flexure. Prikladnaya Mekhanika, 4, 47-53, Soviet Applied Mechanics, 4, 29-32. 2. Aston, J. E., Whitney, J. M. (1970). Theory of Laminated Plates. Technomic Publications Co., Lancaster. 3. Bert, C. W. (1984). A critical evaluation of new plate theories applied to laminated composites. Composite Structures, 2, 329-347. 4. Bhimaraddi, A., Stevens, L.K. (1984). A higher-order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates. AS ME Journal of Applied Mechanics,51 ,195-198. 5 Carrera, E. (2003). Historical review of Zig-Zag theories for multilayered plates and shens. Applied Mechanics Review, 56(3),287-308. 6. Carrera, E. (2004). On the use of the Murakami's Zig-Zag function in the modeling oflayered plates and shells. Computers and Structures 82, 541-554. 7. Chatterjee, S. N., Kulkarni, S.V. (1979).Shear correction factors for laminated plates. AIAA Journal, 17,498-499. 8. Cheng, Z. Q., Batra, R. C. (2000a). Exact correspondence between eigen values of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration, 229, 879-895. 9. Cheng, Z. Q., Batra, R. C. (2000b). Defection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories. Archives.in Mechanics, 52, 143-158. 120

Transcript of REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/72802/14/14_references.… ·...

  • REFERENCES

    1. Archipov, V. N. (1968). On modelling of the deformed state oflayered plates in

    flexure. Prikladnaya Mekhanika, 4, 47-53, Soviet Applied Mechanics, 4, 29-32.

    2. Aston, J. E., Whitney, J. M. (1970). Theory of Laminated Plates. Technomic

    Publications Co., Lancaster.

    3. Bert, C. W. (1984). A critical evaluation of new plate theories applied to

    laminated composites. Composite Structures, 2, 329-347.

    4. Bhimaraddi, A., Stevens, L.K. (1984). A higher-order theory for free vibration

    of orthotropic, homogeneous, and laminated rectangular plates. ASME Journal

    of Applied Mechanics,51 ,195-198.

    5 Carrera, E. (2003). Historical review of Zig-Zag theories for multilayered plates

    and shens. Applied Mechanics Review, 56(3),287-308.

    6. Carrera, E. (2004). On the use of the Murakami's Zig-Zag function in the

    modeling oflayered plates and shells. Computers and Structures 82, 541-554.

    7. Chatterjee, S. N., Kulkarni, S.V. (1979).Shear correction factors for laminated

    plates. AIAA Journal, 17,498-499.

    8. Cheng, Z. Q., Batra, R. C. (2000a). Exact correspondence between eigen values

    of membranes and functionally graded simply supported polygonal plates.

    Journal of Sound and Vibration, 229, 879-895.

    9. Cheng, Z. Q., Batra, R. C. (2000b). Defection relationships between the

    homogeneous Kirchhoff plate theory and different functionally graded plate

    theories. Archives.in Mechanics, 52, 143-158.

    120

  • to. Cheng, Z. Q., Batra, R.C. (2000c). Three-dimensional thenno elastic

    defonnations of functionally graded elliptic plates. Journal of Sound and

    Vibration, 31,91-106

    11. Chi, S., Chung, Y. (2006a). Mechanical behaviour of functionally graded

    material plates under transverse load - Part I: Analysis. International Journal of

    Solids and Structures, 43, 3651-3674.

    12. Chi, S., Chung, Y. (2006b). Mechanical behaviour of fimctionally graded

    material plates under transverse load - Part II: Numerical results. International

    Journal ofSolids and StructuresA3,3675--3691.

    13. Croce, L. D., Venini, P. (2004). Finite elements for functionally graded

    Reissner -Mindlin plates. Computational Methods in Applied Mechanics

    Engineering,193, 105-725.

    14. Demasi, L., (2005). Refined multilayered plate elements based on Mmakami

    zig-zag functions. Composite Structures, 10, 308-316.

    15. Di Sciuva, M. (1986). Bending, vibration and buckling of simply supported

    thick multilayered orthotropic plates: An evaluation of a new displacement

    model. Journal of Sound and Vibration. 105, 415-442.

    16. Di Sciuva, M. (1992). Multilayered anisotropic plate models with continuous

    interlaminar stresses. Composite Structures, 22, 149-161.

