Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing...

8
44 BioProcess International 14(11) DECEMBER 2016 B IO P ROCES S EXECUTIVE Reducing Clinical-Phase Manufacturing Costs Collaborating for Savings without Compromising Quality or Performance Dana C. Pentia, Maryel Gonzalez-Perez, Arielle Fabiano, James R. Peyser, Jack Vicalvi, Muctarr Sesay, and Steve Tingley PRODUCT FOCUS: MONOCLONAL ANTIBODIES WHO SHOULD READ: CHIEF OPERATING OFFICERS, BUSINESS DEVELOPMENT, OPERATIONS, AND MANUFACTURING KEYWORDS: COST CONTROL, MODELING, DOWNSTREAM PROCESSING, STRATEGY LEVEL: ADVANCED I n downstream purification of monoclonal antibodies (MAbs), the single greatest contributor to manufacturing costs is the expensive capture step typically based on protein A affinity chromatography. Almost since its introduction to bioprocessing, efforts have been made to reduce the cost of this step. Several alternative ligands have been promulgated as potential replacements for protein A, but they have proven difficult to adopt and scale up. Supplier companies have pushed for increases in capacity and economics, but those are always accompanied by a corresponding increase in purchase price. Although increased capacity, higher flow rates, and increased caustic and process stability all have their price, Repligen believes that in most cases at clinical- phase manufacturing, little or no economic benefit comes from the extended cleanability or capacity that such “state-of-the-art” capture resins provide. Disposables (single-use technologies) have become standard at many of world’s leading biopharmaceutical companies. They offer faster product changeover than multiuse technologies can, with favorable economics and improved safety. As a supplier of protein A affinity resins, Repligen proposed that significant savings in clinical manufacturing could be made by using a protein A resin that balances price and performance. Combining that with prepacked chromatography column technology could help users realize significant savings without adversely affecting process performance or product quality. So Repligen teamed up with Goodwin Biotechnology, a biological contract development and manufacturing organization (CDMO) focused on producing biologics such as MAbs derived from cell culture, and a contract customer. Together, we demonstrate that prepacked protein A columns would work in a real manufacturing setting for different MAbs at both small and large scales — and that they could provide savings to contract clients and manufacturers themselves. Photo 1: A 30-cm OPUS column containing CaptivA resin connected to an ÄKTA Ready skid (GE Healthcare) for a good manufacturing practice (GMP) operation Photo 2: A 30-cm Repligen OPUS column containing CaptivA resin connected to an ÄKTA Ready skid (GE Healthcare) during a wash cycle for a GMP manufacturing operation REPRINT WITH PERMISSION ONLY

Transcript of Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing...

Page 1: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

44 BioProcess International 14(11) December 2016

B i o P r o c e s s EXECUTIVE

Reducing Clinical-Phase Manufacturing CostsCollaborating for Savings without Compromising Quality or Performance

Dana C. Pentia, Maryel Gonzalez-Perez, Arielle Fabiano,

James R. Peyser, Jack Vicalvi, Muctarr Sesay, and Steve Tingley

Product Focus: Monoclonal antibodies

Who should read: chief operating officers, business developMent, operations, and Manufacturing

KeyWords: cost control, Modeling, downstreaM processing, strategy

level: advanced

I n downstream purification of monoclonal antibodies (MAbs), the single greatest contributor to manufacturing costs is the

expensive capture step typically based on protein A affinity chromatography. Almost since its introduction to bioprocessing, efforts have been made to reduce the cost of this step.

Several alternative ligands have been promulgated as potential replacements for protein A, but they have proven difficult to adopt and scale up. Supplier companies have pushed for increases in capacity and economics, but those are always accompanied by a corresponding increase in purchase price. Although increased capacity, higher f low rates, and increased caustic and process stability all have their price, Repligen believes that in most cases at clinical-phase manufacturing, little or no economic benefit comes from the extended cleanability or capacity that such “state-of-the-art” capture resins provide.

Disposables (single-use technologies) have become standard at many of world’s leading biopharmaceutical companies. They offer faster product changeover than multiuse technologies can, with favorable economics and improved safety. As a supplier of protein A affinity resins, Repligen proposed that significant savings in clinical manufacturing could be made by using a protein A resin that balances price and performance. Combining that with prepacked chromatography column technology could help users

realize significant savings without adversely affecting process performance or product quality. So Repligen teamed up with Goodwin Biotechnology, a biological contract development and manufacturing organization (CDMO) focused on producing biologics such as MAbs derived from cell culture, and a contract customer. Together, we demonstrate that prepacked protein A columns would work in a real manufacturing setting for different MAbs at both small and large scales — and that they could provide savings to contract clients and manufacturers themselves.

