Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page...

25
17 ? ?R Reference Table Study Measuring Earth How Scientists TOPIC 2 Would you consider the crust of your toast part of your plate? You wouldn’t think that the crust of toast you left on your plate at breakfast is part of the plate you eat from. If you use the same concept for Earth’s crust, you would jump to the conclusion that the crust is separate from any other section. Using this erroneous belief, some science periodicals have used the term “crustal plates.” Do you think this is a scientifically accurate term? Actually, there is no such thing as a “crustal plate” in Earth Science. Earth’s plates are much thicker than average crust, and incorporate the crust and the uppermost mantle, often called the rigid mantle. The crust of Earth is mineralogically different than the mantle below it, but the physical properties of rigidity and solidness of the crust and the uppermost mantle are very similar. Thus, the crust and the uppermost mantle are grouped together as Earth’s lithosphere. Therefore, there are lithospheric plates, or tectonic plates, and not “crustal plates.”

Transcript of Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page...

Page 1: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

17

??R

Reference Table

Study Measuring EarthHow Scientists

T O P I C2

Would you consider the crust of your toast part of

your plate?

You wouldn’t think that the crust of toast you left on your plate at breakfast is part of the plate you eat from. If you use the same concept for Earth’s crust, you would jump to the conclusion that the crust is separate from any other section. Using this erroneous belief, some science periodicals have used the term “crustal plates.” Do you think this is a scientifi cally accurate term?

Actually, there is no such thing as a “crustal plate” in Earth Science. Earth’s plates are much thicker than average crust, and incorporate the crust and the uppermost mantle, often called the rigid mantle. The crust of Earth is mineralogically different than the mantle below it, but the physical properties of rigidity and solidness of the crust and the uppermost mantle are very similar. Thus, the crust and the uppermost mantle are grouped together as Earth’s lithosphere. Therefore, there are lithospheric plates, or tectonic plates, and not “crustal plates.”

0133704106_017-036.indd 170133704106_017-036.indd 17 6/6/09 4:06:48 PM6/6/09 4:06:48 PM

uclarst
Oval
uclarst
Text Box
Update
uclarst
Text Box
Contained within these pages are the updated reference tables for the January 2010 New York Regents Exam for Earth Science and the Physical Setting. Also within these pages you will find updated questions and content related to the new reference tables.
uclarst
Rectangle
Page 2: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Updated information is highlighted in yellow. Page numbers where each piece of information can be found is located above the updated content. Page 19 Page 19 Page 21 Page 35 – For questions 29 & 30

(map replacement) Page 41

Page 3: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 105 Page 111 Page 113 Page 122 Page 123

Page 4: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 130

Page 137 Page 153 Page 174 (part of Station Model)

Page 197

Page 5: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 203 Page 223 Page 225 Page 227 Page 228 Page 231

Page 6: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 232 Page 237 (revised order of questions)

Page 7: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 257 Page 263 Page 272 Page 282 Page 289

Page 8: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Page 296 Page 296 Page 297

Page 9: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-1

Using the Reference TablesYou should become thoroughly familiar with all details of these tables. Look for the on the topic pages to see where the content is enhanced by the reference tables. Some of the ways these reference tables are used in Regents Examination questions include:

• to find a specific fact, such as the composition of the Earth’s inner core

• to find the relationship between two facts on different parts of the reference tables, such as the latitude and longitude of the center of the Tug Hill Plateau

• using an equation on the reference tables to solve a problem, such as a rate of change of an event

• graphing or recognizing the correct graph of data on the reference tables such as the percent by mass of the elements in the Earth’s crust

• decoding a graphic symbol in a question such as present weather or air mass type on a weather map

• performing a procedure using part of the reference tables, such as determining the distance of a location to an epicenter using the Earthquake P-wave and S-wave Travel Time graph

• interpretation of data on the reference tables, such as the temperature of white dwarf stars

Radioactive Decay Data .................................................................A-3

Specific Heats of Common Materials ........................................A-3

Equations ............................................................................................A-3

Properties of Water ........................................................................A-3

Average Chemical Composition of Earth’s Crush, Hydrosphere, and Troposphere ..................................................A-3

Generalized Landscape Regions of New York State ...........A-4

Generalized Bedrock Geology of New York State ...............A-5

Surface Ocean Currents .................................................................A-6

Tectonic Plates .................................................................................A-7

Rock Cycle in Earth’s Crust ...........................................................A-8

Relationship of Transported Particle Size toWater Velocity ..................................................................................A-8

Scheme for Igneous Rock Identification .................................A-8

Scheme for Sedimentary Rock Identification ........................A-9

Scheme for Metamorphic Rock Identification ......................A-9

Geologic History of New York State ........................................ A-10and A-11

Inferred Properties of Earth’s Interior...................................A-12

Earthquake P-wave and S-wave Travel Time .....................A-13

Dewpoint Temperatures (°C) ......................................................A-14

Relative Humidity (%) ...................................................................A-14

Temperature ....................................................................................A-15

Pressure ............................................................................................A-15

Key to Weather Map Symbols ...................................................A-15

Selected Properties of Earth’s Atmosphere .........................A-16

Planetary Wind and Moisture Beltsin the Troposphere ........................................................................A-16

Electromagnetic Spectrum .........................................................A-16

Characteristics of Stars ...............................................................A-17

Solar System Data .........................................................................A-17

Properties of Common Minerals ..............................................A-18

Appendix 1:Earth Science Reference Tables

0133704106_A01-A21.indd 10133704106_A01-A21.indd 1 9/25/09 5:51:43 PM9/25/09 5:51:43 PM

Page 10: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Heat energy gained during melting . . . . . . . . . . 334 J/g

Heat energy released during freezing . . . . . . . . 334 J/g

Heat energy gained during vaporization . . . . . 2260 J/g

Heat energy released during condensation . . . 2260 J/g

Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . 1.0 g/mL

New York State Fossil

16

17

18

19

20

21

22

23

24

25

15

12

34

56

78

910

11

12

13

14

cm

2010 EDITIONThis edition of the Earth Science Reference Tables should be used in theclassroom beginning in the 2009–2010 school year. The first examination forwhich these tables will be used is the January 2010 Regents Examination in Physical Setting/Earth Science.