    17. Di Sciuva, M. (1995). A third-order triangular multilayered plate finite element

    with continuous interlaminar stresses. International Journal for Numerical

    Methods in Engineering, 38. 1-26.

    121

  • 18. Elishakoff, L, Gentilini, C., Viloa, E. (2005). Three-dimensional analysis of an

    all-round clamped plate made of functionally graded materials. Acta

    Mechanic3.180, 21-36.

    19. Fan, J., Ye, J. (1990a).An exact solution for the statics and dynamics of

    laminated thick plates with orthotropic layers, International Journal of Solids

    and Structures, 26, 655 - 662.

    20. Fan, J., Ye, J. (1990b). A series solution of the exact equation for thick

    orthotropic plates. International Journal of Solids and Structures, 26, 773-778.

    21. Ghosh, A. K., Dey, S. S. (1992). A simple finite element for the analysis of

    laminated plates. Computers and Structures, 44(3),585-96.

    22. Ghosh, A. K., Dey, S. S. (1994). Buckling oflaminated plates :a simple finite

    element based on higher-order theory. Finite Elements Analysis and Design,15,

    289-302.

    23. He, X. Q., Ng, T.Y., Sivashankera, S., Liew, K.M..(200l). Active control of

    FGM plates with integrated piezoelectric sensors and actuators.. International

    Journal of Solids and Structures,38, 1641-1655.

    24. Hildebrand, F. 8., Reissner, E., and Thomas, G.B. (1949). Notes on the

    foundations of the theory of small displacements of orthotropic shells. NACA

    TN-1833.

    25. Hinton. E. (1975). The flexural analysis of laminated composite usmg a

    parabolic isotropic plate bending element. International Journal for Numerical

    Methods in Engineering Short communication, 174-179.

    26. Hussainy, S. A., Srinivas, S. (1975). Flexure of rectangular composite plates.

    Fibre Science and Technology, 8, 59-76.

    122

  • 27 Javaheri, R., Eslami, M. R. (2002). Buckling of functionally graded plates

    under in-plane compressive loading". ZAMM , 82(4),277-283.

    28. Jones, R. M. (1999). Mechanics of Composite Materials. Second edition, Taylor

    and Francis Inc, Philadelphia.

    29. Jose, S. M.. , Cristovao M Mota, Soares., Carlos A Mota Soares. (1999).

    Buckling and dynamic behaviour of laminated composite structures using a

    discrete higher order displacement model. Computers and Structures, 73, 407-

    423.

    30 Kant, T., Pandya. (1988). A simple finite element formulation of a higher-order

    theory for unsymmetric laminated composite plates. Composite Structures, 9,

    215-224.

    31. Kant, T., Swaminathan, K. (2000). Estimation of transverse/interlaminar

    stresses in laminated composites-a selective review and survey of current

    developments. Composite Structures, 49, 65-75.

    32 Kant, T., Pendhari, S. S., Desai,Y.M. (2007). A general partial discretizatation

    methodology for interlaminar stress computation in composite laminate,

    Computer Modeling in Engineering and Science, 17(2), 135-161.

    33. Kant, T., Ravichandran, R. V., Pandya, B. N., Mallikarjuna. (1988). Finite

    element transient dynamic analysis of isotropic and fibre reinforced composite

    plate using higher-order theory. Composite Structures, 9, 319-342.

    34. Kapania, R. K., Raciti, S. (1989a). Recent advances in analysis of laminated

    beams and plates, Part 1: shear effects and buckling. AIAA Journal, 27, 923-

    934.

    123

  • 5 Kapania, R. K., Raciti, S. (1989b). Recent advances in analysis of lam~nated3 .

    beams and plates, Part 2: vibration and wave propagation. AIAA Journal, 27(7),

    935-946.

    36. Kaprielian, P. V., Rogers, T. G., Spencer, AJ.M. (1988). Theory of laminated

    elastic plates, I, Isotropic laminae. Philosophical Transactions of the Royal

    Society of London Series A, 324, 565-594.

    37 Khdeir, A. A. (1989). Free vibration and buckling of un symmetric cross-ply

    laminated plates using a refined theory. Journal of Sound and Vibration, 128(3),

    377-395.

