REFERENCE -...

21
116 REFERENCE A Afreen Banu, Vandana Rathod and E. Ranganath. (2011 a). Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of P. aeruginosa from burnt patients. International Journal of Environmental Sciences. 1(7):1582-1592. Afreen Banu, Vandana Rathod and E. Ranganath. (2011 b). Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. Materials Research Bulletin. 46: 1417-1423. Afreen banu and Vandana Rathod. (2011c). Synthesis and characterization of silver nanoparticles by Rhizopus stolonifer. International Journal of Biomedical and Advance research. 2(5):148-158. Ali Akbar Ashkarran, Mahdi Ghavami, Hossein Aghaverdi, Pieter Stroeve, and Morteza Mahmoudi. (2012). Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chem. Res. Toxicol. 25: 1231-242. Amber Nagy, Alistair Harrison, Supriya Sabbani, Robert S Munson, Prabir K Dutta and W James. (2011). Waldman1Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine. 6: 18331852 Amorena, B., E. Gracia, M. Monzon, J. Leiva, C. Oteiza, M. Perez, J.-L. Alabart, and J. Hernandez-Yago. (1999). Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 44:43-55 Aniket Gade K, Bonde P P, Ingle A P, Marcato P, Duran N, Rai M K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy. 2: 243-247. Anil Kumar S, Majid Kazemian Abyaneh, Gosavi S W, Sulabha K Kulkarni, Renu Pasricha, Absar Ahmad and Khan M I. (2007). Nitrate reductase-mediated

Transcript of REFERENCE -...

116

REFERENCE

A Afreen Banu, Vandana Rathod and E. Ranganath. (2011 a). Synthesis of

monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial

activity against MDR strains of P. aeruginosa from burnt patients. International

Journal of Environmental Sciences. 1(7):1582-1592.

Afreen Banu, Vandana Rathod and E. Ranganath. (2011 b). Silver nanoparticle

production by Rhizopus stolonifer and its antibacterial activity against extended

spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. Materials

Research Bulletin. 46: 1417-1423.

Afreen banu and Vandana Rathod. (2011c). Synthesis and characterization of

silver nanoparticles by Rhizopus stolonifer. International Journal of Biomedical

and Advance research. 2(5):148-158.

Ali Akbar Ashkarran, Mahdi Ghavami, Hossein Aghaverdi, Pieter Stroeve, and

Morteza Mahmoudi. (2012). Bacterial Effects and Protein Corona Evaluations:

Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of

Silver Nanoparticles. Chem. Res. Toxicol. 25: 1231-242.

Amber Nagy, Alistair Harrison, Supriya Sabbani, Robert S Munson, Prabir K

Dutta and W James. (2011). Waldman1Silver nanoparticles embedded in zeolite

membranes: release of silver ions and mechanism of antibacterial action.

International Journal of Nanomedicine. 6: 1833–1852

Amorena, B., E. Gracia, M. Monzon, J. Leiva, C. Oteiza, M. Perez, J.-L. Alabart,

and J. Hernandez-Yago. (1999). Antibiotic susceptibility assay

for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob.

Chemother. 44:43-55

Aniket Gade K, Bonde P P, Ingle A P, Marcato P, Duran N, Rai M K. (2008).

Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased

Mater Bioenergy. 2: 243-247.

Anil Kumar S, Majid Kazemian Abyaneh, Gosavi S W, Sulabha K Kulkarni,

Renu Pasricha, Absar Ahmad and Khan M I. (2007). Nitrate reductase-mediated

117

synthesis of silver nanoparticles from AgNO3.Biotechnol Lett 29:439-445. doi:

10.1007/s10529-006-9256-7

Aruna Jyothi Kora and J. Arunachalam. (2010). Assessment of antibacterial

activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of

action. World Journal of Microbiology and Biotechnology. 27 (5):1209-1216.

Arteel. (2003). Oxidants and antioxidants in alcohol induced liver disease.

Gastroenterol. 124:778-790.

Asharani P V, Prakash Hande M and Suresh Valiyaveettil. (2009). Anti-

proliferative activity of silver nanoparticles. BMC Cell Biology. 10:65. 14 pages.

Avinash Ingle, Gade Aniket, Pierrat S, Sönnichsen C, Rai M. (2008).

Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum

and its activity against some human pathogenic bacteria. Curr Nanosci , 4:141-

144.

Avinash Upadhyay, Kakoli Upadhyay and Nirmalendu Nath. (2005). Biophysical

Chemistry: principles and Techniques. Himalaya Publishing House.

Avinash Gole, Chandravanu Dash, Vidya Ramakrishnan, S. R. Sainkar, A. B.

Mandale, Mala Rao, and Murali Sastry. (2001). Pepsin gold colloid conjugates:

preperation, characterization and enzymatic. Langmuir. 17:1677-1679.

B

Beyer, Steketee and Saphier. (1998). Antioxidant properties of melatonin—an

emerging mystery. Biochemical Pharmacology. 56:1265-1272.

Biswajoy Bagchi, Sumit Dey, Suman Bhandary, Sukhen Das, Alakananda

Bhattacharya, Ruma Basu and Papiya Nandy. (2012). Antimicrobial efficacy and

biocompatibility study of copper nanoparticle adsorbed mullite aggregates.

Materials Science and Engineering. doi:10.1016/j.msec.2012.05.011

Black V A and Njewel G. (2010). Search for the next silver bullet: A review of

literature. Journal of Arkanas Academy of Sciences. 64:50-56.

118

Bolton, Trush, Penning, Dryhurst, Monks. (2000). Role of quinones in toxicology.

Chem. Res. Toxicol. 13:135-160.