Photo 1: A 30-cm OPUS column containing CaptivA resin connected to an ÄKTA Ready skid (GE Healthcare) for a good manufacturing practice (GMP) operation

Photo 2: A 30-cm Repligen OPUS column containing CaptivA resin connected to an ÄKTA Ready skid (GE Healthcare) during a wash cycle for a GMP manufacturing operation

REP

RIN

T W

ITH P

ERM

ISSIO

N O

NLY

Page 2: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

46 BioProcess International 14(11) December 2016

This collaborative work shows that adoption and thoughtful, phase-appropriate deployment of new technology can provide a winning alternative for MAb manufacturing without compromising product quality or production timelines. So this approach should offer significant economic benefits for any company involved in clinical biomanufacturing.

imPlementation oF neW technologies

Our studies show how collaboration between a provider of new technologies and a user of those technologies can benefit end customers (e.g., contract clients) and ultimately patients who can better access lower-cost biological therapies.

The single most important and widely used step in MAb purification is affinity purification with protein A chromatography. This technology provides a high level of purity in one easy step. Its primary downside is the high cost of protein A resins. Repligen sells CaptivA protein A affinity resins based on a recombinant protein A ligand coupled to an agarose-base bead matrix using multipoint-attachment chemistry. The result is a capture resin that performs similarly to higher priced, well-established, and commonly used resins. Data generated in laboratory testing show that protein A leaching, contaminant removal (of both host-cell proteins, HCPs, and DNA) as well as caustic and process stability are similar to those attributes of high-cost, established resins.

Table 1 summarizes key comparative attributes of CaptivA resin and an alternative agarose-based protein A affinity resin. We believe that using this resin in the initial step of MAb purification could save about two-thirds of the usual cost for that step without compromising product quality. To determine whether this represents a viable alternative for its MAb purification operations, Goodwin Biotechnology conducted a comparative study of purification performances for both resins in multicycle purification of two MAb isotypes at both small- and large-scale manufacturing processes.

comParative studies

The first study compared dynamic binding capacity (DBC) for both protein A affinity resins. Goodwin began with two columns: one packed with 1.5 mL of the alternative resin and one packed with 1.5 mL of CaptivA resin. Each column was loaded with a maximum of 65 mg MAb (a whole IgG1 type antibody) in clarified culture media with a residence time of six minutes for both columns. Maximum capacity was calculated at 10% of the monitored breakthrough. DBCs for both resins were essentially comparable in this process (Table 2).

Cycling Studies Design: Next, Goodwin Biotechnology examined resin reusability. A multicycle study, based on a client’s antibody product, Table 1: Properties of CaptivA resin compared with a leading protein A affinity resin

Specifications CaptivA Resin CompetitorBead material Agarose AgaroseDynamic binding capacity (3 minutes residence) ≈33mgs/mL ≈38 mgs/mLFlow rate 300 cm/hr 500 cm/hrProtein A leaching ≈10 ng/mg IgG ≈20 ng/mg IgG

Caustic stability in 0.1M NaOH 50–100 cycles 200 cycles

List price US$5,800/L ≥US$15,000/L

Table 2: Dynamic binding capacities (DBCs) for CaptivA resin and an alternative protein A affinity resin

Resin CapacityCaptivA resin 35 mg IgG/mL resinAlternative resin 38 mg IgG/mL resin

Figure 1: Overlay of CaptivA resin chromatograms

Volume (mL)

Abs

orpt

ion

(mA

U)

Conductivity (mS/m

)

1,7001,5001,3001,100

900700500300100

–100

135

115

95

75

55

35

15

–520 40 60 80 100 120 140

0 20 40 60 80 100 120 140 160

Cycles 1–8

Conductivity

Load

Was

h 1

Was

h 2

Was

h 3

Elut

eCo

llect

End

Colle

ctio

nSt

rip

Sani

tize

Figure 2: Overlaid chromatograms of alternative protein A affinity resin runs

Volume (mL)

Abs

orpt

ion

(mA

U)

Conductivity (mS/m

)2,2002,0001,8001,6001,4001,2001,000

800600400200

0

160140120100806040200

20 40 60 80 100 120 140

0 20 40 60 80 100 120 140 160

Cycles 1–3

Conductivity

Load

Was

h 1

Was

h 2

Was

h 3

Elut

e

Colle

ct

End

Colle

ctio

nSt

rip

Figure 3: Reduced and nonreduced SDS-PAGE analysis of eluates from an alternative protein A affinity resin and CaptivA resin runs; (left) reduced SDS-PAGE, (right) nonreduced SDS=PAGE; MSS 1,2,3 = alternative protein A affinity resin cycles; CA1-6 = first six CaptivA resin cycles

200.0116.3

97.466.355.4

36.531.0

21.5

14.4

200.0116.3

97.466.355.4

36.531.0

21.5

14.4MSS

1

MSS

2

MSS

3

CA 1

CA 2

CA 3

CA 4

CA 5

CA 6

MSS

1

MSS

2

MSS

3

CA 1

CA 2

CA 3

CA 4

CA 5

CA 6

Page 3: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

December 2016 14(11) BioProcess International 47

tested both CaptivA resin and the alternative protein A affinity resin (Table 3). Again, the analysts used two 1.5-mL columns packed with the respective resins. Three cycles were performed on the alternative resin column, and over 10 cycles were performed on the CaptivA column.