    38. Koizumi, M. (1993). The concept of FGM. Ceramic Transactions of

    Functionally Graded Materials, 34, 3-10.

    39. Kozma, F., Ochoa, O. O. (1986). Buckling of composite plates using shear

    deformable finite elements. AIAA Joumal, 24(10):1721-1730

    40. Krislma Murty, A. V. (1977). Higher order theory for vibration of thick plates.

    AIAAJoumal , 15(12),1823-1834.

    41. Leissa, A. W. (1987a). A review of laminated composite plate buckling.

    Applied Mechanics Review,40, 575-591.

    42 Leissa, A. W. (1987b). An overview of composite plate buckling. In:Marshall

    IH, editor. Composite Structures 4. London:Elsevier, 1.1-1.29.

    43. Lekhnitskii, S. G. (1957). Anisotropic Plates, 2nd edition, Moscow, translated

    by Tsai, S. W., Cheron, T., Gordon and Breach Science Publishers, New York

    44. Leung, A. Y. T., Niu, J., Lim, C. W., Song K. (2003). A new unconstrained

    third order theory for Navier solutions of symmetrically laminated plates.

    Computers and Structures.81.2539-2548.

    124

  • 5 Levinson, M. (1980). An accurate, simple theory of the statics and dynamics of4.

    elastic plates. Mechanics Research Communications, 7(6),343-350.

    46. Librescu, L. (1975). Elastostatics and kinetics of anisotropic and heterogeneous

    shell~type structures. Noordhon: Leyden, 1975.

    47. Liew, K. M., Xiang, Y., Kitipornchai, S. (1993). Transverse vibration of thick

    rectangular plates 1: comprehensive sets of boundary conditions. Computers and

    Structures, 49, 1-29.

    48. Liu, S. (1991). A vibration analysis of composite plates. Finite Elements

    Analysis and Design, 9,295-307.

    49. Lo, K. H., Christensen, R. M., Wu, E. M. (1977a). A high-order theory plate

    defonnation, Part 1: homogeneous plates. Journal of Applied Mechanics

    Transactions ASME ,44(4),663-668.

    50. Lo, K. H, Christensen, R.M., Wu, E.M. (l977b). A high-order theory of plate

    deformation, Part 2: laminated plates. Journal of Applied Mechanics, 44(4),

    669-676.

    51. Mallikarjuna., Kant, T. (1989). Free vibration of symmetrically laminated plates

    using a higher-order theory with finite element technique. International Journal

    for Numerical Methods in Engineering, 28, 1875-1889.

    52. MaUikarjuna., Kant, T. (1993). A critical review and some results of recently

    developed refined theories of Fibre-reinforced laminated composites and

    sandwich. Composite Structures, 23, 293-312.

    53. Matsunaga, H. (1997a). Buckling instabilities of thick elastic plates subjected to

    in-plane stresses. Computers and Structures, 62(1),205-214.

    125

  • 4 Matsunaga, H. (1997b). Effects of higher-order deformations on in-plane5 .

    vibration and stability of thick circular rings. Acta Mechanica 124,47-61.

    55. Matsunaga, H. (2000). Vibration and stability of crossply laminated composite

    plates according to a global higher order plate theory. Composite Structures, 48,

    231-244.

    56 Matsunaga, H. (2008). Free vibration and stability of functionally graded plates

    according to a 2D higher-order deformation theory, Composite Structures,

    82(4),499-512.

    57. Mau, S. T. (1973). A refined laminate plate theory. ASME Journal of Applied

    Mechanics, 40, 606-607.

    58. Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexure motions

    of isotropic, elastic plates, ASME Journal of Applied Mechanics, 18, 31-38

    59. Mittelstedt, C., Becker, W., (2004). Interlaminar stress concentrations m

    layered structures: Part II-dosed-form analysis of stresses at laminated

    rectangular wedges with arbitrary non-orthotropic lay up. Journal of Composite

    Materials, 38(12),1063-1090

    60. Mori, T, Tanaka, K. (1973). Average stress in matrix and average elastic energy

    of materials with misfitting inclusions. Acta Mechanica, 21, 571 - 574.

    61. Murakami, H. (1986). Laminated composite plate theory with improved in-

    plane response. ASME Journal of Applied Mechanics, 53:661-666.