Buyukokuroglu, Gulcin, Oktay and Kufrevioglu. (2001). In vitro antioxidant

properties of dantrolene sodium. Pharmacol. Res. 44:491-494.

C

Castrillon Rivera Laura E and Ramos Palma A: (2012). Biofilms: a survival and

resistance mechanism of microorganisms, antibiotic resistant bacteria - a

continuous challenge in the new millennium, Dr. Marina Pana (Ed.) ISBN: 978-

953-51-0472-8, InTech.

Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E. and Mannari, R.

J. (2007). Comparative evaluation of silver-containing antimicrobial dressings and

drugs. International Wound. 4(2): 114-122.

Catalina Marambio-Jones and Eric M. V. Hoek. (2012). A review of the

antibacterial effects of silver nanomaterials and potential implications for human

health. Journal of Nanoparticle Research. 12(5):1531-1551.

Charles. L. Fox. (1968). Silver sulfadiazine: a new topical therapy for

Pseudomonas aeruginosa in burns. Achieves of Surgery. 96(2):184-188.

doi:10.1001/archsurg.1968.01330200022004.

Chen X and Schluesener H J. (2008). Nanosilver: A nanoproduct in medical

application. Toxicology Letters. 176: 1–12. doi:10.1016/j.toxlet.2007.10.004

Christensen G D, Simpson W A, Bisno A L and Beachey A H. (1982). Adherence

of slime producing strains of Staphylococcus epidermis to smooth surfaces. Infect

Immun. 37: 318-320.

Chusri S, Sompetch K, Mukdee S, Jansrisewangwong, Srichai T et al., (2012).

Inhibition of Staphylococcus epidermis biofilm formation by traditional Thai

herbal recipes used for wound treatment. Evidence based complementary and

Alternative medicine. Volume 2012, Article ID: 159797, 8 pages. doi:

10.1155/2012/159797.

Conrand A H, Tramp C R, Long C J, Wells D C, Paulsen A Q and Conrand W.

(1999). Ag+ alters cell growth, cardiomyocyte beating and fertilized egg

constriction. Aviation, Space and Environmental Medicine. 70(11):1096-1101.

119

Costerton, W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., Ehrlich G. (2003).

The application of biofilm science to the study and control of chronic bacterial

infections. J. Clin. Invest. 112: 1466–1477

Cristina Buzea, Ivan. I. Pacheco Blandino, and Kevin Robbie. (2007).

Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2(4)

MR17 - MR172.

D

Dattu Singh, Vandana Rathod, Shivaraj Ninganagouda, Jyothi Hiremath and

Prema Kulkarni. (2013). Biosynthesis of silver nanoparticles by endophytic fungi

Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial

activity against pathogenic gram negative bacteria. Journal of Pharmacy

Research. 7:448-453.

Dattu Singh, Vandana Rathod, Shivaraj Ninganagouda, Jyothi Hiremath, Ashish

Kumar Singh and Jasmine Methew. (2014 a). Optimization and Characterization

of silver nanoparticles by endophytic fungi Penicillium sp. isolated from Curcuma

longa (turmeric) and Application studies against MDR E. coli and S. aureus.

Bioinorganic Chemistry and Applications. Vol. 2014, 8 pages, Article ID 408021,

http://dx.doi.org/10.1155/2014/408021 2014.

Dattu Singh, Vandana Rathod, Labeenah Fatima, Ameena Kausar, Vidyashree,

Nishat Anjum, Priyanka. B. (2014 b). Biologically Reduced Silver Nanoparticles

from Streptomyces sp. VDP-5 and its Antibacterial Efficacy. International Journal

of Pharmacy and Pharmaceutical Science Research. 4 (2):31-36.

David Pozo Perez. (2010). Silver Nanoparticles. In-the Olajnica 19/2, 32000

Vukovar, Croatia. www.intechweb.org

Deepika Hebbalalu, Jacob Lalley, Mallikarjuna N Nadagouda and Rajendra S

Verma. (2013). Greener techniques for the synthesis of silver nanoparticles using

plant extracts, Enzymes, Bacteria, Biodegradable polymers and Microwaves. ACS

Sustainable Chem. Eng. 1:703-712.

Demling R and DeSanti L. (2001). The role of silver technology in wound

healing: Part 1: Effects of silver on wound management. Wounds: A

Compendium of Clinical Research and Practice. 13 (Suppl A):4–15

120

Donlan M Rodney and Costerton William J. (2002). Biofilms: survival

mechanisms of clinically relevant microorganisms. Clin Microb Rev. 15:167–193

Douglas Roberto Monteiro, Luiz Fernando Gorup, Aline Satie Takamiya,

Adhemar Colla Ruvollo Filho, Emerson Rodrigues de Camargo and Debora

Barros Barbosa. (2009). The growing importance of materials that prevent

microbial adhesion: antimicrobial effect of medical devices containing silver.

International Journal of Antimicrobial Agents. 34: 103-110.

Dubey R C and Maheshwari D K. (2002). Practical Microbiology. S. Chand

limited. 397 pages. 8121921538, 9788121321534 ISBN

E

Elvio Amato, Yuri A. Diaz-Fernandez, Angelo Taglietti, Piersandro Pallavicini

and Luca Pasotti. (2011). Synthesis, Characterization and Antibacterial Activity

against Gram Positive and Gram Negative Bacteria of Biomimetically Coated

Silver Nanoparticles. Langmuir. 27:9165–9173. dx.doi.org/10.1021/la201200r

El-Ansary A and Al-Daihan S. (2009). On the Toxicity of Therapeutically Used

Nanoparticles: An Overview. Journal of Toxicology. Volume 2009, Article ID

754810, 9 pages. doi:10.1155/2009/754810

Environmental Protection Agency (U. S). (2010). State of the science literature

review: Everything nanosilver and more. Office of research and development,

Washington, DC. www.epa.gov.

