REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 ·...

23
References Page 142 REFERENCES [1] “Recognizing the Best in Innovation: Breakthrough Catalyst”. R&D Magazine, September (2005). 20. [2] H. Knözinger, K. Kochloefl, “Heterogeneous Catalysis and Solid Catalysts” in Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic Compounds and Homogeneous Catalysis” Ullmann's Encyclopedia of Industrial Chemistry, 20 [4] R. Asahi, T. morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science 293 (2001) 269. [5] M.R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis,Chem. Rev. 95 (1995) 69. [6] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891. [7] N. Serpone, Is the band gap of pristine TiO(2) narrowed by anion- and cation- doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B. 110 (2006) 24287. [8] M.Satish, B. Viswanathan, R.P. Viswanath, C. S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO 2 nanocatalyst,Chem. Mater. 17 (2005) 6349. [9]G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Photocatalysis: A Promising Route for 21st Century Organic Chemistry, Chem. Commun. 33 (2007) 3425. [10] D. Nocera, Hydrogen Economy? Let Sunlight Do the Work, Science, 315 (2007) 789. [11] J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types’ aqueous pollutants. Catalysis Today, 53 (1999) 115. [12] M. Mapa, K. S. Thushara, B. Saha, P. Chakraborty, C. M. Janet, R. P. Viswanath, C. M. Nair, K. Murti and C. S. Gopinath, Electronic Structure and Catalytic Study of Solid Solution of GaN in ZnO, Chemistry of Materials 21 (2009) 2973.

Transcript of REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 ·...

Page 1: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 142

REFERENCES

[1] “Recognizing the Best in Innovation: Breakthrough Catalyst”. R&D Magazine,

September (2005). 20.

[2] H. Knözinger, K. Kochloefl, “Heterogeneous Catalysis and Solid Catalysts” in

Ullmann's Encyclopedia of Industrial Chemistry 2002.

[3] A. Behr, “Organometallic Compounds and Homogeneous Catalysis” Ullmann's

Encyclopedia of Industrial Chemistry, 20

[4] R. Asahi, T. morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis

in Nitrogen-Doped Titanium Oxides, Science 293 (2001) 269.

[5] M.R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental

Applications of Semiconductor Photocatalysis,Chem. Rev. 95 (1995) 69.

[6] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties,

modifications, and applications, Chem. Rev. 107 (2007) 2891.

[7] N. Serpone, Is the band gap of pristine TiO(2) narrowed by anion- and cation-

doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B. 110

(2006) 24287.

[8] M.Satish, B. Viswanathan, R.P. Viswanath, C. S. Gopinath, Synthesis,

characterization, electronic structure, and photocatalytic activity of nitrogen-doped

TiO2 nanocatalyst,Chem. Mater. 17 (2005) 6349.

[9]G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Photocatalysis: A

Promising Route for 21st Century Organic Chemistry, Chem. Commun. 33 (2007)

3425.

[10] D. Nocera, Hydrogen Economy? Let Sunlight Do the Work, Science, 315 (2007)

789.

[11] J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the

removal of various types’ aqueous pollutants. Catalysis Today, 53 (1999) 115.

[12] M. Mapa, K. S. Thushara, B. Saha, P. Chakraborty, C. M. Janet, R. P. Viswanath,

C. M. Nair, K. Murti and C. S. Gopinath, Electronic Structure and Catalytic Study of

Solid Solution of GaN in ZnO, Chemistry of Materials 21 (2009) 2973.

Page 2: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 143

[13]M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal Synthesis,

Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3

Semiconductor Nanoheterostructures,ACS Nano 4 (2010) 681.

[14] S. Anandan, Y. Ikuma, K. Niwa, An Overview of Semi-Conductor Photocatalysis:

Modification of TiO2 Nanomaterials, Solid State phenomena 162 (2010) 239.

[15] M. Higashi, R. Abe, T. Takata, K. Domen, Photocatalytic Overall Water Splitting

under Visible Light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3-/I- Shuttle

Redox Mediated SystemChem. Mater., 21 (2009) 1543.

[16] Nobel Lectures, Chemistry 1963−1970, Elsvier Publishing Company, Amsterdam,

1972.

[17] M. H. H. Mahmoud, A.A. Ismail, M. M. S. Sanad, Developing a cost-effective

synthesis of active iron oxide doped titania photocatalysts loaded with palladium,

platinum or silver nanoparticle Chem. Eng. J. 187 (2012) 96.

[18] Tanabe, in: Solid electrolyte capacitor having transition metal oxide under layer

and conductive polymer electrolyte “Solid Acid and Bases”, Academic Press, Tokyo,

1970.

[19] J. Choi, H. Park, and M.R. Hoffmann, "Effects of Single Metal-Ion Doping on the

Visible-Light Photo-reactivity of TiO2", Journal of Physical Chemistry C, 114 (2010)

783

[20] J.B. Park, J. Graciano, J. Evans, D. Stacchiola. S.D. Senanayake, L. Barrio, P. Liu,

J.F. Sanz, J. Hrbek, J.A. Rodriguez, “Gold Copper, and Platinum Nanoparticles

Dispersed on CeOx/TiO2 (110) Surfaces: High Water-Gas Shift Activity and the Nature

of the Mixed-Metal Oxide at the Nanometer Level,” J. Am. Chem. Soc., 132 (2010)

356.

[21] M. Fagnoni, D. Dondi, D. ravelli, A. Albini, Photocatalysis for the formation of

the C-C bond, Chem. Rev. 107 (2007) 2725.

[22] Y. Zhang, J.C. Crittenden, D.W. Hand, and D.L. Perram, "Fixed-Bed Photo-

catalysts for Solar Decontamination of Water”, Environmental Science & Technology,

28 (1994) 435.

[23] D. Beydoun, R. amal, G. Low, S. McEvoy, Role of Nanoparticles in

Photocatalysis, 1 (1999) 439.

Page 3: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 144

[24] G. K. Pradhan, S. Martha, K. M. Parida, Synthesis of multifunctional

nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion

technique. Appl.Mater. Inter., 4 (2012) 707.

[25] T. P. Yoon, M. A. Ischay, J. Du "Visible light photocatalysis as a greener approach

to photochemical synthesis". Nat. Chem., 2 (2010) 527.

[26] J. Wang, D. N. tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu,

J. Am. Chem. Soc. 131 (2009) 12290.

[27] D. Gust, T. Moore, A. Moore, Solar Fuels via Artificial Photosynthesis, Acc.

Chem. Res. 42 (2009) 1890.

[28] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G.

Q. Lu, Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity,

Nature 453 (2008) 638.

[29] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient Nonsacrificial Water

Splitting through Two-Step Photoexcitation by Visible Light using a Modified

Oxynitride as a Hydrogen Evolution Photocatalyst, J. Am. Chem. Soc. 132 (2010)

5858.

[30] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Overall

water splitting using (oxy)nitride photocatalysts, Nature, 440 (2006) 295.