The University of the State of New York • THE STATE EDUCATION DEPARTMENT • Albany, New York 12234 • www.nysed.gov

Reference Tables for

Physical Setting/EARTH SCIENCE

Eccentricity =distance between focilength of major axis

Gradient =change in field value

distance

Density =mass

volume

Rate of change =change in value

time

Equations

RADIOACTIVEISOTOPE

DISINTEGRATION HALF-LIFE(years)

Carbon-14

Potassium-40

Uranium-238

Rubidium-87

C14

K40

U238

Rb87

N14

Pb206

Sr87

5.7 × 103

1.3 × 109

4.5 × 109

4.9 × 1010

Ar40

Ca40

Specific Heats of Common MaterialsRadioactive Decay Data

Properties of Water

Average Chemical Compositionof Earth’s Crust, Hydrosphere, and Troposphere

MATERIAL SPECIFIC HEAT(Joules/gram • °C)

Liquid water 4.18

Solid water (ice) 2.11

Water vapor 2.00

Dry air 1.01

Basalt 0.84

Granite 0.79

Iron 0.45

Copper 0.38

Lead 0.13

ELEMENT(symbol)

CRUST HYDROSPHERE TROPOSPHERE

Percent by mass Percent by volume Percent by volume Percent by volume

Oxygen (O) 46.10 94.04 33.0 21.0

Silicon (Si) 28.20 0.88

Aluminum (Al) 8.23 0.48

Iron (Fe) 5.63 0.49

Calcium (Ca) 4.15 1.18

Sodium (Na) 2.36 1.11

Magnesium (Mg) 2.33 0.33

Potassium (K) 2.09 1.42

Nitrogen (N) 78.0

Hydrogen (H) 66.0

Other 0.91 0.07 1.0 1.0

Eurypterus remipes

(Revised November 2006)

Appendix A-3

0133704106_A01-A21.indd 30133704106_A01-A21.indd 3 9/25/09 5:51:48 PM9/25/09 5:51:48 PM

Page 11: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-4 Appendix

2 Physical Setting/Earth Science Reference Tables — 2010 Edition

Gen

eral

ized

Lan

dsca

pe R

egio

ns o

f New

Yor

k St

ate

Appalachian

Plate

au(U

pla

nds)

Inte

rio

r L

ow

lan

ds

Gre

nville

Pro

vin

ce

(Hig

hla

nd

s)

New E

ngland P

rovin

ce

(Hig

hlands)

Atl

an

tic

Co

asta

lP

lain

Alle

gheny P

late

au

Erie-O

nta

rio L

ow

lands

(Pla

ins)

Tug H

illP

late

au

Adirondack

Mounta

ins

Lake

Eri

e

Lake

Onta

rio

Inte

rio

rL

ow

lan

ds

St.

Law

renc

e Lo

wla

nds

ChamplainLowlands Hudson H

ighla

nds

Manhattan P

rong

The C

ats

kill

s

Taconic Mountains

Hudson-MohawkLowlands

NewarkLowlands

Ma

jor

ge

og

rap

hic

pro

vin

ce

bo

un

da

ry

La

nd

sca

pe

re

gio

n b

ou

nd

ary

Sta

te b

ou

nd

ary

Inte

rna

tio

na

l b

ou

nd

ary

Key

N S

WE

02

04

0

02

04

06

08

0K

ilom

ete

rs

Mile

s1

03

05

0

0133704106_A01-A21.indd 40133704106_A01-A21.indd 4 9/25/09 5:51:50 PM9/25/09 5:51:50 PM

Page 12: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-5

Physical Setting/Earth Science Reference Tables — 2010 Edition 3

Gen

eral

ized

Bed

rock

Geo

logy

of N

ew Y

ork

Stat

em

odifi

ed fr

omG

EOLO

GIC

AL

SURV

EYN

EW Y

ORK

STA

TE M

USE

UM

1989

N

iagaraRiver

GE

OL

OG

IC P

ER

IOD

S A

ND

ER

AS

IN

NE

W Y

OR

K

CR

ETA

CE

OU

S a

nd P

LEIS

TOC

EN

E (

Epo

ch)

wea

kly

cons

olid

ated

to u

ncon

solid

ated

gra

vels

, san

ds, a

nd c

lays

LAT

E T

RIA

SS

IC a

nd E

AR

LY J

UR

AS

SIC

con

glom

erat

es, r

ed s

ands

tone

s, r

ed s

hale

s, b

asal

t, an

d di

abas

e (P

alis

ades

sill

)

PE

NN

SY

LVA

NIA

N a

nd M

ISS

ISS

IPP

IAN

con

glom

erat

es, s

ands

tone

s, a

nd s

hale

s

DE

VO

NIA

Nlim

esto

nes,

sha

les,

san

dsto

nes,

and

con

glom

erat

es

SIL

UR

IAN

SIL

UR

IAN

also

con

tain

s sa

lt, g

ypsu

m, a

nd h

emat

ite.