Eva M Luther, Yvonne Koehler, Joerg Diendorf, Matthias Epple and Ralf

Dringen. (2011). Accumulation of silver nanoparticles by cultured primary brain

astrocytes. Nanotechnology. 22: 375101.11 pages.

Evans, D. J., D. G. Allison, M. R. W. Brown, and P. Gilbert. (1990). Effect of

growth-rate on resistance of gram-negative biofilms to cetrimide. J. Antimicrob.

Chemother. 26:473-478

F Faiez Alani, Murray Moo-Young and William Anderson. (2011). Biosynthesis of

silver nanoparticles by a new strain of Streptomyces sp. compared with

121

Aspergillus fumigates. World J Microbiol Biotechnol. DOI.10.1007/s11274-011-

0906-0

Feng Q. L, Wu J, Chen G. Q, Kim T. N and Kim J. O. (2000). A mechanistic

study of the antibacterial effect of silver ions on Escherichia coli and

Staphylococcus aureus. Journal of Biomedical Materials Research. 52 (4):662–

668.

Flemming H C, Wingender J. (2010). The biofilm matrix. Nature Rev Microbiol.

8:623–633.

Freeman D J, Falkiner F R and Keane C T. (1989). New method for detecting

slime production by coagulase negative Staphylococci. J Clin Pathol. 42: 872-874.

G Guangquan Li, Dan He, Yongqing, Buyuan Guan, Song Gao, Yan Cui, Koji

Yokoyama, Li Wang. (2012). Fungus-Mediated Green Synthesis of Silver

Nanoparticles Using Aspergillus terreus. International Journal of Molecular

Sciences. 13:466-476.

Guidi, Galimberti, Lonati, Novembrino, Bamonti, Tiriticco, Fenoglio, Venturelli,

Baron, Bresolin. (2006). Oxidative imbalance in patients with mild cognitive

impairment and Alzheimer‘s disease. Neurobiol. Aging. 27:262-269.

H

Halliwell. (1994). Free radicals, antioxidants and human disease: Curiosity, cause

or consequence. Lancet. 344:721-724.

Halliwell. (1995). How to characterize an antioxidant: an update. Biochem. Soc.

Symp. 61:73-101.

Hemath Naveen K S, Gaurav Kumar, Karthik L and Bhaskar Rao K V. (2010).

Extracellular biosynthesis of silver nanoparticles using the filamentous fungus

Penicillium sp. Archives of Applied Science Research. 2(6): 161-167.

Hengyi Xu, Feng Qu, Hong Xu, Weihua Lai, Andrew Wang Y, Zoraida P Aguilar

and Hua Wei. (2012). Role of reactive species in the antibacterial mechanism of

silver nanoparticles on Escherichia coli 0157:H7. Biometals, 25: 45-53.

122

Holt K B and Bard A J. (2005). Interaction of silver (I) ions with the respiratory

chain of E.coli, an electrochemical and scanning electrochemical microscopy

study of the antimicrobial mechanism of micromolar Ag+. Biochemi. 44:13214-

13223.

Hong-Juan Bai, Bin-Sheng Yang, Chun-Jing Chai, Guan-E Yang, Wan-LI Jia and

Zhi-Ben Yi. (2011). Green synthesis of silver nanoparticles using Rhodobacter

sphaeroides. World J Microbiol Biotechnol. 27: 2723-2728. Doi:

10.1007/s11274-011-0747-x.

Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D and Hao B.

(2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir

24:4140–4144. doi: 10.1021/la7035949

Huh A J, Kwon Y J. (2011). ‘‘Nanoantibiotics’’: a new paradigm for treating

infectious diseases using nanomaterials in the antibiotics resistant era. J Control

Release 156:128–145. doi:10.1016/j.jconrel.2011.07.002

Humberto H. Lara, Nilda V, Ayala-Nunez, Liliana Del Carmen Ixtepan Turrent

and Cristina Rodriguez Padilla. (2010). Bactericidal effect of silver nanoparticles

against multidrug- resistant bacteria. World J Microbiol. Biotechnol. 26: 615-621.

Hyun, Hernandez, Mattson, de Cabo. (2006). The plasma membrane redox system

in aging. Aging Res. Rev. 5:209-220.

http://articles.economictimes.indiatimes.com/2014-06-

10/news/50478742_1_nanotechnology-india-professionals

http://timesofindia.indiatimes.com/home/science/Govt-approves-Rs-650-crore-

for-Nano-mission/articleshow/30722422.cms

http://www.innoresearch.net Dr. Thomas Abraham, Innovative Research and

Products, USA.

http://web.eng.fiu.edu/npala/EEE5425/EEE5425_Ch1_Why%20Nano_Part1_Slid

es_v1.pdf

http://www.nano.gov/html/facts/faqs.html National Nanotechnology Initiative

(NNI)

123

http://www.nanotechproject.org/inventories/consumer/analysis_draft/

Nanotechnology-based consumer products, Project on Emerging

Nanotechnologies, Woodrow Wilson Center.

http://wikieducator.org/Bacterial_Structure

I Ian Chopra. (2007). The increasing use of silver-based products as antimicrobial

agents: a useful development or a cause for concern?. Journal of Antimicrobial

Chemotherapy. 59: 587–590.

Ivan Sondi and Salopek-Sondi. (2004). Silver nanoparticles as antimicrobial

agent: a case study on E.coli as a model for Gram negative bacteria. Journal of

Colloid and Interface Science. 275 (1):177-182.