[31] B. Naik, K.M. Parida, and C.S. Gopinath, Facile synthesis of N-and S-incorporated

nanocrystalline TiO2 and direct solar light driven photocatalytic activity, J. Phys.

Chem. C 114 (2010) 19473.

[32] D. F. Ollis, H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and

Air. D. F. (Eds). Amsterdam, Elsevier, 1993.

[33] G. K. Pradhan, K. M. Parida, Fabrication of iron-cerium mixed oxide: an efficient

photocatalyst for dye degradation, Inter. J. Eng. Sci. Tech. 2 (2010) 53.

[34] M. A. Tarr, Fenton and modified Fenton methods for pollutant degradation in M.

A. Tarr (Ed.) Chemical degradation methods for waste and pollutants- environmental

and industrial application. Marcel Dekker Inc., New York, USA, (2003) 165.

[35] H. J. H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. 65

(1894) 899.

Page 4: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 145

[36] Montaño, J. Combination of advanced oxidation processes and biological

treatments for commercial reactive azo dyes removal. Universitat de Barcelona. (2007).

[37] P. Bautista, A. Mohedano, J. Casas, J. Zazo, J. Rodriguez, An overview of the

application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol.

Biotechnol., 83 (2008) 1323.

[38] R. Nogueira, A. Trovó, D. Modé, Solar photodegradation of dichloroacetic acid

and 2, 4 –dichlorophenol using an enhanced photo-Fenton process. Chemosphere., 48

(2002) 388.

[39] P. Mazellier, M. Sarakha and M. Botte, Primary mechanism for the (III)

photoinduced degradation of 4-chloro in aqueous solution, New J. Chem. 23 (1999)

133.

[40] Y. D. Xie, F. Chen, J. J. He, J. C. zhao and H. Wang, Photoassited degradation of

dyes in the presence of Fe3+ and H2O2 under visible light irradiation, J. Photochem.

Photobiol. A, 136 (2000) 235.

[41] C. Catastini, S. Rafgan, G. Mailhot and M. Sarakha, Degradation of amitrol by

excitation of Iron (III) aquacomplexes in aqueous solutions, J. Photochem. Photobiol.

A, 162 (2004) 97103.

[42] J. A. Zazo, J. A. Casas, A. F. Mohedano, M. A. Gilarranz, J. J. Rodriguez,

Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent, Environ. Sci.

Technol. 39, (2005) 9295.

[43] J. Bacardit, J. Stotzner, E. Chamarro, S. Esplugas, Effect of salinity on the Photo-

Fenton process, Ind. Eng. Chem. Res. 46 (2007) 7615.

[44] G. Ruppert, R.Bauer, and G. Heisler, The photo-Fenton reaction - an effective

photochemical wastewater treatment process. Journal of Photochemistry and

Photobiology A: Chemistry, 73, (1993), 75.

[45] P.L. Huston, J.J. Pignatello, Degradation of selected pesticide active ingredients

and commercial formulations in water by the photoassisted Fenton reaction. Water

Research, 33, (1999) 1238.

[46] L. T. Peternel, N. Koprivanac, A. M. L. Bozic and H. M. Kusic, Comparative

study of UV/TiO2, UV/ZnO and Photo-Fenton process for the organic reactive dye

degradation in aqueous solution, J. Hazard. Mater. 148, (2003), 477.

Page 5: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 146

[47] W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Efficient removal of organic

pollutant with magnetic nanoscale BiFeO3 as a reusable heterogeneous Fenton-like

catalyst, Environ. Sci. Technol. 44, (2010), 1786.

[48] S. Hamoudi, F. Larachi, and A. Sayari, Wet oxidation of phenolic solutions over

heterogeneous catalysts: Degradation profile and catalyst behavio,J, Catal., 177, (1998),

247.

[49] F. L. Y. Lam, A. C. K. Yip, X. Hu, Copper/MCM-41 as a highly stable and pH

Insensitive Heterogeneous Photo-Fenton –Like Catalytic material for the abatment of

organic waste water., Ind. Eng.Chem. Res., 46, (2007) 3328.

[50] A. Fujisima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor

Electrode, Nature 238 (1972) 37.

[51] J. H. Carey, J. Lawrence, H. M. Tosin, Bull. Environ. Contam. Toxicol., 16

(1976) 697.

[52] M. Sun, D. Li, Y. Chen, W. Chen, W. Li, Y. He, and X. Fu, Synthesis and

Photocatalytic Activity of Calcium Antimony Oxide Hydroxide for the Degradation of

Dyes in Water, J. Phys. Chem. C 113 (2009) 13825.

[53] Z. Zhang, W. Wang, M. Shang, W. Yin, Photocatalytic degradation of rhodamine

B and phenol by solution combustion synthesized BiVO4 photocatalyst, Catalysis

Communications 11 (2010) 982.

[54] S. Basha,D. Keane, A. Morrissey, K. Nolan, M. Oelgemöller,| and J. Tobin,

Studies on the Adsorption and Kinetics of Photodegradation of Pharmaceutical

Compound, Indomethacin Using Novel Photocatalytic Adsorbents (IPCAs), Ind. Eng.

Chem. Res.49 (2010) 11302.

[55] H. Cheng, B.Huang, Y.Dai, X. Qin, and X. Zhang, One-Step Synthesis of the

Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light

Photocatalytic Performances, Langmuir 26 (2010) 6618.

[56] Z. Chen, D. Li, , W. Zhang, Y. Shao, T. Chen, M. Sun, and X. Fu, Photocatalytic

Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation, J. Phys.

Chem. C 113 (2009) 4433.

Page 6: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 147

[57] D-J Lee, S. A. Senseman, A. S. Sciumbato, S-C Jung, and L. J. Krutz, The Effect

of Titanium Dioxide Alumina Beads on the Photocatalytic Degradation of Picloram in

Water, J. Agric. Food Chem. 51 (2003) 2659.

[58] C-C Chen, H-J Fan and J-L Jan, Degradation Pathways and Efficiencies of Acid

Blue 1 by Photocatalytic Reaction with ZnO Nanopowder, J. Phys. Chem. C 112

(2008) 11962.

[59] M. Mohammadi, A. J. Hassani, A. R. Mohamed and G. D. Najafpour, Removal of

Rhodamine B from Aqueous Solution Using Palm Shell-Based Activated Carbon:

Adsorption and Kinetic Studies, J. Chem. Eng. Data 55 (2010) 5777.

[60] R. Mosca et al., ZnS and ZnO Nanosheets from ZnS(en)0.5 Precursor: Nanoscale

Structure and Photocatalytic Properties,

[61] Y. He, Y. Wu et al, Photocatalytic Degradation of Acetone over Sulfated

MoOx/MgF2 Composite: Effect of Molybdenum Concentration and Calcination

Temperature

[62] H. Garcia et al. Efficient Visible-Light Photocatalytic Water Splitting by Minute

Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer

Templating Method

[63] L. Li, M. Krissanasaeranee, S. W. Pattinson, M. Stefik,U. Wiesner, U. Steiner,D.