    62. Murakami, H., Toledano, A. (1987). A higher-order laminated plate theory with

    improved in-plane response. International Journal of Solids and Structures,

    23(1), 111-131.

    126

  • 63. Murthy, M. V. V. (1981). An improved transverse shear deformation theory for

    laminated anisotropic plates. NASA Technical Paper 1903,1-37.

    64 Najafizadeh, M. M., Eslami, M.R. (2002). Buckling analysis of circular plates

    of functionally graded materials under uniform radial compreSSIOn.

    International journal of Mechanical Sciences. 44, 2479-2493.

    65. Noor, A. K. (1973). Free vibration of multilayered composite plates", AIAA

    Journal, 11, 1038-1039.

    66. Noor, A. K. (1975). Stability of multilayered composite plates. Fibre Science

    Technology, 8(2), 81-89.

    67. Noor, A. K., Burton, W.S. (1990a). Assessment of computational models for

    multi layered anisotropic plates. Composite Structures,14, 233-265.

    68. Noor, A. K., Burton, W.S, (1990b). Three-dimensional solutions for anti-

    symmetrically laminated anisotropic plates. ASME Journal of Applied

    Mechanics, 57, 182-188.

    69. Noor, A. K., Peters, J.M. (1994). Finite element buckling and post buckling

    solutions for multilayered composite panels. Finite Elements Analysis and

    Design,15, 343-367

    70. Pagano, N. J. (1969). Exact solution for composite laminated in cylindrical

    bending. Journal of Composite Materials, 3, 398-411.

    71. Pagano, N. J. (1970a). Influence of shear coupling in cylindrical bending of

    anisotropic laminates. Journal of Composite Materials, 4, 330-343.

    72. Pagano, N. J. (1970b). Exact Solutions for Rectangular Bi-directional

    Composites and Sandwich Plates. Journal of Composite Materials, 4, 20-35.

    127

  • 73. Pagano, N. J., Hatfield, SJ. (1972). Elastic behaviour of multilayered

    bidirectional composites. AIAA Journal, 10, 931-933.

    74. Pagano, N. J., Wang, A.S.D. (1971). Further study of composite laminates

    under cylindrical bending. Journal of Composite Materials, 5, 521-528.

    75. Palazotto, A. N. (1992). Dennis ST. Non linear analysis of shell structures.

    AIAA Education Series. Washington, DC: AIAA.

    76. Phan, N. D., Reddy, J. N. (1985). Analysis oflaminated composite plates using

    a higher-order shear defonnation theory. International Journal for Numerical

    Methods in Engineering, 21,2201-2219.

    77. Pister, K. S., Dong, S. B. (1959). Elastic bending of layered plates. ASCE

    Journal of Engineering Mechanics Division, 85, 1-10.

    78. Piskunov, V.G., Sipetov, V.S., Tuimetov. (1990). Solution of a static problem

    for laminated orthotropic plates in a three-dimensional fonnulation. Soviet

    Applied Mechanics, 26, 142-148.

    79. Praveen,G. N., Reddy, J. N. (1998). Nonlinear transient thennoelastic analysis

    of functionally graded ceramic-metal plates. International Journal of Solids and

    Structures, 35, 4457--4476.

    80. Pryor, C. W., Barker, R. M. (1971). Finite element analysis including shear

    defonnation effect for application to laminated plates. AIAA Journal, 9, 912-

    917.

    81. Putcha, N. S., Reddy, J. N. (1986). Stability and natural vibration analysis of

    laminated plates by using a mixed element based on a refined plate theory.

    Journal of Sound and Vibration, 104 (2), 285-300.

    128

  • 82. Ramirez, F., Heyliger, P.R, Pan, E. (2006). Static analysis of functionally

    graded elastic anisotropic plates using a discrete layer approach. Composites

    Engineering, 37,10-20.

    83. Reddy, J. N. (1984a). A simple higher-order theory for laminated composite

    plates. ASME Journal of Applied Mechanics, 51, 745-752.

    84. Reddy, J. N. (1984b). A refined nonlinear theory of plates with transverse shear

    defonnation. International Journal of Solids and Structures, 20(9/1 0), 881-896.

    85. Reddy, J. N. (1987). A generalization of two dimensional theories oflaminated

    composite plates. Communications in Applied Numerical Methods,3,173 -180

    86. Reddy, J. N. (1990a). A general non-linear third-order theory of plates with

    transverse shear defonnation. Journal of Non-Linear Mechanics ,25(6),677-686.