J

Jaidev L R and Narasimha G. (2010). Fungal mediated biosynthesis of silver

nanoparticles, characterization and antimicrobial activity. Colloids and Surfaces

B: Biointerfaces. 81: 430-433.

Jaione Valle, Sandra Da Re, Nelly Henry, Thierry Fontaine and Damien

Balestrino et al., (2006). PNAS. 130 (33): 12558-12563.

Jainu and Shyamala Devi. (2005). In vitro and in vivo evaluation of free radical

scavenging potential of Cissus quadrangularis. Afr. J. Biomed. Res. 8:95-99.

Jeevan P, Ramya K and Edith Rena A. (2012). Extracellular biosynthesis of silver

nanoparticles by culture supernatant of Pseudomonas aeruginosa. Indian Journal

of Biotechnology. 11:72-76.

Johana M G and Saraha S S. (2012). Protein and peptide biotemplated metal and

metal oxide nanoparticles and their pattern onto surfaces. Journal of Materials

Chemistry. 22 (25):12423-12434.

Joseph A. Lemire, Joe J. Harrison and Raymond J. Turner. (2013). Antimicrobial

activity of metals: mechanisms, molecular targets and applications. Nature

reviews. 11 (6):371-384.

124

Joshia M, Bhattacharyya A and Wazed Ali S. (2008). Characterization techniques

for nanotechnology applications in textiles. Indian Journal of Fibre & Textile

Research. 33: 304-317.

Justin Packia Jacob S, Anand Narayanan P R and Finub J S. (2013). Green

synthesis of silver nanoparticles using Piper nigram leaf extracts and its cytotoxic

activity against HEP-2 cell line. World Journal of Pharmaceutical Research. 2

(5):1607-1616.

Jun Sung Kim, Eunye Kuk, Kyeong Nam Yu, Jong-Ho Kim, Sung Jin Park and

Hu Jang Lee et al., (2007). Antimicrobial effects of silver nanoparticles.

Nanomedicine. 3 (1):95-101.

Jyothi Hiremath, Vandana Rathod, Shivaraj Ninganagouda, Dattu Singh and

Kulkarni Prema. (2014). Antibacterial Activity of Silver Nanoparticles from

Rhizopus spp Against Gram Negative E.coli-MDR Strains. Journal of Pure and

Applied Microbiology. 8 (1) 555-562.

K Karlapudi P Abraham, Jagrlapudi Sreenivas, Tirupati C Venkateshwarulu, Mikkili

Indira, Dulla John Babu, Tella Diwakar and Kodali V Prabhakar. (2012).

International Journal of pharmacy and pharmaceutical sciences. 4 (4): 282-285.

Karla Chaloupka, Yogeshkumar Malam and Alexander M Seifalian. (2010).

Nanosilver as a new generation of nanoproduct in biomedical applications. Trends

in Biotechnology. 28 (11).580-588.

Kaushik N Thakkar, Snehit S Mhatre and Rashesh Y. (2009). Biological synthesis

of metal nanoparticles. Nanomedicine: Nanotechnology, Biology, and

Medicine.1-6. doi:10.1016/j.nano.2009.07.002

Khabat Vahabi, G.Ali Mansoori and Sedighe Karimi. (2011). Biosynthesis of

Silver Nanoparticles by Fungus Trichoderma Reesei. In sciences J. 1 (1):65-79.

doi:10.5640/insc.010165

Khaydarov R R, Khaydarov R A,Estrin Y, Evgrafova S, Scheper T, Endres C and

Cho S Y. (2009). Silver Nanoparticles. I. Linkov and J. Steevens (eds.),

Nanomaterials: Risks and Benefits. 287-297.

125

Kim Soo-Hwan, Hyeong-Seon Lee, Deok-Seon Ryu, Soo-Jae Choi1 and Dong-

Seok Lee. (2011). Antibacterial activity of Silver –nanoparticles against

Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and

Biotechnology, 39 (1):77-85.

Kim J Y, Lee C, Cho M and Yoon J. (2008). Enhanced inactivation of E.coli and

MS-2 phage by silver ions combined with UV-A and visible light irradiation.

Water Res. 42:356-362.

Kinnula and Crapo. (2004). Superoxide dismutases in malignant cells and human

tumors. Free Rad. Biol. Med. 36:718-744.

Kiruba Daniel S C G, Anita Siromani T, Tharmaraj V and Pitchumani K. (2011).

Synthesis and characterization of fluorophore attached silver nanoparticles. Bull

Mater Sci. 34 (4): 639-643.

Klasen H J. (2000). Historical review of the use of silver in the treatment of burns.

I. Early uses. Burns. 26:117-130.

Kornphimol Kulthong, Sujittra Srisung, Kanittha Boonpavanitchakul, Wiyong

Kangwansupamonkon and Rawiwan Maniratanachot. (2010). Determination of

silver nanoparticle release from antibacterial fabrics into artificial sweat. Particle

and Fibre Toxicology. 7:8. http://www.particleandfibretoxicology.com/content/7/1/8

Kumar P, Senthamilselvi S, Lakshmiprabha A, Premkumar K and Muthukumaran

R et al., (2012). Efficacy of biosynthesized silver nanoparticles using

Acanthophora spicifera to encumber biofilm formation. Digest Journal of

Nanomaterials and Biostructures. 7(2): 511-522.

Kyung-Hwan Cho, Jong-Eun Park, Tetsuya Osaka and Soo-Gil Park. (2005). The

study of antimicrobial activity and preservative effects of nanosilver ingredient.

Electrochim Acta. 51 (5): 956-960.

L

Lansdown, A. B. (2002). Silver. Its antibacterial properties and mechanism of

action. J. Wound Care. 11:125–130.