Eder, Chem. Comm., Enhanced photocatalytic properties in well-ordered mesoporous

WO3, 46 (2010) 7620.

[64] F. Schuth, K. Sing, J. Weitkamp, Handbook of Porous Solids, vol. I–V, Wiley-

VCH, Weinheim, (2002).

[65] C. Sanchez, G. J. de A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer and V.

Cabuil, Designed Hybrid Organic−Inorganic Nanocomposites from Functional

Nanobuilding Blocks Chem. Mater., 13 (2001) 3061.

[66] S. Polarz and B. Smarsly, Nanoporous Materials, J. Nanosci. Nanotechnol. 2

(2002) 581.

[67] M.E. Davis, Ordered porous materials for emerging applications ,Nature, 417

(2002) 813.

Page 7: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 148

[68] A.Vinu, V. Murugesan, M. Hartmann, Pore Size Engineering and Mechanical

Stability of Cubic Mesoporous SBA-1 Molecular Sieves, Chem. Mater., 15 (2003)

1385.

[69] A. Okabe, T. Fukushima, K. Ariga, M. Niki, T. Aida, Tetrafluoroborate salts as

site-selective promoters for sol-gel synthesis of mesoporous silica, J. Am. Chem. Soc.,

126 (2004) 9013

[70] M. Hartmann, Ordered Mesoporous Materials for Bioadsorption and Biocatalysis

Chem. Mater., 17 (2005) 4577

[71] R. Ryoo, S. H. Joo, S. Jun, T. Tsubakiyama and O. Terasaki, Ordered mesoporous

carbon molecular sieves by templated synthesis: the structural varieties, J. Phys. Chem.

B., 103 (1999) 7743

[72] A.-H. Lu, F. Schüth, “Nanocasting pathways to create ordered mesoporous solids.”

Comptes Rendus Chimie 8 (2005) 609

[73] J. E. Hampsey, Q. Hu, Z. Wu, L. Rice, J. Pang, Y. Lu, A general approach towards

hierarchical porous carbon particles, Carbon 43 (2005) 2977.

[74] J. Parmentier, S. Saadahallah, M. Reda, P. Gibot, M. Roux, L. Vidal, C. Vix-

Guterl, J. Patarin, Nanoporous carbon synthesis with a structural regularity of zeolite Y,

J. Phys. Chem. Solids 65 (2004) 139.

[75] H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step

Replication of Honeycomb Structures of Anodic Alumina, Science, 268 (1995) 1466.

[76] R.O. Al-Kaysi, T. H. Ghaddar, G. Guirado, Fabrication of One-Dimensional

Organic Nanostructures Using Anodic Aluminum Oxide Templates,J. Nanomaterials,

200 (2009) 1.

[77] T. Yanagisawa, T. Schhimizu, K. Kiroda, C. Kato, Bull. Chem. Soc. Jpn., 63

(1990) 988.

[78] J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, E.

Sheppard, S. McCullen, J. Higgins, J. Schlenkert, A New Family of Mesoporous

Molecular Sieves Prepared withLiquid Crystal Templates, J. Am. Chem. Soc. 114

(1992) 10834.

Page 8: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 149

[79] Brian G. Trewyn, Igor I. Slowing, Supratim Giri, Hung-Ting Chen, and Victor S.-

Y. Lin, Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on

the Sol–Gel Process and Applications in Controlled Release ,Accounts of Chemical

Research, 40 (2007) 846.

[80] D. Zhao, et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic

50 to 300 Angstrom Pores, Science, 279 (1998) 548.

[81] S. Inagaki, Y. Fukushima, K. Kuroda, Adsorption Isotherm of Water Vapor and Its

Large Hysteresis on Highly Ordered Mesoporous Silica, J. Colloid Inter. Sci., 180

(1996) 623.

[82] A.B.D. Nandiyanto, F. Iskandar, K. Okuyama, "Nanosized polymer particle-

facilitated preparation of mesoporous silica particles using aspray method", Chem.

Lett., 37(2008) 1040.

[83] A.B. D. Nandiyanto, S.Kim, F. Iskandar, K. Okuyama, Synthesis of spherical

mesoporous silica nanoparticles with nanometer-size controllable pores and outer

diameters, Micropor. Mesopor. Mater., 120 (2009) 447.

[84] N. K. Raman, M. T. Anderson, C. J. Brinker ,Template-Based Approaches to the

Preparation of Amorphous, Nanoporous Silicas, Chem. Mater. 8 (1996) 1682.

[85] O. Franke, J. Rathousky, G. Schulz-Ekloff, A. Zukal, Synthesis of MCM-41

mesoporous molecular sieves, Stud. Surf. Sci. Catal., 91 (1995) 309.

[86] F. P. Matthae, D. Genske, C. Minchev, H. Lechert, On the preparation and

characterisation of MCM-41supported ...Over de bereiding en karakterisering van

MCM-41 gedragen heterogene nikkel, Stud. Surf. Sci. Catal., 117 (1998) 223.

[87] Limin Qi, Jiming Ma, Humin Cheng, and Zhenguo Zhao, Synthesis and

Characterization of Mesostructured Tin Oxide with Crystalline Walls, Langmuir 14

(1998) 2579.

[88] C. Sanchez, B. Julian, P. Belleville, M. Poall, Applications of hybrid organic–

inorganic nanocomposites, J. Mater. Chem., 15 (2005) 3559.

[89] K. Wefers, Alumina Chemicals : Science and Technology Hand book (Ed. : L. D.

Hart), The American Ceramic Society, Westerville, Ohio, (1990) 13.

Page 9: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 150

[90] X. X.Yu, J. G. Yu, B. Cheng, M. Jaroniec, Synthesis of Hierarchical Flower-like

AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties

J. Phys. Chem. C., 113 (2009) 17527.

[91] C. Nedez, et al. Optimization of the textural characteristics of an alumina to

capture contaminants in natural gas Langmuir, 12 (1996) 3927.

[92] D. S. Xue et al. Magnetic properties of pure Fe-Al2O3 nanocomposites, J. Mater.

Sci. Lett. 22 (2003) 1817.

[93] F. Jiao, J. C. Jumas, M. Womes, A. V. Chadwick, A. Harrison and P.G. Bruce,

Synthesis of Ordered Mesoporous Fe3O4 and γ-Fe2O3 with Crystalline Walls Using

Post-Template Reduction/Oxidation J. Am. Chem. Soc., 128 (2006) 12905.

[94] F. Jiao, A. Harrison, A. H. Hill and P.G. Bruce, Mesoporous Mn2O3 and Mn3O4

with Crystalline Walls, Adv. Mater., 19 (2007) 4036.

[95] H. Tuysuz, Y. Liu, C. Weidenthaler and F. Schuth, Pseudomorphic Transformation

of Highly Ordered Mesoporous Co3O4 to CoO via Reduction with Glycerol J. Am.

Chem. Soc., 130 (2008) 14108.