OR

DO

VIC

IAN

limes

tone

s, s

hale

s, s

ands

tone

s, a

nd d

olos

tone

sC

AM

BR

IAN

CA

MB

RIA

N a

nd E

AR

LY O

RD

OV

ICIA

N s

ands

tone

s an

d do

lost

ones

m

oder

atel

y to

inte

nsel

y m

etam

orph

osed

eas

t of t

he H

udso

n R

iver

CA

MB

RIA

N a

nd O

RD

OV

ICIA

N (

undi

ffere

ntia

ted)

qua

rtzi

tes,

dol

osto

nes,

mar

bles

, and

sch

ists

inte

nsel

y m

etam

orph

osed

; inc

lude

s po

rtio

ns o

f the

Tac

onic

Seq

uenc

e an

d C

ortla

ndt C

ompl

ex

TAC

ON

IC S

EQ

UE

NC

E s

ands

tone

s, s

hale

s, a

nd s

late

ssl

ight

ly to

inte

nsel

y m

etam

orph

osed

roc

ks o

fCA

MB

RIA

N th

roug

hM

IDD

LE O

RD

OV

ICIA

N a

ges

MID

DLE

PR

OT

ER

OZ

OIC

gne

isse

s, q

uart

zite

s, a

nd m

arbl

esLi

nes

are

gene

raliz

ed s

truc

ture

tren

ds.

MID

DLE

PR

OT

ER

OZ

OIC

ano

rtho

sitic

roc

ks

} }

}} }Do

min

antl

y

sed

imen

tary

ori

gin

Do

min

antl

y

met

amo

rph

ose

d

rock

s

LON

GIS

LA

ND

SO

UN

D

Inte

nse

ly m

etam

orp

ho

sed

ro

cks

(reg

iona

l met

amor

phis

m a

bout

1,0

00 m

.y.a

.)

N S

WE

02

04

0

02

04

06

08

0K

ilom

ete

rs

Mile

s1

03

05

0

0133704106_A01-A21.indd 50133704106_A01-A21.indd 5 9/25/09 5:51:51 PM9/25/09 5:51:51 PM

Page 13: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-6 Appendix

40

°8

12

16

18

16

12

80

°4

80

°

40

°

40

°

80

°

20

°

60

°

60

°

20

°

Arc

tic C

ircle

(66

.5°

N)

Tro

pic

of

Ca

nce

r(2

3.5

° N

)

Tro

pic

of

Ca

prico

rn(2

3.5

° S

)

An

tarc

tic C

ircle

(66

.5°

S)

Eq

ua

tor

20

°6

10

14

20

°6

10

14

20

°

40

°8

12

16

18

16

12

80

°4

20

°6

10

14

20

°6

10

14

20

°

Equato

rialC

ou

nte

rcurr

ent

EastAustraliaC

.

Anta

rctic

Circum

pola

rC

urr

ent

Nort

h

Atlantic

C.

Anta

rctic

Circum

pola

rC

urr

ent

NO

TE

: N

ot

all

su

rfa

ce

oce

an

cu

rre

nts

are

sh

ow

n.

Nor

thA

mer

ica

Sout

hA

mer

ica

Ant

arct

ica

Aus

tral

ia

Nor

thP

acif

icO

cean

Ant

arct

ica

Afr

ica

Asi

aE

urop

e

Surf

ace

Oce

an C

urre

nts

Afr

ica

PeruC.

Nort

hE

qua

torialC

.

South

Equato

r ialC

.

Sou

ther

n O

cean

Arc

tic

Oce

an

Indi

anO

cean

South

Equato

rialC

.

WestA

ust

raliaC.

Indi

a

Gre

enla

nd

Nor

thA

tlan

tic

Oce

an Eq

ua

toria

lC

ou

nte

rcu

rre

nt

Flo

rid

a C

.

KuroshioC

.

Oyashio

C.

Kamchat

kaC

.

Nort

hP

acific

C.

Ala

ska

C

. C

alifo

rnia C.

BrazilC.

BenguelaC.

South

Equ

ato

rial C

.

FalklandC.

Guin

ea

C.

Nort

hE

qu

ato

rialC

.

Gul

fStre

amC

.

Canary C.

Labrador C.

West Greenland C.

Eas

tGre

enla

ndC. N

or

wegianC.

Nort

hE

quato

rial C

.E

qu

ato

ria

lC

ou

nte

rcurr

ent

AgulhasC.

Sou

thP

acif

icO

cean

Sou

thA

tlan

tic

Oce

an

Warm

curr

ents

Cool curr

ents

Key

4 Physical Setting/Earth Science Reference Tables — 2010 Edition

0133704106_A01-A21.indd 60133704106_A01-A21.indd 6 9/25/09 5:51:51 PM9/25/09 5:51:51 PM

Page 14: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-7

Physical Setting/Earth Science Reference Tables — 2010 Edition 5

Per

u-Chile TrenchH

aw

aii

Ho

t S

po

t

Sa

n A

nd

rea

sF

au

lt

Juan

de

Fuc

a P

late

Phi

lippi

neP

late

Ale

utian

Tre

nch

Ye

llow

sto

ne

Ho

t S

po

t

Nor

th A

mer

ican

Pla

te

Afr

ican

Pla

teC

ocos

Pla

teC

arib

bean

Plat

e

Mid-Atla

nticRidge C

an

ary

Isla

nd

sH

ot

Sp

ot

Sout

hA

mer

ican

Pla

te

Ga

lap

ag

os

Ho

t S

po

t

Naz

caP

late

Ant

arct

icP

late

Indi

an-A

ustr

alia

nP

late

Pac

ific

Pla

teF

iji P

late

East

PacificRidge

Ant

arct

icP

late

Arabian

Plate

Eur

asia

nP

late

Eur

asia

nP

late

Ice

lan

dH

ot

Sp

ot

EastAfricanRiftM

id

-Indian Ridge

South

east

India

nR

idge

Sou

thwes

t Ind

ian

Rid

geSc

otia

Pla

te

Sand

wic

hP

late

Mid-AtlanticRidge

Ea

ste

r Is

lan

dH

ot

Sp

ot

St.