Lei Lu, Raymond Wai-Yin Sun, Rong Chen, Chee-Kin Hui and Chi-Ming Ho et

al., (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral

Therapy.13:253-262.

126

Liu J and Hurt R H. (2010). Ion Release Kinetics and Particle Persistence in

Aqueous Nano-Silver Colloids. Environmental Science & Technology. 44:2169-

2175.

Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J and Che C. (2006).

Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J

Proteome Res. 5:916–924. doi:10.1021/pr0504079

Luanne Hall-Stoodley, William Costerton and Paul Stoodley. (2009). Bacterial

biofilms: from the Natural environment to infectious diseases. Nature Reviews

Microbiology, 2: 95–108. doi: 10.1038/nrmicro821

Luciana Din, Elisa Panzarin, Antonio Serr, Alessandro Buccolier and Daniela

Manno. (2011). Synthesis and in vitro cytotoxicity of glycans-capped silver

nanoparticles. Nanomater. Nanotechnol. 1(1): 58-64.

Lucian Mocan. (2013). Nanotechnology based platforms for the Treatment of

Infectious Diseases. Biotechnology, molecular biology and nanomedicine. 1(2):

25-30

Luke A Clifton, Maximillan W A Skoda, Emma L Daulton, Arwel V Hughes,

Anton P Le Brun, Jeremy H Lakey and Stephen A Holt. (2013). Asymmetric

phospholipid: Lipopolysaccharide bilayers; a Gram-negative bacterial outer

membrane mimic. Journal of The royal society interface. 10:20130810, 11 pages.

http://dx.doi.org/10.1098/rsif.2013.0810

M

Mah T, O’Toole G. (2001). Mechanisms of biofilm resistance to antimicrobial

agents. Trends in Microbiology. 9:34.

Mahendra Rai, Alka Yadav, Aniket Gade. (2009). Silver nanoparticles as a

new generation of antimicrobials. Biotechnology Advances. 27(1): pp. 76 -

83.

Mahendra Rai, Aniket Gade, and Alka Yadav. (2011). Biogenic Nanoparticles:

An Introduction to What They Are, How They Are Synthesized and Their

Applications. Metal Nanoparticles in Microbiology. DOI 10.1007/978-3-642-

18312-6, Springer Heidelberg Dordrecht London New York.

127

Majed M Masadeh, Ghadah A Karasneh, Mohammad A Al-Akhras, Borhan A

Albiss, Khaled M. Aljarah et al., (2014). Cerium oxide and iron oxide

nanoparticles abolish the antibacterial activity of ciprofloxacin against gram

positive and gram negative biofilm bacteria. Cytotechnology. DOI

10.1007/s10616-014-9701-8.

Meiwan Chen, Zhiwen Yang, Hongmei Wu, Xin Pan, Xiaobao Xie and Chuanbin

Wu. (2011). Antimicrobial activity and the mechanism of silver nanoparticle

thermosensitive gel. International Journal of Nanomedicine. 6:2873-2877.

doi: 10.2147/IJN.S23945

Mikihiro Yamanaka, Keita Hara, and Jun Kudo. (2005). Bactericidal actions of a

Silver ion solution on Escherichia coli, studied by Energy-Filtering Transmission

Microscopy and Proteomic analysis. Applied and Environmental Microbiology.

71 (11):7589-7593.

Minnamari Vippola, Delphine Bard, Essi Sarlin, Timo Tuomi and Antti

Tossavainen. (2009). Nanoatlas of selected engineered nanoparticles. Finnish

Institute of Occupational Health Helsinki.

Mohammad J Hajipour, Katharina M Fromm, Ali Akbar Ashkarran, Dorleta

Jimenez de Aberasturi and Idoia Ruiz de Larramendi et al., (2012). Antibacterial

properties of nanoparticles. Trends in Biotechnology.

Doi:10.1016/j.tibtech.2012.06.004, 2012.

Monali Gajbhiye, Jayendra Keshrwani, Avinash Ingle, Aniket Gade and

Mahendra Rai. (2009). Fungus mediated synthesis of silver nanoparticles and

their activity against pathogenic fungi in combination with flucanazole.

Nanomedicine: Nanotechnology, Biology and Medicine. 5:382-386.

Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Tapia J Yacaman

M J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology. 16:

2346– 2353.

Moyer, C.A. Brentano, L. Gravens, D.L. Margraf, H.W. and Monafo, W.W.

(1965). Treatment of large human burns with 0.5 percent silver nitrate solution.

Archives of Surgery. 90:812-867, ISSN 0272-5533.

Mritunjai Singh, Shinjini Singh, Prasad S and Gambhir I S. (2008).

Nanotechnology in medicine and antibacterial effect of silver nanoparticles.

Digest Journal of Nanomaterials and Biostructures. 3 (3):115-122.

128

Murali Sastry, Absar Ahmad, Khan M I and Kumar R. (2003). Biosynthesis of

metal nanoparticles using fungi and Actinomycete. Curr Sci. 85:162-170.

Muthu Irulappan Sriram, Selvaraj Barath Mani Kanth, Kalimuthu Kalishwaralal

and Sangiliyandi Gurunathan. (2010). Antitumor activity of silver nanoparticles in

Daltons lymphoma ascites tumor model. International Journal of Nanomedicine.

5: 753-762.

N

Navin Jain, Arpit Bhargava, Sonali Majumdar, Tarafdar J C and Jitendra Panwar.

(2011). Extracellular biosynthesis and characterization of silver nanoparticles

using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 3: 635-

641.