[96] Y. Shi, B. guo, S. A. Corr, Q. Shi, Y-S. Hu, K. R. Heier, L. Chen, R. Seshsdri and

G. D. Stucky, Pseudomorphic Transformation of Highly Ordered Mesoporous Co3O4 to

CoO via Reduction with Glycerol, Nano Lett., 9 (2009) 4215.

[97] E. Kang, S. An, S. Yoon, J.K. Kim and J. Lee, Ordered mesoporous WO3−X

possessing electronically conductive framework comparable to carbon framework

toward long-term stable cathode supports for fuel cells J. Mater. Chem., 20 (2010)

7416.

[98] J-Y Luo, Y-G wang, H-M Xiong and Y-Y Xia, Ordered mesoporous spinel

LiMn2O4 by a soft-chemical process as a cathode material for Lithium-Ion batteries,

Chem. Mater., 19 (2007) 4791.

[99] M. Xiu, L. Huang, J-Q. wang, Y. wang, L. gao, J-H Zhu and Z-G. Zou, The direct

synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light

active photocatalyst with large pore size, nanotechnology 19 (2008) 185604.

[100] R. Kohna et al., Iron (III) oxide within mesoporous MCM-48 silica phase:

synthesis and characterization, (1998) 547.

Page 10: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 151

[101] A.P. Katsoulidis et al., Ordered mesoporous CoOx/MCM-41 materials exhibiting

long-range self-organized nanostructured morphology, Microporous and Mesoporous

Materials, (2006) 71.

[102] K.M. Parida, Dharitri Rath, Structural properties and catalytic oxidation of

benzene to phenol over CuO-impregnated mesoporous silica, Applied Catalysis A:

General, 32 (2007) 101.

[103] K. M. Parida, and S. K. Das, Studies on adsorption of toxic metal ion Cr (VI)

from aqueous state by TiO2-MCM-41,

[104] W-H Zhang, J-L Shi et al., Preparation and characterization of ZnO cluster inside

mesoporous silica., Chem. Mater. 15 ( 2000) 1408.

[105] Z. Li, L. Gao, S. Zheng, 'Investigation of the dispersion of MoO3 onto the MCM-

41,Appl. Catal. A: General, 236 (2002) 163.

[106] W. Chen et al., The effect of size confinement on the structure, luminoscence and

decay dynamics of Eu2O3 nanoparticles formed in mesoporous silicate MCM-41., J.

Phys. Chem. B. 106 (2002) 7034.

[107] Divya Jyoti et al., Transition metal oxide loaded MCM catalysts for

photocatalytic degradation of dyes, J. Chem. Sci. 124 (2012) 385.

[108] X. Li and J. Ye, Photocatalytic degradation of Rhodamine B over

Pb3Nb4O13/fumed SiO2 composite under visible light irradiation, J. Phys. Chem. C, 111

(2007) 13109.

[109] J-M. Jehng et al. Structural Characteristics and reactivity properties of the

tantanum modified mesoporous silicate (MCM-41) catalysts, Microporous and

Mesoporous Materials, 99 (2007) 299.

[110] D. srinivas et al. Redox behaviour and selective oxidation properties of

mesoporous titano-and zirconosilicate MCM-41 molecular seive, Microporous and

Mesoporous Materials, 550 (2001) 209.

[111] R. Silva-Rodrigo, F. Hernandez-Lopez, K. Martinez-Juarez, A.Castillo-Mares, J.

A. Banda, A. Olivas-Sarabia, J. Ancheyta, M. S. Rana, Synthesis, characterization and

catalytic properties of NiMo/Al2O3–MCM-41 catalyst for dibenzothiophene

hydrodesulfurization, Catal. Today 130 (2008) 309.

Page 11: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 152

[112] W. Huang, B. Liu, F. Sun, Z. Zhang, X. Bao, Synthesis and characterization of

thermally stable MCM-41 composite materials,Micropor. Mesopor. Mater. 94 (2006)

254.

[113] J.F. Perez-Benito, E. Brillas, R. Pouplana, “Identification of a soluble from of

colloidal manganese (VI),” Inorg. Chem., 28 (1989) 390.

[114] S.-S. Kim, W. Zhang, T.J. Pinnavaia, Catalytic oxidation of styrene by

Manganese (II) Bipyridine complex cations Immobilized in mesoporous Al-MCM-41.,

Catal. Lett., 43 (1997) 149.

[115] R. Burch, N.A. Cruise, D. Gleeson, S.C. Tsang, Extended X-ray absorption fine

structure study of manganese–oxo species and related compounds on the surface of

MCM-41 channels ,J. Mater. Chem., 8 (1998) 227.

[116] Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V.V. Krishnan, Manganese oxide

mesoporous structures: Mixed-valent semiconducting catalysts, S.L. Suib, Science 276

(1997) 926.

[117] R. Burch, N. Cruise, D. Gleeson, S.C. Tsang, Surface-grafted manganese–oxo

species on the walls of MCM-41 channels-a novel oxidation catalyst., Chem.

Commun., (1996) 951.

[118] M. Yonemitsu, Y. Tanaka, M. Iwamoto, Metal ion –planted MCM-41. 1. Planting

of Manganese (II) ion into MCM-41 by newly developed template-ion exchange

method, Chem. Mater., 9 (1997) 2679.

[119] Abhijit Tarafdar, A.B. Panda, P. Pramanik, Synthesis of ZrO2–SiO2

mesocomposite with high ZrO2 content via a novel sol–gel method, Microporous and

Mesoporous Materials, 84 (2005) 223.

[120] E. R. guez-Castello, A. J. nez-Lo´Pez, P. M-Torres, D.J. Jones, J. Rozie, M.

Trombetta, G. Busca, M. Lenarda,d and L. Storarod, Textural and structural properties

and surface acidity characterization of mesoporous silica-zirconia molecular sieves,

Journal of Solid State Chemistry 175 (2003) 159.

[121] Q.-H. Xia,1 K. Hidajat, and S. Kawi, Effect of ZrO2 Loading on the Structure,

Acidity, and Catalytic Activity of the SO42- /ZrO2/MCM-41 Acid Catalyst, Journal of

Catalysis, 205 (2002) 318.

Page 12: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 153

[122] F. L. Y. Lam, A. C. K. Yip, X. Hu,Cupper/MCM-41 as a highly stable and pH-

insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of

organic wastewater, Ind. Eng. Chem. Res., 46 (2007) 3328.

[123] L. Xia, H. Zhao, G. Liu, X. Hu, Y. Liu, J. Li, D. Yang, X. Wang, Collo. Surf. A:

Physico. Eng. Asp., 383 (2011) 358.

[124] Z. Xiong, L. L. Zhang, X. S. Zhao, Visible‐Light‐Induced Dye Degradation over

Copper‐Modified Reduced Graphene Oxide, J. Eur. Chem., 17 (2011) 2428.

[125] Y. Zhan, H. Li, Y. Chen, Copper hydroxyphosphate as catalyst for the wet

hydrogen peroxide oxidation of azo dyes, J. Hazar. Mater., 180 (2010) 481.