    87. Reddy, J. N. (1990b). A review of refined theories of laminated composite

    plate. Shock and Vibration Digest, 22(7), 3-17.

    88. Reddy, J. N. (1993). An evaluation of equivalent-single-layer and layerwise

    theories of composite laminates. Composite Structures ,25,21-35.

    89. Reddy, J. N. (1997). Mechanics of laminated composite plates: Theory and

    analysis. CRC press, Beca Raton, Florida

    90. Reddy, J. N. (2000). Analysis of functionally graded plates. International

    Journal for Numerical Methods in Engineering, 47(1-3):663-684.

    91. Reddy, J. N., Arciniega, R.A. (2004). Shear deformation plate and shell

    theories: From Stavsky to Present. Mechanics of Advanced Material Structures,

    11,535-582

    129

  • 92. Reddy, J. N., Chao, W.e. (1981). A comparison of closed-fonn and finite

    element solutions of thick laminated anisotropic rectangular plates. Nuclear

    Engineering and design, 26, 907-914.

    93 Reddy, J. N., Chin, C.D. (1998). Thermomechanical analysis of functionally

    graded cylinders and plates. Journal of Thermal Stresses 21,593-626.

    94. Reddy, J. N., Khdeir, A.A. (1989). Buckling and vibration of laminated

    composite plates using various plate theories. AIAA Journal, 2(12), 1808-1817.

    95. Reddy, J. N., Phan, N.D. (1985). Stability and vibration of isotropic, orthotropic

    and laminated plates according to a higher order shear defonnation theory.

    Journal of Sound and Vibration, 98(2),157-170.

    96. Reissner, E. (1944). On the theory of bending of elastic plates. Journal of

    Mathematics and Physics, 23, 184-191.

    97. Reissner, E. (1945). The effect of transverse shear deformation on the bending

    of elastic plates. ASME Journal of Applied Mechanics, 12, A69-A77.

    98. Reissner, E. (1979). A note on the effect of transverse shear deformation in

    laminated anisotropic plates. Computer Methods in Applied Mechanics and

    Engineering, 20, 203-209.

    99 Reiter, T., Dvorak, G. J., Tvergaard. V.(1997). Micromechanical models for

    graded composite materials, Journal of the Mechanics and Physics of Solids,

    45, 1281-1302.

    100. Ren, J. G. (l986a). A new theory of laminated plate. Composite Science and

    Technology, 26, 225-239

    101 Ren, J. G. (l986b).Bending theory of laminated plate. Composites Science and

    Technology, 27, 225-248.

    130

  • 102 Sahraee, S. (2009). Bending analysis of functionally graded sectorial plates

    using Levinson plate theory, Composite structures,88(4),548-557

    103. Samsam Shariat, B. A., Javaheri, R., Eslami, M. R. (2005). Buckling of

    imperfect functionally graded plates under in-plane compressive loading. Thin

    Walled Structures, 43(7),1020-1036.

    104. Savithri, S. (1991). Linear and Non linear analysis of thick homogeneous and

    laminated plates. PhD Thesis, Department of Mathematics, llT Madras

    105. Savithri, S., Varadan, T.K, (1990). Free vibration and Stability of cross play

    laminated plates. Journal of Sound and Vibration,141 (3),516-520.

    106. Savithri, S., Varadan, T.K. (1992). Laminated plates under uniformly

    distributed and concentrated loads. ASME Journal of Applied

    Mechanics,59,211-214.

    107. Savoia, M., Reddy, J. N. (1992). A variational approach to three-dimensional

    elasticity solutions of laminated composite plates. ASME Journal of Applied

    Mechanics, 59(2), 166-175.

    108. Schmidt, R. (1977). A refined non-linear theory of plates with transverse shear

    defonnation. Journal ofIndian Mathematical Society, 27(1),23-38.

    109 Seide, P. (1980). An improved approximate theory for the bending of laminated

    plates. Mechanics Today ,5,451-466.