Navindra Kumari Palaniswamy, Nas Ferina, Athirah Nur Amirulhusni and Zaini

Mohd-Zain et al., (2014). Antibiofilm properties of chemically synthesized silver

nanoparticles found against Pseudomonas aeruginosa. Journal of

Nanobiotechnology. 12:2. 7 pages.

Neelofar Khanam and G.K. Sharma. (2013). A critical review on antioxidant and

antimicrobial properties of Aloe vera l. International Journal of Pharmaceutical

Sciences and Research. 4(9): 3304-3316.

Nel A E, Madler L, Velegol D, Xia T, Hoek E M, Somasundaran P, Klaessig F,

Castranova V and Thompson M. (2009). Understanding biophysicochemical

interactions at the nano-bio interface. Nat Mater 8:543–557. doi:

10.1038/nmat2442.

Nelson Duran, Marcato P D, Alves O L and Souza G. (2005). Mechanistic aspects

of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains.

Journal of Nanobiotechnology. doi: 10.1186/1477- 3155-3-8.

129

P

Panchaxari Dandagi, Punit Patel, Pravin Patil, Vinayak Mastiholimath and Anand

Gadad. (2011). Development and characterization of a particulate drug delivery

system for Etoposide. Indian Journal of Novel Drug Delivery. 3(1):43-51.

Pavan Kumar Bellamakondi, Ashok Godavarthi, Mohammed Ibrahim, Seetaram

Kulkarni, Ramchandra Naik M, Maradam Sunitha.(2014). In vitro Cytotoxicity of

Caralluma species by MTT and Trypan blue dye exclusion. Asian J Pharm Clin Res.

7 (2):17-19.

Pal S, Tak Y K, Song J M. (2007). Does the antibacterial activity of silver

nanoparticles depend on the shape of the nanoparticle? A study of the Gram-

negative bacterium Escherichia coli. Appl Environ Microbiol. 73:1712–1720. doi:

10.1128/ AEM.02218-06

Petica A, Gavriliu S, Buruntae N and Panzaru C. (2008). Colloidal silver solutions

with antimicrobial properties. Materials, Science and Engineering. 152 (3):22-27.

Prajna Jena, Soumitra Mohanty, Rojee Mallick, Biju Jacob and Avinash

Sonawane. (2012). Toxicity and antibacterial assessment of chitosan coated silver

nanoparticles on human pathogens and macrophage cells. International Journal of

Nanomedicine. 7: 1805-1818.

Pratik R Chaudhari, Shalaka A Masurkar, Vrishali B Shidore and Suresh P

Kamble. (2012). Effect of biosynthesized silver nanoparticles on Staphylococcus

aureus biofilm quenching and prevention of biofilm formation. Nano-Micro

Letters. 4(1): 34-39.

Prashant Mohanpuria, Nisha K. Rana and Sudesh Kumar Yadav. (2008).

Biosynthesis of nanoparticles: technological concepts and future applications.

Journal of Nanoparticle Research. 10 (3):507-517.

Prema P and Rincy Raju. (2009). Fabrication and Characterization of silver

nanoparticles and its potential antibacterial activity. Biotechnology and

Bioprocess Engg. 14: 842-847.

Prema Kulkarni, Vandana Rathod, Jyoti H, Shivaraj Patil, Dattu S and

Krishnaveni R. (2014). Production of silver nanoparticles using Aspergillus

terreus and its antibacterial activity against methicillin resistant Staphylococcus

130

aureus (MRSA). International Journal of Latest Research in Science and

Technology. 3 (4):144-148.

Priscyla D Marcato and Nelson Duran. (2008). New aspects of

Nanopharmaceutical delivery systems. Journal of Nanoscience and

Nanotechnology. 8:1-14.

Priyabrata Mukherjee, Absar Ahmad, Deendayal Mandal, Satyajyoti Senapati and

Sudhakar R Sainkar et al., (2001). Fungus-Mediated Synthesis of Silver

nanoparticles and their immobilization in the mycelia matrix: A novel biological

approach to Nanoparticle synthesis. Nano Lett. 1 (10): 515-519.

Q

Quang Huy Tran, Van Quy Nguyen and Anh-Tuan Le. (2013). Silver

nanoparticles: synthesis, properties, toxicology, applications and perspectives.

Adv. Nat. Sci.: Nanosci. Nanotechnol. 4: 033001 (20pp) doi:10.1088/2043-

6262/4/3/033001

R

Rackova, Oblozinsky, Kostalova, Kettmann, Bezakova. (2007). Free radical

scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract

and isoquinoline alkaloids. J. Inflam. 4:15.

Rai M. K, Deshmukh S. D, Ingle A. P and Gade A. K. (2012). Silver

nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.

Journal of Applied Microbiology. 112:841-852. doi:10.1111/j.1365-

2672.2012.05253.x

Ramakrishna, Varghese, Jayakumar, Mathan, Balasubramanian. (1997).

Circulating antioxidants in ulcerative colitis and their relationship to disease

severity and activity. J. Gastroenterol. Hepatol. 12:490-494.

Ram Prasad Metuku, Shivakrishna Pabba, Samatha Burra, S. V. S. S. S. L. Hima

Bindu, Krishna Gudikandula, and M. A. Singara Charya. (2014). Biosynthesis of

silver nanoparticles from Schizophyllum radiatum HE 863742.1: their

characterization and antimicrobial activity. 3 Biotech. 4:227–234. DOI

10.1007/s13205-013-0138-0

131

Ramanathan Vaidyanathan, Kalimuthu Kalishwaralal, Shubaash Gopalram,

Sangiliyandi Gurunathan. (2009). Nanosilver-The burgeoning therapeutic

molecule and its green synthesis. Biotechnology Advances. 27: 924–937.