He

len

aH

ot

Sp

ot

Bo

uve

tH

ot

Sp

ot

Key

NO

TE

:N

ot

all

ma

ntle

ho

t sp

ots

, p

late

s,

an

db

ou

nd

arie

s a

re s

ho

wn

.

Co

mp

lex o

r u

nce

rta

inp

late

bo

un

da

ryR

ela

tive

mo

tio

n a

tp

late

bo

un

da

ryM

an

tle

ho

t sp

ot

Div

erg

en

t p

late

bo

un

da

ry(u

su

ally

bro

ke

n b

y t

ran

sfo

rmfa

ults a

lon

g m

id-o

ce

an

rid

ge

s)

Co

nve

rge

nt

pla

te b

ou

nd

ary

(su

bd

uctio

n z

on

e)

su

bd

uctin

gp

late

ove

rrid

ing

pla

te

Tra

nsfo

rm p

late

bo

un

da

ry(t

ran

sfo

rm f

au

lt)

Tect

onic

Pla

tes

Ta

sm

an

Ho

t S

po

t

M

ariana Trench

Tonga

Trench

0133704106_A01-A21.indd 70133704106_A01-A21.indd 7 9/25/09 5:51:52 PM9/25/09 5:51:52 PM

Page 15: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-8 Appendix

6 Physical Setting/Earth Science Reference Tables — 2010 Edition

Ero

sio

n

We

ath

eri

ng

&E

rosi

on

(Up

lift)

Me

tam

orp

his

m

MeltingSolid

ific

atio

nMeltingWeathering & Erosion

(Uplift)

Metamorphism

Weathering & Erosion

(Uplift)

Heat and/or Pressure

He

at

an

d/o

rP

ressure

Me

lting

Cementation

and BurialC

ompacti

on and/or Deposition

IGNEOUSROCK

SEDIMENTS

MAGMA

METAMORPHICROCK

SEDIMENTARYROCK

0.0001

0.001

0.01

0.1

1.0

10.0

100.0

PA

RT

ICL

E D

IAM

ET

ER

(cm

)

Boulders

Cobbles

Pebbles

Sand

Silt

Clay

10

00

50

0

50

10

0

10510.5

0.1

0.0

5

0.0

1

STREAM VELOCITY (cm/s)

This generalized graph shows the water velocityneeded to maintain, but not start, movement. Variationsoccur due to differences in particle density and shape.

25.6

6.4

0.2

0.006

0.0004

Rock Cycle in Earth’s Crust

Scheme for Igneous Rock Identification

Relationship of TransportedParticle Size to Water Velocity

Pyroxene(green)

Amphibole(black)

Biotite(black)

Potassiumfeldspar

(pink to white)

(rela

tive b

y v

olu

me)

MIN

ER

AL

CO

MP

OS

ITIO

N

Quartz(clear towhite)

CH

AR

AC

TE

RIS

TIC

S

MAFIC(rich in Fe, Mg)

HIGHER

DARKER

FELSIC(rich in Si, Al)

LOWER

LIGHTER

CRYSTALSIZE

TEXTURE

Pumice

INT

RU

SIV

E(P

luto

nic

)E

XT

RU

SIV

E(V

olc

anic

)

EN

VIR

ON

ME

NT

OF

FO

RM

AT

ION

Plagioclase feldspar(white to gray)

Olivine(green)

COMPOSITION

DENSITY

COLOR

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

IGN

EO

US

RO

CK

S

non-

cry

sta

lline

GlassyBasaltic glassObsidian

(usually appears black)

less than

1 m

m FineBasalt

AndesiteRhyolite

1 m

mto

10 m

m

CoarsePeri-dotiteGabbro

DioriteGranite

Pegmatite

10 m

mor

larg

er

Verycoarse

Scoria Vesicular(gas

pockets)

Du

nit

e

Non-vesicular

Non-vesicular

Vesicular basaltVesicular rhyolite Vesicularandesite

Diabase

0133704106_A01-A21.indd 80133704106_A01-A21.indd 8 9/25/09 5:51:52 PM9/25/09 5:51:52 PM

Page 16: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-9

Physical Setting/Earth Science Reference Tables — 2010 Edition 7

INORGANIC LAND-DERIVED SEDIMENTARY ROCKS

COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Rounded fragments

Angular fragmentsMostly

quartz,

feldspar, and

clay minerals;

may contain

fragments of

other rocks

and minerals

Pebbles, cobbles,and/or bouldersembedded in sand,silt, and/or clay

Clastic

(fragmental)

Very fine grain

Compact; may split

easily

Conglomerate

Breccia

CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS

Crystalline

Halite

Gypsum

Dolomite

Calcite

Carbon

Crystals from

chemical

precipitates

and evaporites

Rock salt

Rock gypsum

Dolostone

Limestone

Bituminous coal

. . . . .. . . .

Sand(0.006 to 0.2 cm)

Silt(0.0004 to 0.006 cm)

Clay(less than 0.0004 cm)

Sandstone

Siltstone

Shale

Fine to coarse

COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Fine

to

coarse

crystals

Microscopic tovery coarse

Precipitates of biologicorigin or cemented shellfragments

Compactedplant remains

. . . . .. . . .