    110. Senthilnathan, N. R., Lim, S. P., Lee, K. H., Chow, S. T. (1988). Vibration of

    t laminated orthotropic plates using a simplified higher-order deformation theory.I Composite Structures, 10,211-229.111 Shimpi, R. C. (1999). Zeroth order shear deformation theory for plates. AIAA

    Journal, 37,524-526

    131

  • 112. Srinivas, S., Rao A. K. (1970). Bending vibration and buckling of simply

    supported thick orthotropic rectangular plates and laminates. International

    Journal of Solids and Structures, 6, 1463-148l.

    113. Srinivas, S., Rao, A..K. (1971) A three-dimensional solution for plates and

    laminates. Journal of Franklin Institute, 291, 469-481.

    114. Srinivas, S., Rao, A. K., Joga Rao, C. V. (1969). Flexure of simply supported

    thick homogeneous and laminated rectangular plates. ZAMM: Zeitschrift fur

    Angewandte Mathematik and Mechanik, Band, 49(8), 449-458

    115. Srinivas, S., Joga Rao, C. Y., Rao, A. K. (1970). An exact analysis for vibration

    of simply supported homogeneous and laminated thick rectangular plates.

    Journal of Sound and Vibration, 12, 187-199.

    116. Stavsky, Y. (1961). Bending and stretching of aeolotropic plates. ASCE Journal

    of Engineering Mechanics Division, 87, 31-42.

    117. Trung-Kien., Guyen, N., Karam Sab., Guy Bonnet. (2008). First order shear

    defonnation plate models for functionally graded materials, Composite

    Structures 83, 25-36

    118. Vel, S. S., Batra, R. C. (2004). Three-dimensional exact solution for the

    vibration of functionally graded rectangular plates. Journal of Sound and

    Vibration, 272 (3), 703 - 30.

    119. Vlachoutsis, S. (1992). Shear correction factors for plates and shells",

    International Journal for Numerical Methods in Engineering, 33, 1537-1552.

    120. Wang, A. S. D., Chou, P.C. (1972). A comparison of two laminated plate

    theories. ASME Journal of Applied Mechanics, 39, 611-613.

    132

  • 121. Whitney,J. M. (1969). Cylindrical bending of unsymmetrically laminated

    plates. Journal of Composite materials, 3, 715-719.

    122. Whitney, J. M. (1973). Shear Correction factors for orthotropic laminates under

    static load. ASME Journal of Applied Mechanics, 40,303-304.

    123. Whitney, J. M., Leissa, A.W. (1969). Analysis of heterogeneous anisotropic

    plate. ASME Journal of Applied Mechanics, 36, 261-266.

    124. Whitney, J. M., Pagano, N.J. (1970). Shear deformation in heterogeneous

    anisotropic plates. ASME Journal of Applied Mechanics, 37,1031-1036

    125. Wittrick, W. H. (1987). Analytical three-dimensional elasticity solutions to

    some problems and some observations on Mindlin plate theory. International

    Journal of Solids and Structures, 23, 441-464.

    126. Wu, Z., Chen, R.O (2005). Refined laminated composite plate element based

    on global local higher order shear deformation theory, Composite

    Structures,70,135-152.

    127. Wu, Z., Chen, W. J (2007). A study of global local higher order theory for

    laminated composite plates, Composite Structures, 79, 44-54.

    128. Wu, Z. J., Wardenier, J. (1998). Further investigation on the exact elasticity

    solution for anisotropic thick rectangular plates. International Journal of Solids

    and Structures, 35,747-758

    129. Yang, P. C, Norris, C. H., Stavsky, Y. (1966). Elastic wave propagation In

    heterogeneous plates. International Journal of Solids and Structures, 2, 665-684.

    130. Zenkour, A. M. (2004). Buckling of bar-reinforced viscoelastic composite

    plates using various plate theories. Journal of Engineering Mathematics, 50,

    75-93.

    133

  • 131. Zenkour, A. M. (2005a). A comprehensive analysis of functionally graded

    sandwich plates: Part 1 - Deflection and stresses. International Journal of Solids

    and Structures, 42, 5224-5242.

    132. Zenkour, A. M. (2005b). A comprehensive analysis of functionally graded

    sandwich plates: Part 2 - Buckling and free vibration. International Journal of

    Solids and Structures, 42, 5243-5258.

    133. Zenkour, A. M. (2006). Generalized shear deformation theory for bending

    analysis of functionally graded materials. Applied Mathematical Modelling, 30,

    67-84.

    134