Ranganath E, Vandana Rathod and Afreen Banu. (2012). Biosynthesis of silver

nanoparticles by Lactobacillus sp. And its activity against Pseudomonas

aeruginosa. Asian Journal of Biochemical and Pharmaceutical Research. 3 (2):

49-55.

Rati Ranjan Nayak, Nilotpala Pradhan, Debadhyan Behera, Kshyama Madhusikta

Pradhan, Srabani Mishra, Lala Behari Sukla and Barada Kanta Mishra. (2011).

Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the

process and optimization. J Nanopart Res. 13:3129-3137. DOI 10.1007/s11051-

010-0208-8

Ravishankar Rai V and Jamuna Bai A. (2011). Nanoparticles and their potential

application as antimicrobials. Science against microbial pathogens:

communicating current research and technological advances. A. Méndez-Vilas

(Ed.). 197-209.

Ravishankarbhat, Ragundan Deshpande, Sharanbasava V. Ganachari, D. S. Huh

and A. Venkataraman. (2011). Photo-irradiated biosynthesis of silver

nanoparticles using edible mushroom pleurotus florida and their antibacterial

activity studies. Bioinorganic Chemistry and Applications. Vol. 2011, Article ID

650979, 7 pages, doi:10.1155/2011/650979.

Rejeski D, “Nanotechnology and consumer products,”

http://www.nanotechproject.org/publications/archive/nanotechnologyconsumer_p

roducts/.

Richard P. Feynman. (1959). Plenty of Room at the Bottom. pp. 1-7.

S

Sas, Robotka, Toldi and Vecsei. (2007). Mitochondrial, metabolic disturbances,

oxidative stress and kynurenine system, with focus on neurodegenerative

disorders. J. Neurol. Sci. 257:221-239.

Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, and Acharya K.

(2010). Production of Silver Nanoparticles by A Phytopathogenic Fungus

132

Bipolaris nodulosa and Its Antimicrobial Activity. Digest Journal of

Nanomaterials and Biostructures. 5 (4):887‐895.

Satoshi Horikoshi and Nick Serpone. (2013). Microwaves in Nanoparticle

Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA Publication. 1-24.

Sauer K, Camper A K, Ehrlich G D, Costerton J W and Davies D G. (2002).

Pseudomonas aeruginosa displays multiple phenotypes during development as a

biofilm. J Bacteriol. 184:1140–1154.

Schipper. (1998). Astrocyte senescence and the pathogenesis of Parkinson‘s

Disease in Handbook of the Aging Brain. (Wang, E. and Snyder, D.S, eds)

Academic Press, California. pp. 243-257.

Sharanabasava V Ganachari, Ravishankar Bhat, Ragundan Deshpande and A.

Venkataraman. (2012). Extracellular Biosynthesis of silver nanoparticles using

Fungi Penicillium diversum and their antimicrobial activity studies. Bio Nano Sci.

doi: 10.1007/s12668-012-0046-5.

Shital Bonde. (2011). A biogenic approach for green synthesis of silver

nanoparticles using extract of foeniculum vulgare and its activity against S. aureus

and E. coli. Bioscience. 3 (2): 59-63.

Shital R. Bonde, Rathod D P, Ingle A P, Ade R D, Gade A K and Rai M K.

(2012). Murraya koenigii- mediated synthesis of silver nanoparticles and its

activity against three human pathogenic bacteria. Nanoscience Methods. 1: 25-36.

Shivaraj Ninganagouda, Vandana Rathod, Jyothi Hiremath, Prema Kulkarni and

Manzoor-ul-Haq. (2013). Extracellular biosynthesis of silver nanoparticles using

Aspergillus flavus and their antibacterial activity against gram negative MDR

strains. International Journal of Pharma and Bio Sciences. 2 (4): 222-229.

Siddhartha Shrivastava, Tanmay Bera, Arnab Roy, Gajendra Singh, P

Ramachandrarao and Debabrata Dash. (2007). Characterization of enhanced

antibacterial effects of novel silver nanoparticles. Nanotechnology. 18 (22)

225103 (9pp). doi:10.1088/0957-4484/18/22/225103

Simon Silver. (2003). Bacterial silver resistance: molecular biology and uses and

misuses of silver compounds. FEMS Microbiology Reviews. 27:341-353.

133

Singh R. and Singh N H. (2011). Medical applications of nanoparticles in

biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs.

J Biomed Nanotechnol. 7: 489–503.

Singh and Jialal. (2006). Oxidative stress and atherosclerosis. Pathophysiol. 13:

129-142.

Smith, Rottkamp, Nunomura, Raina and Perry. (2000). Oxidative stress in

Alzheimer‘s disease. Biochim. Biophys. Acta. 1502:139-144.

Somnath Ghosh, Tasneem Kausar Ranebennur and Vasan H N. (2011). Study of

antibacterial efficacy of hybrid chitosan-silver nanoparticles for prevention of

specific biofilm and water purification. International Journal of Carbohydrate

Chemistry. Article ID 693759, 11 pages.

Steven C. Hayden, Gengxiang Zhao, Krishnendu Saha, Ronnie L. Phillips and

Xiaoning Li et al., (2012). Aggregation and Interaction of Cationic Nanoparticles

on Bacterial Surfaces. J. Am. Chem. Soc. 134:6920−6923.

dx.doi.org/10.1021/ja301167y

Stefania Galdiero, Annarita Falanga, Mariateresa Vitiello and Marco Cantisani et

al., (2011). Silver Nanoparticles as Potential Antiviral Agents. Molecules. 16

(10): 8894-8918.