Bioclastic

Crystalline or

bioclastic

FO

LIA

TE

D

Fine

Fineto

medium

Mediumto

coarse

Regional

Low-grademetamorphism of shale

Platy mica crystals visiblefrom metamorphism of clayor feldspars

High-grade metamorphism;mineral types segregatedinto bands

Slate

Schist

Gneiss

COMPOSITIONTEXTUREGRAINSIZE COMMENTS ROCK NAME

TYPE OFMETAMORPHISM

(Heat andpressureincreases)

MIN

ER

AL

AL

IGN

ME

NT

BA

ND

-IN

G

MAP SYMBOL

Foliation surfaces shinyfrom microscopic micacrystals

Phyllite

GA

RN

ET

PY

RO

XE

NE

FE

LD

SP

AR

AM

PH

IBO

LE

MIC

A

QU

AR

TZ

Hornfels

NO

NF

OL

IAT

ED

Metamorphism ofquartz sandstone

Metamorphism oflimestone or dolostone

Pebbles may be distortedor stretched

Metaconglomerate

Quartzite

Marble

Coarse

Fineto

coarse

Quartz

Calcite and/ordolomite

Variousminerals

Contact(heat)

Various rocks changed byheat from nearbymagma/lava

VariousmineralsFine

Anthracite coalRegionalMetamorphism ofbituminous coal

CarbonFine

Regional

or

contact

Scheme for Metamorphic Rock Identification

Scheme for Sedimentary Rock Identification

0133704106_A01-A21.indd 90133704106_A01-A21.indd 9 9/25/09 5:51:53 PM9/25/09 5:51:53 PM

Page 17: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-10 Appendix

8 Physical Setting/Earth Science Reference Tables — 2010 Edition

PLEISTOCENEPLIOCENE

MIOCENE

OLIGOCENE

EOCENE

PALEOCENE

LATE

EARLY

LATEMIDDLE

EARLY

LATE

MIDDLEEARLYLATE

MIDDLE

EARLY

LATE

MIDDLE

EARLY

LATE

MIDDLE

EARLY

LATE

EARLY

LATE

MIDDLE

EARLY

LATE

MIDDLE

EARLY

EARLY

LATE

GEOLOGIC HISTORY

ElliptocephalaCryptolithus

Phacops Hexameroceras ManticocerasEucalyptocrinus

CtenocrinusTetragraptus

Dicellograptus EurypterusStylonurus

B LA EC D G HF I J NK M

CentrocerasValcouroceras Coelophysis

(Index fossils not drawn to scale)

EraEon

PH

AN

ER

O-

ZO

ICP

RE

CA

MB

RI

AN

AR

CH

EA

NP

RO

TE

RO

ZO

IC

LATE

LATE

MIDDLE

MIDDLE

EARLY

EARLY

0

500

1000

2000

3000

4000

4600

Million years ago

CENOZOIC

MESOZOIC

PALEOZOIC

QUATERNARY

NEOGENE

PALEOGENE

CRETACEOUS

JURASSIC

TRIASSIC

PERMIAN

CA

RB

ON

IF-

ER

OU

S

DEVONIAN

Period Epoch Life on Earth

SILURIAN

ORDOVICIAN

CAMBRIAN

580

488

444

416

318

299

200

146

1300

Million years ago

NY RockRecord

PENNSYLVANIAN

HOLOCENE

65.5

251

1.85.3

0.010

23.033.9

MISSISSIPPIAN

Humans, mastodonts, mammoths

55.8

Large carnivorous mammalsAbundant grazing mammalsEarliest grasses

Many modern groups of mammalsMass extinction of dinosaurs, ammonoids, and many land plants

Earliest flowering plantsDiverse bony fishes

Earliest birds

Earliest mammals

Mass extinction of many land and marine organisms (including trilobites)

Mammal-like reptiles

Abundant reptiles

Extensive coal-forming forests

Abundant amphibiansLarge and numerous scale trees and seed ferns (vascular plants); earliest reptiles

359Earliest amphibians and plant seedsExtinction of many marine organisms

Earth’s first forestsEarliest ammonoids and sharksAbundant fish

Earliest insectsEarliest land plants and animals

Abundant eurypterids

Invertebrates dominantEarth’s first coral reefs

Burgess shale fauna (diverse soft-bodied organisms)Earliest fishes

Earliest trilobites542

Abundant stromatolites

Ediacaran fauna (first multicellular, soft-bodied marine organisms)

Extinction of many primitive marine organisms

First sexually reproducingorganisms

Oldest known rocks

Estimated time of originof Earth and solar system

Sediment

Bedrock

Abundant dinosaurs and ammonoids

Earliest dinosaurs

Great diversity of life-forms with shelly parts

Evidence of biologicalcarbon

Earliest stromatolitesOldest microfossils

Oceanic oxygenproduced bycyanobacteriacombines withiron, formingiron oxide layerson ocean floor

Oceanic oxygen begins to enterthe atmosphere

0133704106_A01-A21.indd 100133704106_A01-A21.indd 10 9/25/09 5:51:53 PM9/25/09 5:51:53 PM

Page 18: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-11

Physical Setting/Earth Science Reference Tables — 2010 Edition 9

Grenville orogeny: metamorphism ofbedrock now exposed in the Adirondacksand Hudson Highlands

Advance and retreat of last continental ice

Sands and clays underlying Long Island andStaten Island deposited on margin of AtlanticOcean