[126] S. V. Sirotin, I. F. Moskovskaya, B. V. Romanovsky, Iron(III) chloride

supported on MCM-41 molecular sieve as a catalyst for the liquid-phase oxidation of

phenol, Catal. Sci. Technol. (2011).

[127] F. Martínez, G. Calleja, J. A. Melero, and R. Molina, “Heterogeneous photo-

Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15

catalyst,” Applied Catalysis B, 60 (2005) 181.

[128] A. C. Pradhan, and K. M. Parida, facile synthesis of mesoporous composite

Fe/Al2O3-MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue

and mixed dyes, J. Mater. Chem., 22 (2012) 7567.

[129] B. J. Aronson et al., Solution-phase grafting of titanium dioxide onto the pore

surface of mesoporous silicate: synthesis and structural characterization, Chem. Mater.,

9 (1997) 2842.

[130] T. Hirai et al., Size- selective incorporation of CdS nanoparticles into

mesoporous silica, 103 (1999) 4228.

[131] W. Lu et al., A novel preparation method of ZnO/MCM-41 for hydrogenation of

methyl benzoate, J. Molecular Catalysis A: Chemical, 188 (2002) 225.

[132] F. Amano, T. Tanaka and T. F. Biki, Steady-State photocatalytic epoxidation by

O2 over V2O5/SiO2 photocatalysts., Langmuir, 20 (2004) 4236.

[133] A. Bhoumik et al., Iron oxide nanoparticles stabilized inside highly ordered

mesoporous silica, 65 (2005) 855.

Page 13: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 154

[134] X. Wang, Jimmy C. Yu. et al., Photocatalytic activity of a hierarchically

macro/mesoporous titania, Langmuir, 21 (2005) 2552.

[135] X. Zhang, F. Zhang et al., Synthesis of titania-silica mixed oxide mesoporous

material, characterization and photocatalytic properties, Catal. Lett., 284 (2005) 193.

[136] H. Yoshida, Active sites of silica-based quantum photocatalysts for non-oxidative

reactions, Catalysis Surveys from Asia, 9 (2005) 1.

[137] J. E. Herrera et al., Synthesis of nanodispersed oxides of vanadium, titanium,

molybdenum and tungsten on mesoporous silica using atomic layer deposition, 39

(2006) 3.

[138] Y. F. Han et al., Controlled synthesis, characterization and catalytic properties of

Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15, J. Phys.

Chem. B, 110 (2006) 24450.

[139] Y.Yang et al., Synthesis of nano titania particles embedded in mesoporous SBA-

15: characterization and photocatalytic activity, J. Hazardous Materials, 137 (2006)

952.

[140] J. Yang et al., Synthesis of MCM-41 mesoporous silica by microwave irradiation

and ZnO nanoparticles confined in MCM-41, The Chinese Journal of process

Engineering, 6 (2006) 268.

[141] R. Malakooki, f. Farzaneh, and M. Gandhi, Synthesis, Characterization and

Studies on Catalytic Behavior of Mn(П) Complex with 2, 2′ Bipyridine, 1, 1′ Dioxide

Ligand within Nanoreactors of MCM-41, J. Sci. I. R. Iran, 17(2006) 1.

[142] J. Shi et al., MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as

Electrochemical Capacitors, J Phys. Chem. B, 110 (2006) 6015.

[143] J. Marugan et al., Photocatalytic decolourization and mineralization of dyes with

nanocrystalline TiO2/SiO2 Materials, Ind. Eng. Chem. Res., 46 (2007) 7605.

[144] P. Ji, J. Zhang et al., Ordered mesoporous CeO2 synthesized by nanocasting from

cubic Ia3d mesoporous MCM-48 silica: Formation, characterization and photocatalytic

activity, J. Phys. Chem. C, 112 (2008) 17809.

Page 14: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 155

[145] K.M. Parida et al., Structural properties and catalytic activity of Mn-MCM41

mesoporous molecular sieves for single step amination of benzene to aniline, Appl.

Catal. A: Gen. 351 (2008) 59.

[146] M. Apno, Tae-Ho-Kim, M. Matsuoka, Ti-, V-, Cr- oxide single-site catalysts

within zeolilite frameworks and their photocatalytic reactivity for the decomposition of

undesirable molecules-The role of their excited and reaction mechanism, Catal. Today.

142 (2009) 114.

[147] M. A. Zanjanchi, H. Golmojdeh et al., Enhanced adsorptive and photocatalytic

achievement in removal of methylene blue by incorporating tungstophosphoric acid-

TiO2 into-MCM-41, J. Hazard. Maerial, 169 (2009) 233.

[148] R. M. S. Martin et al., Characterization of mesoporous ZnO: SiO2 films obtained

by the sol-gel method, Thin Solid Films, 518 (2010) 7002.

[149] G. D. Mihai. et al., ZnO nanoparticles supported on mesoporous MCM-41 and

SBA-15: a comparative physicochemical and photocatalytic application, J. Mater. Sci.,

45 (2010) 5786.

[150] H. Yamashita et al., TiO2 nanoparticles supported on a mesoporous silica surface

(TiO2/MCM-41) were selectively coated with grapheme through the formation of

surface complexes between TiO2 nanoparticles and 2,3- dihydroxynapthalene and

following carbonization under N2-flow for the enhancement of photocatalytic activity,

J. Phys. Chem. C., 144 (2010) 15049.

[151] Kuwahara, Yusutaka, Kamegawa and Takashi investigated the design of new

functional titaniumoxide based photocatalysts for degradation of organic diluted in

water and air, Current Organic Chemistry, 14 (2010) 616.

[152] A. C. Pradhan, K. M. Parida, Fe-meso Al2O3: an efficient photodegradation

catalyst for adsorptive degradation of phenol, Ind. Eng. Res., 49 (2010) 8310.

[153] J-Y Kim, S. h. Kang and Y-E Sung et al., Preparation of highly ordered

mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells, Langmuir 24

(2010) 2864.

[154] Alexis. T. Bell et al., Synthesis of different CeO2 structures on mesoporous silica

and characterization of their reduction properties, J. Phys. Chem. C., 115 (2011) 4114.

Page 15: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 156

[155] K. M. Parida, S. Sing, Reusable MnO2 damping MCM-41 system for single step

amination of benzene to aniline using NH2-OH, Catal. Sci. Tech., 1 (2011) 1496.

[156] R. M. Mohamed et al. studied on enhancement of photocatalytic activity of

ZnO/SiO2 by nanosized pt for photocatalytic degradation of phenol in waste water,

International J. Photoenergy, 2012 (2012) 8.

[157] Divya Jyoti et al., Transition metal oxide loaded MCM catalysts for

photocatalytic degradation of dyes, J. Chem. Sci., 124 (2012) 385.

[158] A. Tang et al., ZnFe2O4-TiO2 nanoparticles within mesoporous MCM-41 and its

application towards photocatalytic activity, The Scientific World Journal, 2012, 2012,

Article ID 480527, 8.