Subbiahdoss G, Sharifi S, Grijpma D W, Laurent S, van der Mei H C, Mahmoudi

M, Busscher H J. (2012). Magnetic targeting of surface-modified

superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against

biofilms of gentamicin- resistant Staphylococci. Acta Biomater. 8:2047–2055.

doi:10.1016/j.actbio.2012.03.002

Sujoy K. Das and Enrico Marsili. (2010). A green chemical approach for the

synthesis of gold nanoparticles: characterization and mechanistic aspect.

Revolution Environmental Science and Biotechnology. 9 (3):199-204.

Susan Solomona, Gian-Kasper Plattnerb, Reto Knuttic and Pierre Friedlingstein.

(2009). Irreversible climate change due to carbon dioxide emissions. PNAS. 106

(6):1704 –1709.

T

Thabet M Tolaymat, Amro M El Badaway, Ash Genaidy, Kirk G Scheckel, Todd

134

P Luxton and Makram Suidan. (2009). Science of the Total Environment. 408:

999-1006.

The Energy and Resources Institute (TERI). (2009). Nanotechnology

developments in India – a status report TERI project: Capability, Governance, and

Nanotechnology Developments - a focus on India. New Delhi: The Energy and

Resources Institute. [Project Report No. 2006ST21: D5].

Thomas B Rasmussen and Michael Giskov. (2006). Quorum sensing inhibitors as

anti-pathogenic drugs. International Journal of Medical Microbiology. 296:149-

161.

Thangapandian S and Prema P. (2012). Chemically fabricated silver nanoparticles

enhance the activity of antibiotics against selected human bacterial pathogens.

International Journal of Pharmaceutical Sciences and Research. 3(5): 1415-1422.

U Upendra Kumar Parashar, Vinod Kuma, Tanmay Ber, Preeti S Saxen and Gopal

Nath et. al., (2011). Study of mechanism of enhanced antibacterial activity by

green synthesis of silver nanoparticles. Nanotechnology. 22 (41):pp. 13 pages.

Upston, Kritharides, Stocker. (2003). The role of vitamin E in atherosclerosis.

Prog. Lipid Res. 42:405-422.

V Vandana Rathod, Afreen Banu and E. Ranganath. (2011). Biosynthesis of highly

stabilized silver nanoparticles by Rhizopus stolonifer and their Anti-fungal

efficacy. International Journal of Molecular and Clinical Microbiology. 1 (2):65-

70.

Venkataraman Deepak, Kalimuthu Kalishwaralal, Sureshbabu Ram Kumar

Pandian and Sangiliyandi Gurunathan. (2011). Metal Nanoparticles in

Microbiology. 17-34. doi: 10.1007/978-3-642-18312-6_2

Vijayaraj D, Anarkali J, Rajathi K and Sridhar S. (2012). Green synthesis and

Characterization of silver nanoparticles from the leaf extract of Aristolochia

Bracteatav and its antimicrobial efficacy. International Journal of Nanomaterials

and Biostructeres. 2 (2):11-15.

135

W

Wang Y, Cao L, Guan S, Shi G, Q. Luo, L. Miao, I. Thistlethwaite, Z. Huang, J.

Xu and J. Liu. (2012). Silver mineralization on self-assembled peptide nanofibres

for long term antimicrobial effect. Journal of Materials Chemistry.2 (6):2575-

2581.

Wen-Ru Li, Xiao-Bao Xie, Qing-Shan Shi, Hai-Yan Zeng, You-Sheng OU-Yang

and Yi-Ben Chen. (2010). Antibacterial activity and mechanism of silver

nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology. 85

(4):1115-1122.

White R J. (2005). An historical overview on the use of silver in modern wound

management. British Journal of Nursing. 15 (10): 3-8.

Wiseman and Halliwell. (1996). Damage to DNA by reactive oxygen and

nitrogen species: Role of inflammatory disease and progression to cancer.

Biochem. J. 313:17-29.

Woo Kyung Jung, Hye Cheong Koo, Ki Woo Kim, Sook Shin, So Hyun Kim, and

Yong Ho Park. (2008). Antibacterial activity and Mechanism of action of the

Silver ion in Staphylococcus aureus and Escherichia coli. Applied and

Environmental Microbiology. 74 (7): 2171-2178.

Xiangqian Li, Huizhong Xu, Zhe-Sheng Chen and Guofang Chen. (2011).

Biosynthesis of Nanoparicles by Microorganisms and Their applications. Journal

of Nanomaterials. Vol. 2011. Article ID 270974, 16 pages. doi:

10.1155/2011/270974

Y

Yan Zhou, Ying Kong, Subrata Kundu, Jeffrey D Cirillo and Hong Liang. (2012).

Antibacterial activities of gold and silver nanoparticles against Escherichia coli

and Bacillus Calmette- Guerin. Journal of Nanotechnology. 10 (19)

http://www.biomedcentral.com/10/1/19

Yongguo Wang, Lina Cao, Shuwen Guan, Guannan Shi and Quan Luo et al.,

(2012). Silver mineralization on self assembled peptide nanofibres for long term

antimicrobial effect. Journal of Materials Chemistry. 22:2575-2581.

136

Yoshinobu Matsumura, Kuniaki Yoshikata, Shin-ichi Kunisaki, and Tetsuaki

Tsuchido. (2003). Mode of Bactericidal Action of Silver Zeolite and Its

comparison with That of Silver Nitrate. Applied and Environmental

Microbiology. 69 (7): 4278-4281.

Z Zong-ming Xiu, Qing-bo Zhang, Hema L. Puppala, Vicki L Colvin, and Pedro J

Alvarez. (2012). Negligible Particle-Specific Antibacterial Activity of Silver

Nanoparticles. Nano Lett. 12, 4271−4275. dx.doi.org/10.1021/nl301934w