Dome-like uplift of Adirondack region begins

Intrusion of Palisades sill

Initial opening of Atlantic OceanNorth America and Africa separate

Pangaea begins to break up

Catskill delta formsErosion of Acadian Mountains

Acadian orogeny caused by collision ofNorth America and Avalon and closing of remaining part of Iapetus Ocean

Salt and gypsum deposited in evaporite basins

Erosion of Taconic Mountains; Queenston deltaforms

Taconian orogeny caused by closing of western part of Iapetus Ocean and collision between North America and volcanic island arc

Widespread deposition over most of New Yorkalong edge of Iapetus Ocean

Rifting and initial opening of Iapetus Ocean

Erosion of Grenville Mountains

OF NEW YORK STATE

MastodontBeluga Whale

CooksoniaBothriolepis

Maclurites EospiriferMucrospiriferAneurophyton

CondorNaples Tree CystiphyllumLichenaria Pleurodictyum

PO RQ S T U V W X Y Z

Platyceras

Time Distribution of Fossils(including important fossils of New York) Important Geologic

Events in New YorkInferred Positions ofEarth’s Landmasses

ESC/BW/TN (2009)

BR

AC

HIO

PO

DS

GA

ST

RO

PO

DSCO

RA

LS

CR

INO

IDS

AM

MO

NO

IDS

VA

SC

UL

AR

PL

AN

TS

TR

ILO

BIT

ES

NA

UT

ILO

IDS

The center of each lettered circle indicates the approximate time of existence of a specific index fossil (e.g. Fossil lived at the end of the Early Cambrian).

BIR

DS

B

M

A

E

C

D

G

H

F

I

J

L

K

N

P

Q

T

U

V

W

X

Y

Z

PL

AC

OD

ER

M F

ISH

R

A

Alleghenian orogeny caused bycollision of North America andAfrica along transform margin,forming Pangaea

119 million years ago

DIN

OS

AU

RS

MA

MM

AL

S

GR

AP

TO

LIT

ES E

UR

YP

TE

RID

S

359 million years ago

458 million years ago

232 million years ago

59 million years ago

O S

0133704106_A01-A21.indd 110133704106_A01-A21.indd 11 9/25/09 5:51:53 PM9/25/09 5:51:53 PM

Page 19: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-12 Appendix

10 Physical Setting/Earth Science Reference Tables — 2010 Edition

12.8–13.1

9.9–12.2

3.4–5.6

3.0 basaltic oceanic crust2.7 granitic continental crust

DENSITY (g/cm3)

0 2000 4000 6000

5000

4000

3000

2000

1000

0

DEPTH (km)

TE

MP

ER

AT

UR

E

(°C

)

1000 3000 5000

6000

ATLANTICOCEAN

NO

RTH

AM

ER

ICA

MOHO

INN

ER

CORE

(IR

ON

&N

ICKEL)

AS

TH

EN

OSPH

ER

E(P

LASTICMANTLE)

EARTH’S CENTER

ST

IFFE

R

MANTLE

MELT

ING

PO

INT

ME

LTIN

G P

OIN

T

OC

EA

N

PA

CIF

IC

LI

THO

SPHERE

}R

IGID

MA

NTLE

CR

US

T

7000

MID-ATLANTIC

RIDGE

OU

TER

CO

RE

(IR

ON

&N

ICKEL)

4

3

2

1

0

PR

ES

SU

RE

(mill

ion

atm

osp

he

res)

PARTIAL MELTING

INTERIO

RTEM

PERATURE

CASCADES

TRENCH

Inferred Properties of Earth’s Interior

0133704106_A01-A21.indd 120133704106_A01-A21.indd 12 9/25/09 5:51:54 PM9/25/09 5:51:54 PM

Page 20: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-13

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

EPICENTER DISTANCE (× 103 km)

P

9 10

S

TR

AV

EL

TIM

E (

min

)

00

Physical Setting/Earth Science Reference Tables — 2010 Edition 11

Earthquake P-Wave and S-Wave Travel Time

0133704106_A01-A21.indd 130133704106_A01-A21.indd 13 9/25/09 5:51:54 PM9/25/09 5:51:54 PM