[159] C. Hu, X. Hu, L. wang, J. Qu and A. Wang , Visible-light-induced photocatalytic

degradation of azodyes in aqueous AgI/TiO2 dispersion, Environ. Sci. technol., 2006,

40, 7903-7909.

[160] C. Kresge, M. Leonowicz, W. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous

molecular sieves synthesized by a liquid-crystal template mechanism,Nature 359

(1992) 710.

[161] C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic–

inorganic nanocomposites J. Mater. Chem. 15 (2005) 3559.

[162] H. Kyung, J. Lee and W. Choi, Simultaneous and Synergistic Conversion of

Dyes and Heavy metal Ions in Aqueous TiO2 suspension under Visible Light

Illumination Environ. Sci. Technol., 39 (2005) 2376.

[163] C. Peter, Color in dye house effluent, society of dyers and colourists, Alden

Press, Oxford, U. K., 1995.

[164] S. Mallick, S. Rana and K. M. Parida A facile method for the synthesis of copper

modified amine-functionalized mesoporous zirconia and its catalytic evaluation in C–S

coupling reaction, Dalton Trans. 40 (2011) 9169.

[165] M. I. Litter, Heterogeneous photocatalysis: Transition metal ions in

photocatalytic systems, Appl. Catal., B., 23 (1999) 89-114.

[166] N. Roostaei, F. H. Tezel, Removal of phenol from aqueous solutions by

adsorption J. Environ. Manage., 70 (2004) 157.

Page 16: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 157

[167] M. DellaGreca, P. Monaco, G. Pinto, Phytotoxicity of low-molecular-weight

phenols from olive mill waste waters, Bull. Environ. Contam. Toxicol., 67 (2001) 352.

[168] R. Garg, S. Kapur, C. Hansch. Radical toxicity of phenols. A reference point for

obtaining perspective in the formulation of QSAR. Med. Res. Rev. 21 (2000) 73.

[169] V. K Gupta, I. Ali, V. K. Saini, Adsorption studies on the removal of hexavalent

chromium from aqueous solution using a low cost fertilizer industry waste material,

Environ. Sci. Technol., 38 (2004) 4012.

[170] F. J. Beltran, V. Gomez-Serrano, A. Duran, Rate constants for reaction of

hydroxyl radicals with several drinking water contaminants,Water Res. 26 (1992) 9.

[171] Y. L. Chow, S. Patai, Eds. Photochemistry of Nitro and Nitroso Compounds;

Chemistry of Functional Groups Series; J. Wiley & Sons: Chichester, U.K., 1982.

[172] I. A. Balcioglu, Y. Inel, Photocatalytic degradation of organic contaminants in

semiconductor suspensions with added H2O2 Environ. Sci. Health 31(1996) 123.

[173] T. Oppenlander Photochemical Purification of Water and Air; Wiley- VCH:

Weinheim, Germany, 2003.

[174] F. L. Y. Lam, A. C. K.Yip, X. Hu, Copper/MCM-41 as a highly stable and pH-

insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of

organic wastewater, Ind. Eng. Chem. Res. 46 (2007) 3328.

[175] H.J. Gibb, P.S. Lecs, P.F. Pinsky, B.C. Rooney, Lung Cancer Among Workers in

Chromium Chemical Production to date of the relationship between hexavalent

chromium exposure and lung cancer ,Am. J. Ind. Med. 38 (2000) 115.

[176] Karuppanna Periasamy, Chinnaiya Namasivayam, Process Development for

Removal and Recovery of Cadmium from Wastewater by a Low-Cost Adsorbent:

Adsorption Rates and Equilibrium Studies, Ind. Eng. Chem. Res, 33 (1994) 317.

[177] J. Galvez, S.W. Rodriguez, Proceedings of the International Conference on

Comparative Assessments of Solar Power Technologies, 14–18 February, Jerusalem,

1994, p. 1.

[178] J. Domenech, J. Munoz, J. Chem. Res. Synopses (1987) 106.

Page 17: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 158

[179] S. Wang, Z. Wang, Q. Zhung, Photocatalytic reduction of the environmental

pollutant CrVI over a cadmium sulphide powder under visible light illumination, Appl.

Catal. B: Environ. 1 (1992), 257.

[180] H. Yoneyyama, Y. Yamashita, H. Tamura, Heterogeneous photocatalytic

reduction of dichromate on n-type semiconductor catalysts ,Nature (London) 282

(1979), 817.

[181] C.-M. Zhang, Y.-S. Jiang, W. Liu, H.-M. Yang, T.-J. Li, L.-Z. Xiao, tio2 chao wei

fen guang cui hua huan yuan Cr2O72- de yan jiu,Acta Energiae Solaris Sinica 12, (1991)

176.

[182] S. Zheng, L. Gao, Q. Zhang, W. Zhang, J. Guo, Preparation, characterization and

photocatalyticproperties of singly and doubly titania-modified mesoporous silicate

MCM-41by varying titanium precursors, J. Mater. Chem. 11, (2001) 578.

[183] P. Mohapatra, S.K. Samantaray, K.M. Parida, Photocatalytic reduction of

hexavalent chromium in aqueous solution over sulphate modified titania, J. Photochem.

Photobiol. A: Chem. 170 (2005) 189.

[184] S. Suvanto, J. Hukkamaki, T.T. Pakkanen, T.A. Pakkanen, High-Cobalt-Loaded

MCM-41 via the Gas-Phase Method, Langmuir 16 (2000) 4109.

[185] M.L.S. Correa, M. Wallau, U. Schuchardt, in:H. Chou, S.K. Ihm, Y.S. Uh (Eds.),

Synthesis and characterization of chromo, ferro, mangano and vanadio silicates with

MTW structure Stud. Surf. Sci. Catal. 105 (1997) 277.

[186] P. Trens, M. L. Russell, M. J. Spjuth, J. L. Hudson, J-O. Liljenzin, Preparation of

Malonamide−MCM-41 Materials for the Heterogeneous Extraction of Radionuclides, J.

Ind.Eng.Chem. Res. 41 (2002) 5220.

[187] S. Brunauer, P. H. Emmet, E. Teller, 1938. Adsorption of gases in

multimolecular layers. Journal of American Chemical Society, 60 (1938) 309.

[188] M.C. Zonnevylle, J.J. Jc. Geerlings, R.A. Vansanten, CO Chemisorption on

Cobalt Clusters: Choosing Clusters for Theoretical Analysis of Surface/A dsorbate

Interactions, 148 (1994) 417.

Page 18: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 159

[189] J. Zhang, Y. Tang, G. Li, C. Hu, Room temperature direct oxidation of benzene

to phenol using hydrogen peroxide in the presence of vanadium-substituted

heteropolymolybdates, Appl.Catal. A: General 278 (2005) 251.

[190] H. Kyung, J. Lee, W. Choi, Simaltaneous and synergistic conversion of dyes and

heavy metal ions in aqueous TiO2 suspensions under visible-light illumination,.