Page 21: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-14 Appendix

1

– 33

– 28

– 24

– 21

–18

–14

–12

–10

– 7

– 5

– 3

–1

1

4

6

8

10

12

14

16

19

21

23

25

27

29

2

– 36

– 28

– 22

–18

–14

–12

– 8

– 6

– 3

–1

1

3

6

8

11

13

15

17

19

21

23

25

27

0

– 20

–18

–16

–14

–12

–10

– 8

– 6

– 4

– 2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

– 20

–18

–16

–14

–12

–10

– 8

– 6

– 4

– 2

0

2

4

6

8

10

12

14

16

1820

22

24

26

28

30

3

– 29

– 22

–17

–13

– 9

– 6

– 4

–1

1

4

6

9

11

13

15

17

20

22

24

26

4

– 29

– 20

–15

–11

– 7

– 4

– 2

1

4

6

9

11

14

16

18

20

22

24

5

– 24

–17

–11

– 7

– 5

– 2

1

4

7

9

12

14

16

18

21

23

6

–19

–13

– 9

– 5

– 2

1

4

7

10

12

14

17

19

21

7

– 21

–14

– 9

– 5

– 2

1

4

7

10

12

15

17

19

8

–14

– 9

– 5

–1

2

4

8

10

13

16

18

9

– 28

–16

–10

– 6

– 2

2

5

8

11

14

16

10

–17

–10

– 5

–2

3

6

9

11

14

11

–17

–10

– 5

–1

2

6

9

12

12

–19

–10

– 5

–1

3

7

10

13

–19

–10

– 5

0

4

8

14

–19

–10

– 4

1

5

15

–18

– 9

– 3

1

1

28

40

48

55

61

66

71

73

77

79

81

83

85

86

87

88

88

89

90

91

91

92

92

92

93

93

2

11

23

33

41

48

54

58

63

67

70

72

74

76

78

79

80

81

82

83

84

85

86

86

0

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

– 20

–18

–16

–14

–12

–10

– 8

– 6

– 4

– 2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

3

13

20

32

37

45

51

56

59

62

65

67

69

71

72

74

75

76

77

78

79

4

11

20

28

36

42

46

51

54

57

60

62

64

66

68

69

70

71

72

5

1

11

20

27

35

39

43

48

50

54

56

58

60

62

64

65

66

6

6

14

22

28

33

38

41

45

48

51

53

55

57

59

61

7

10

17

24

28

33

37

40

44

46

49

51

53

55

8

6

13

19

25

29

33

36

40

42

45

47

49

9

4

10

16

21

26

30

33

36

39

42

44

10

2

8

14

19

23

27

30

34

36

39

11

1

7

12

17

21

25

28

31

34

12

1

6

11

15

20

23

26

29

13

5

10

14

18

21

25

14

4

9

13

17

20

15

4

9

12

16

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)Dry-BulbTempera -ture (°C)

Dry-BulbTempera -ture (°C)

Dewpoint (°C)

Relative Humidity (%)

12 Physical Setting/Earth Science Reference Tables — 2010 Edition

0133704106_A01-A21.indd 140133704106_A01-A21.indd 14 9/25/09 5:51:54 PM9/25/09 5:51:54 PM

Page 22: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-15

Physical Setting/Earth Science Reference Tables — 2010 Edition 13

Key to Weather Map Symbols

110

100

90

80

70

60

50

40

30

20

10

0

–10

–20

–30

–40

–50

220

200

180

160

140

120

100

80

60

40

20

0

–20

–40

–60

380

370

360

350

340

330

320

310

300

290

280

270

260

250

240

230

220

Fahrenheit(°F)

Water boils

Room temperature

Water freezes

Temperature

Freezingrain

Haze

Rain

FogSnow

Hail Rainshowers

Thunder-storms

Drizzle

Sleet

Smog

Snowshowers

Air Masses

cA

cP

cT

mT

mP

continental arctic

continental polar

continental tropical

maritime tropical

maritime polar

Cold

Warm

Stationary

Occluded

Present Weather Fronts Hurricane

Tornado

30.70

30.60

30.50

30.40

30.30

30.20

30.10

30.00

29.90

29.80

29.70

29.60

29.50

29.40

29.30

29.20

29.10

29.00

28.90

28.80

28.70

28.60

28.50

1040.0

1036.0

1032.0

1028.0

1024.0

1020.0

1016.0

1012.0

1008.0

1004.0

1000.0

996.0

992.0

988.0

984.0

980.0

976.0

972.0

968.0

One atmosphere

Pressureinches

(in of Hg*)Kelvin

(K)Celsius

(°C)millibars

(mb)

196

+19/

.25

28

27

12

Station Model Station Model Explanation

*Hg = mercury

0133704106_A01-A21.indd 150133704106_A01-A21.indd 15 9/25/09 5:51:54 PM9/25/09 5:51:54 PM

Page 23: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-16 Appendix

Gamma rays

X rays

Ultraviolet Infrared

Microwaves

Radio waves

Visible light

Violet Blue Green Yellow Orange Red

Decreasing wavelength Increasing wavelength

(Not drawn to scale)

Electromagnetic Spectrum

DRY

60° SWET

DRY

S.E.

N.W.Winds

30° S

60° N

30° N

WET

DRY

S.E.Winds

N.E.Winds

N.E.

S.W.Winds

DRY

Tropopause

Polar front

Polar front jet stream

Subtropicaljet streams

Polar front jet stream

WET

Sea Level

Alt

itu

de

Temperature Zones

Mesopause

Mesosphere

Stratopause

Stratosphere

Troposphere

Temperature(°C)

–100° 0° 100°–90° –55° 15°

Pressure(atm)

Atmospheric Pressure

0 20 40

Concentration(g/m3)

WaterVapor

km mi

Thermosphere(extends to 600 km)

0 1.0

40 25

80 50

120 75

160 100

0 0

Tropopause

14 Physical Setting/Earth Science Reference Tables — 2010 Edition

Planetary Wind and MoistureBelts in the Troposphere

The drawing on the right shows the

locations of the belts near the time of an

equinox. The locations shift somewhat

with the changing latitude of the Sun’s

vertical ray. In the Northern Hemisphere,

the belts shift northward in the summer

and southward in the winter.

(Not drawn to scale)

Selected Properties of

Earth’sAtmosphere

0133704106_A01-A21.indd 160133704106_A01-A21.indd 16 9/25/09 5:51:55 PM9/25/09 5:51:55 PM

Page 24: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

Appendix A-17

Physical Setting/Earth Science Reference Tables — 2010 Edition 15

Solar System DataCelestial

Object

Mean Distance

from Sun

(million km)

Period of

Revolution

(d=days) (y=years)

Period of

Rotation at Equator

Eccentricity

of Orbit

Equatorial

Diameter

(km)

Mass

(Earth = 1)

Density

(g/cm3)

SUN — — 27 d — 1,392,000 333,000.00 1.4

MERCURY 57.9 88 d 59 d 0.206 4,879 0.06 5.4

VENUS 108.2 224.7 d 243 d 0.007 12,104 0.82 5.2

EARTH 149.6 365.26 d 23 h 56 min 4 s 0.017 12,756 1.00 5.5

MARS 227.9 687 d 24 h 37 min 23 s 0.093 6,794 0.11 3.9

JUPITER 778.4 11.9 y 9 h 50 min 30 s 0.048 142,984 317.83 1.3

SATURN 1,426.7 29.5 y 10 h 14 min 0.054 120,536 95.16 0.7

URANUS 2,871.0 84.0 y 17 h 14 min 0.047 51,118 14.54 1.3

NEPTUNE 4,498.3 164.8 y 16 h 0.009 49,528 17.15 1.8

EARTH’S

MOON149.6

(0.386 from Earth)27.3 d 27.3 d 0.055 3,476 0.01 3.3

Characteristics of Stars(Name in italics refers to star represented by a .)