Environ. Sci. Technol. 39 (2005) 2376.

[191] E. Pardo, P. Burguete, R. Ruiz-Garcia, M. Julve, D. Beltran, Y. Journaux, P.

Amoros, F. Lioret, Ordered mesoporous silicas as host for the incorporation and

aggregation of octanuclear nickel(II) single-molecule magnets: a bottom-up approach

to new magnetic nanocomposite materials J.Mater. Chem., 16 (2006) 2702.

[192] W. E. Morgan, J. R. Van Wazer, W. J. Stec: Inner Orbital Photoelectron

Spectroscopy of the Alkali Metal Halides, Perchlorates, Phosphates and

Pyrophosphates. J. Am. Chem.Soc., 95 (1973) 751.

[193] Z. Zhen, Z. Hui, J. Fu1, Y. Xiao, L. Yue, Catalytic Combustion of Toluene over

CuxCo1 /Al2O3/FeCrAl Monolithic Catalysts Acta Phys. Chim.Sin., 26 (2010) 3285.

[194] V. Nieminen, H. Karhu, N. Kumar, I. Heinmaa, P. Ek, A. Samoson, T. Salmia, D.

Y. Murzin, Physico-chemical and catalytic properties of Zr- and Cu-Zr ion-exchanged

H-MCM-41, Phys . Chem. Chem. Phys . 6 (2004) 4062.

[195] H. Praliaud, S. Mikhalilenko, Z. Chajar, M. Primet, Surface and bulk properties of

Cu-ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective

reduction of nitric oxide by hydrocarbons Appl.Catal. B., 16 (1998) 359.

[196] Y. Gao, Z. Zheng, F.Yang, F. Zhang, P. Li, W. Fa, H. Jia, H. Zhao, Design and

synthesis of ternary semiconductor Cu7.2(SexS1−x)4 nanocrystallites for efficient visible

light photocatalysis Cryst Eng Comm., 13 (2011) 1441.

[197] M. Marison, E. Garbowski, M. Primet, Physicochemical properties of copper

oxide loaded alumina in methane combustion, J. Chem. Soc., Faraday Trans. 86 (1990)

3027.

[198] M. Shimokawabe, H. Asakawa, N. Takezawa, Characterization of

copper/zirconia catalysts prepared by an impregnation method Appl.Catal., 59 (1990)

45.

Page 19: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 160

[199] S. Rezaei-Zarchi, A. Javed. H. Mirjalili, H. B. Abarghouei S. A. Hashemizadeh,

Characterization and electrochemical study of nano composition based methylene blue

and rifoflavin-nafionon the surface of a gold electrode. Turk. J. Chem., 33 (2009) 411.

[200] Q.Wan, X. Wang, X. Wang, N. Yang, Poly (malachite green) film:

Electrosynthesis, characterization, and sensor application Polymer 47 (2006) 7684.

[201] S. Abd El Mongy, Preparation and Spectroscopic Studies of Rhodamine 6G

Doped Polystyrene Australian J. of Basic and Appl. Sci. 3 (2009) 1954.

[202] T. Alammar, A.-V. Mudring: Ultrasound-Assisted Synthesis of CuO Nanorods in

a Neat Room-Temperature Ionic Liquid, Eur. J. Inorg. Chem., 19 (2009) 2765.

[203] ] W. Rader, L. Soiujic, E. Miiosavijevlc, Sunlight-induced photochemistry of

aqueous solutions of hexacyanoferrate(II) and -(III) ions Environ. Sci. Technol. 27

(1993) 1875.

[204] C. Dutta, R. Naidu, M. K. N. YePnkie, hoto-oxidative degradation of synthetic

organic pollutant p-nitrophenol. J. Sci. Ind. Res. 63 (2004) 518.

[205] F. B. Li, X. Z. Li, The enhancement of photodegradation efficiency using Pt-TiO2

catalyst Chemosphere 48 (2002) 1103.

[206] N. Roostaei, F. H. Tezel, Removal of phenol from aqueous solutions by

adsorption, J. Environ. Manag. 70 (2004) 157.

[207] A. C. Pradhan, K. M. Parida and B. Nanda, Enhanced photocatalytic and

adsorptive degradation of organic dyes by mesoporous Cu/Al2O3-MCM-41: intra-

particle mesoporosity, electron transfer and OH radical generation under visible light.

Dalton Trans., 40 (2011) 7348.

[208] H. Praliaud, S. Mikhalilenko, Z. Chajar and M. Primet, Surface and bulk

properties of Cu–ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with

the selective reduction of nitric oxide by hydrocarbons, Appl. Catal., B, 16 (1998) 359.

[209] Y. Gao, Z. Zheng, F. Yang, F. Zhang, P. Li, W. Fa, H. Jia and H. Zhao, Design

and synthesis of ternary semiconductor Cu7.2(SexS1−x)4 nanocrystallites for efficient

visible light photocatalysis Cryst. Eng. Comm., 13 (2011) 1441.

Page 20: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 161

[210] J. A. Melero, F. Martinez and R. Molina, "Effect of ultrasound on the properties

of heterogeneous catalysts for sono-Fenton oxidation processes". J. Adv.

Oxid.Technol., 11 (2008) 75.

[211] X. Zhong, L. Xiang, S. Royer, S. Valange, J. Barrault and H. Zhanga,

Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination

with ultrasonic irradiation J. Chem. Technol. Biotechnol., 86 (2011) 970.

[212] A.-T. Pham, C. Lee, F. M. Doyle and D. L. Edlak, A Silica-Supported Iron Oxide

Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH ValuesEnviron. Sci.

Technol., 43 (2009) 8930.

[213] M. Hartmann, S. Kullmann and H. Keller, Wastewater treatment with

heterogeneous Fenton-type catalysts based on porous materials J. Mater. Chem., 20

(2010) 9002.

[214] G. Sartori and R. Maggi, Use of Solid Catalysts in Friedel−Crafts Acylation

ReactionsChem. Rev., 106 (2006) 1077.

[215] A. Coroma and H. Gracia, Lewis Acids as Catalysts in Oxidation Reactions: 

From Homogeneous to Heterogeneous Systems Chem. Rev., 102 (2002) 3837.

[216] D. Melgoza, A. Hernandez-Ramirez and J. M. Peralta-Hernandez, Comparative

efficiencies of the decolourisation of Methylene Blue using Fenton’s and photo-

Fenton's reactions Photochem. Photobiol. Sci., 8 (2009) 896.

[217] H. Lim, J. Lee, S. Jin, J. Kim, J. Yoon and T. Hyeon, Highly active

heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina

coated mesoporous silica Chem. Commun., 4 (2006) 463.

[218] F. Martinez, G. Calleja, J. A. Melero and R. Molina, Iron species incorporated

over different silica supports for the heterogeneous photo-Fenton oxidation of

phenolAppl. Catal., B, 70 (2007) 452–460.

[219] L. Li, Y. Pan, L. Chen, and G. Li, One-dimensional α-MnO2: Trapping chemistry

of tunnel structures, structural stability, and magnetic transitions J. Solid State Chem.,

180 (2007) 2896.

[220] Y. T. Wang, A. H. Lu, H. L. Zhang, and W. C. Li, Synthesis of nanostructured

mesoporous manganese oxides with three-dimensional frameworks and their

application in supercapacitors.” J. Phys. Chem. C., (2011) 5413.

Page 21: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 162

[221] P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky,

Generalized syntheses of large-poremesoporous metal oxides with semicrystalline

frameworks, Nature., 396 (1998) 152.

[222] P. T. Tanev, and T. J. Pinnavaia, Mesoporous Silica Molecular Sieves Prepared

by Ionic and Neutral Surfactant Templating:  A Comparison of Physical Properties,

Chem. Mater., 8 (1996) 2068.

[223] Q. Li, J. B. Olson, R. M. Penner, Nanocrystalline α-MnO2 Nanowires by

Electrochemical Step-Edge Decoration, Chem. Matter., 16 (2004) 3402.

[224] M. A. Mohammed, Correlation between Thickness, Grain Size and Optical Band

Gap of CdI2 Film Eng. Tecnol. Journal., 27 (2009)1174.

[225] J. Luan, S. Zheng, X. H,ao, G. Luan, X. Wub, and Z. Zoud, J. Braz. Chem. Soc.,

17 (2006).

[226] S. Abd El Mongy, Preparation and Spectroscopic Studies of Rhodamine 6G

Doped Polystyrene Aust. J. Basic Appl. Sci., 3 (2009) 1954.

[227] M. Xue, L. Huang, J. Q. Wang, Y. Wang, L. Gao, J. H. Zhu and Z. G. Zou, The

direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-

light active photocatalyst with large pore size,” Nanotechnology., 19 (2008) 185604.

[228] L. S. Balistrieri, and J. W. Murray, The surface chemistry of goethite (alpha

FeOOH) in major ion seawater J. Am. Sci., 281 (1981) 788.

[229] J. Zhao, Y. Zhang, X. zhao and A. Ray, Photodegradation of Benzoic Acid

over Metal-Doped TiO2, Ind. Eng. Chem. Res. 2006, 45, 3503.

[230] J. Zhang, J. Xi and Z. ji, J. Mater. Chem., doi-10.1039/c2jm32391e.

[231] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C.T. Kresge, K.D.

Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, M. Cullen, Y.B. Higgins, I.L.

Schlenker, J. Am. Chem. Soc., 102 (1992) 1.

[232] A. Miko, A. Levent Demirel and M. Somer, Vertically oriented hexagonal

mesoporous zirconia thin films by block copolymer templating, J.Mater. Chem., 22

(2012) 3705.

[233] S. Rana, S. Mallick, and K. M. Parida, Facile Method for Synthesis of

Polyamine-Functionalized Mesoporous Zirconia and Its Catalytic Evaluation toward

Henry Reaction, Ind. Eng. Chem. Res. 50 (2011) 2055.

Page 22: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 163

[234] S. Mallick, S. Rana and K. M P arida, A facile method for the synthesis of

copper modified amine-functionalized mesoporous zirconia and its catalytic evaluation

in C–S coupling reaction, Dalton Trans., 40 (2011) 9169.

[235] K. M. Parida and D. Rath, Studies on MCM-41. Part 2: Structural properties and

catalytic oxidation of benzene to phenol over CuO/MCM-41, Applied Catalysis

A:General, 321 (2007) 101.

[236] M. Mizuno, Y. Sasaki, S. Lee, and H. Katakura, High-Yield Sol-Gel Synthesis of

Well-Dispersed, Colorless ZrO2 Nanocrystals, Langmuir, 22 (2006) 7137.

[237] M. Chun, M-J.Moon, J. Park, and Y-C. Kang,Physical and Chemical

Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on

Si(100), Bull. Korean Chem. Soc., 30 (2009) 2729.

[238] V. Nieminen, H. Karhu, N. Kumar, I. Heinmaa, P. Ek. A. Samoson, T. Salmia

and D. Y. murzin, Physico-chemical and catalytic properties of Zr- and Cu–Zr ion-

exchanged H-MCM-41, Phys. Chem. Chem. Phys., 6 (2004) 4062.

[239] M.C. Marion, E. Garboeski, M.J. Primet, Physicochemical properties of copper

oxide loaded alumina in methane combustion, Chem. Soc. Faraday Trans, 86 (1990)

3027.

[240] D. Chen, A.K. Rai, Removal of toxic metal ions from wastewater by

semiconductor photocatalysis, Chem. Eng. Sci., 56 (2001) 1561.

[241] Y. Guo, J. Qi, S. Yang, K. Yu, Z. Wang, H. Xu, Adsorption of Cr (VI) on micro-

and mesoporous rice husk-based active carbon, Mater. Chem. Phys., 78 (2002) 132.

[242] D. Nityanandi, C.V. Subbhuraam, Kinetics and thermodynamic of adsorption of

chromium (VI) from aqueous solution using puresorbe, J. Hazard. Mater., 2009, 170,

876-882.

[243] P. Mohapatra, S.K. Samantaray, K.M. Parida, Photocatalytic reduction of

hexavalent chromium in aqueous solution over sulphate modified titania J. Photochem.

Photobiol. A: Chem., 170 (2005) 189.

[244] D. P. Das, K. M. Parida, B. R. Deb, Photocatalytic reduction of hexavalent

chromium in aqueous solution over titania pillared zirconium phosphate and titanium

phosphate under solar radiationJ. Molecular Catalysis A: Chemical., 245 (2006) 217.

Page 23: REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/.../44880/16/16_references.pdf · 2018-07-03 · Ullmann's Encyclopedia of Industrial Chemistry 2002. [3] A. Behr, “Organometallic

References

Page 164

[245] K.M. Parida, N. Sahu, Visible light induced photocatalytic activity of rare earth

titania nanocomposites, J. of Molecular Catalysis A: Chemical., 2008, 287, 151–158.

[246] X. Liu, L. Pan, T. Lv,T.Lu, G. Zhu, Z. Sun and C. Sun, Microwave-assisted

synthesis of ZnO–graphene composite for photocatalytic reduction of Cr(VI), Catal.

Sci. Technol., 1 (2011) 1189.

[247] X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, UV-

assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with

enhanced photocatalytic activity in reduction of Cr(VI), Chemical Engineering Journal,

183 (2012) 238.

[248] F.H. Westheimer, The Mechanisms of Chromic Acid Oxidations, Chem. Rev.,

45(1949) 419.

[249] J. Munoz, X. Domenech, J. Appl. Electrochem. 20 (1990) 518.

[250]G. Goor, J. Edwards, R. Curu, in:G. Strukul (Ed.), Catalytic oxidations

withhydrogen peroxide as oxidant, Kluwer Academic Publishers, Dordrecht