(Stages indicate the general sequence of star development.)

Color

Surface Temperature (K)

0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Lu

min

osit

y(R

ate

at

wh

ich

a s

tar

em

its e

ne

rgy r

ela

tive

to

th

e S

un

)

20,000 10,000 8,000 6,000 4,000 3,000

Blue Blue White White Yellow

2,000

RedOrange

Sirius

Spica

Polaris

Rigel

Deneb Betelgeuse

SUPERGIANTS(Intermediate stage)

(Intermediate stage)GIANTS

Barnard’sStar

ProximaCentauri

Pollux

Alpha Centauri

Aldebaran

Sun

Procyon B SmallStars

MassiveStars

WHITE DWARFS(Late stage)

MAINSEQUENCE

(Early stage)

40 Eridani B

30,000

0133704106_A01-A21.indd 170133704106_A01-A21.indd 17 9/25/09 5:51:55 PM9/25/09 5:51:55 PM

Page 25: Reference Table TOPIC - Pearson Educationassets.pearsonschool.com/asset_mgr/legacy/200941/...Page 296 Page 296 Page 297. Appendix. A-1. Using the Reference Tables. You should become

A-18 Appendix

1–2�

silver togray

black streak,greasy feel

pencil lead,lubricants C Graphite

2.5 �metallicsilver

gray-black streak, cubic cleavage,density = 7.6 g/cm3

ore of lead,batteries PbS Galena

5.5–6.5 �black tosilver

black streak,magnetic

ore of iron,steel Fe3O4 Magnetite

6.5 �brassyyellow

green-black streak,(fool’s gold)

ore ofsulfur FeS2 Pyrite

5.5 – 6.5or 1 �

metallic silver orearthy red red-brown streak ore of iron,

jewelry Fe2O3 Hematite

1 �white togreen greasy feel ceramics,

paper Mg3Si4O10(OH)2 Talc

2 �yellow toamber white-yellow streak sulfuric acid S Sulfur

2 �white to

pink or grayeasily scratched

by fingernailplaster of paris,

drywall CaSO4•2H2O Selenite gypsum

2–2.5 �colorless to

yellowflexible in

thin sheets paint, roofing KAl3Si3O10(OH)2 Muscovite mica

2.5 �colorless to

whitecubic cleavage,

salty tastefood additive,

melts ice NaCl Halite

2.5–3 �black to

dark brownflexible in

thin sheetsconstruction

materialsK(Mg,Fe)3

AlSi3O10(OH)2Biotite mica

3 �colorless

or variablebubbles with acid,

rhombohedral cleavagecement,

lime CaCO3 Calcite

3.5 �colorless

or variablebubbles with acidwhen powdered

buildingstones CaMg(CO3)2 Dolomite

4 �colorless or

variablecleaves in

4 directionshydrofluoric

acid CaF2 Fluorite

5–6 �black to

dark greencleaves in

2 directions at 90°mineral collections,

jewelry(Ca,Na) (Mg,Fe,Al)

(Si,Al)2O6Pyroxene

(commonly augite)

5.5 �black to

dark greencleaves at

56° and 124°mineral collections,

jewelryCaNa(Mg,Fe)4 (Al,Fe,Ti)3

Si6O22(O,OH)2

Amphibole(commonly hornblende)

6 �white to

pinkcleaves in

2 directions at 90°ceramics,

glass KAlSi3O8Potassium feldspar

(commonly orthoclase)

6 �white to

graycleaves in 2 directions,

striations visibleceramics,

glass (Na,Ca)AlSi3O8 Plagioclase feldspar

6.5 �green to

gray or browncommonly light green

and granularfurnace bricks,

jewelry (Fe,Mg)2SiO4 Olivine

7 �colorless or

variableglassy luster, may form

hexagonal crystalsglass, jewelry,

electronics SiO2 Quartz

6.5–7.5 �dark redto green

often seen as red glassy grainsin NYS metamorphic rocks

jewelry (NYS gem),abrasives Fe3Al2Si3O12 Garnet

16 Physical Setting/Earth Science Reference Tables — 2010 Edition

HARD- COMMON DISTINGUISHINGLUSTER NESS COLORS CHARACTERISTICS USE(S) COMPOSITION* MINERAL NAME

No

nm

etal

lic lu

ster

*Chemical symbols: Al = aluminum Cl = chlorine H = hydrogen Na = sodium S = sulfur C = carbon F = fluorine K = potassium O = oxygen Si = siliconCa = calcium Fe = iron Mg = magnesium Pb = lead Ti = titanium

� = dominant form of breakage

Met

allic

lust

erE

ither

FR

AC

TU

RE

CL

EA

VAG

E

Properties of Common Minerals

0133704106_A01-A21.indd 180133704106_A01-A21.indd 18 9/25/09 5:51:55 PM9/25/09 5:51:55 PM