Note that after each cycle, the resins were regenerated with a very stringent cleaning using 0.1 M NaOH. Figure 1 overlays chromatograms from the CaptivA affinity runs, and Figure 2 overlays chromatographs from the alternative protein A affinity resin runs. Table 4 lists quality results for

the eluted product. In terms of monomeric purity for this particular IgG1 molecule, all eluates contained 100% monomer. In a second study using a different IgG2a molecule, the monomer percentage was >99% for both resins (Figure 3).

discussion oF results

In this study, CaptivA resin presented with lower yields because of the pH 6 loading condition. Analysts did not optimize the process conditions because yields obtained were deemed acceptable for the application. Table 5 shows savings calculated from using CaptivA resin for different batch sizes.

The comparative study of resin use and cycling (Table 4) shows that chromatographic performance and product quality are equivalent for both resins. DBC appears to be slightly lower for CaptivA resin with the IgG1 molecule studied. However, it is very close to that of the alternative resin, having no discernible effect on the amount required for a purification campaign. Both resins

Figure 4: Chromatogram from purification of an IgG1 MAb on a 30 × 12 cm OPUS column packed with CaptivA resin

pH

12

10

8

6

4

Time (minutes)100 200 300 400 500 600 700

Sani

tize

HPW

Equi

libra

teLo

ad M

Ab

Was

h 1

Was

h 2

Elut

e

Strip

HPW

Rin

seEt

OH

Sto

rage

Figure 6: Chromatogram of the CaptivA resin capture step

pH

8

7

6

5

4

Time (minutes)0 50 100 150 200 250

Load

Elute

Flow ThroughHigh-Salt Wash

Figure 5: HPLC-SEC profile of CaptivA resin elution product

  

0 5 10 15 20 25

Abs

orpt

ion

(mA

U)

0

100

200

300

400

500

< 11

.500

7.0

77 8

.249

Time (minutes)

Table 3: Process-based cycling study

Step Volume Buffer1: Equilibration 4–5 CV Phosphate buffer, pH 6.0

2: Load 150/90 mL MAb in clarified culture media3: Wash 1 4 CV Phosphate buffer, pH 6.04: Wash 2 4 CV Phosphate buffer, 1.5M NaCl,

pH 6.05: Wash 3 4 CV Phosphate buffer, pH 6.06: Elution 50 mAU–

50 mAUPhosphate, pH 3.0

7: Denaturing, cleaning (strip)

3 CV Phosphoric acid, pH 1.8

8: Denaturing, cleaning(regeneration)

3 CV (15 minutes)

0.1 M NaOH

9: Flush 2 CV Deionized water10: Storage 3 CV 20% ethanol

Table 4: Comparative results from cycling two protein A affinity resins

CaptivA Resin Alternative Resin

Cycle Yield HCPLeached

proA Cycle Yield HCPLeached

proA1 79.6% 111.76 0.43 1 94.4% 164.61 1.312 89.9% 145.19 0.52 2 96.8% 167.39 0.243 83.9% 65.67 0.72 3 77.1% 146.97 0.594 84.1% 103.93 0.765 79.0% 162.27 0.096 79.9% ND ND7 80.6% 201.68 0.188 80.3% ND ND9 80.0% 199.64 2.30

Page 4: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

48 BioProcess International 14(11) December 2016

give similar yield and purity of eluted IgG1.

Streamlining Clinical and Commercial MAb Manufacturing with Prepacked Columns: A great benefit for biomanufacturers is using columns (such as those in Repligen’s OPUS line) that are prepacked with high-performance, low-cost protein A resin. This technology offers multiple advantages over traditional approaches:

• Removing the need for column packing, sanitization, and qualification

• Potentially reducing costs for protein A purification with a low-cost and high-performance resin

• Reducing preparation times and demands on personnel resources in downstream process suites.

We examined the hidden costs associated with packing and qualifying columns for manufacturing-scale process chromatography. Facility charge rates vary from $300/h to $500/h (fully burdened) for most good manufacturing practice (GMP)

compliant biomanufacturing operations. Therefore, analysts chose a rate of $400/h for this exercise. As an example, the focus of this study is on

the costs for packing a relatively small column with a 500-mL resin bed and a larger column with a 10-L resin bed. Next, they examined operational costs

Table 5: Economic advantage provided by CaptivA resin in the MAb capture step

Batch Size

CaptivA Resin

Alternative Resin Savings

500 L $80,000 $200,000 $120,000

1,000 L $178,000 $475,000 $297,000

Figure 7: SEC-HPLC chromatogram from CaptivA resin elution of IgG2a product

0 2 4 6 8 10 12 14 16 18

Abs

orpt

ion

(mA

U)

60

50

40

30

20

10

0

7.4

68

Time (minutes)

Area Percent ReportSorted by signalMultiplier 1.0000 Dilution 1.0000Use multiplier and dilution factor with ISTDs.Signal 1: DAD1 A, Sig = 216, 4 Ref = 360, 100Peak 1: 7.468-min retention time, type BB,0.1988-min width, 784.69708-mAU/sec area60.72577-mAU height, 100% areaTotal area: 784.69708 mAU/secTotal height: 60.72577 mAU

Figure 8: The range of OPUS prepacked columns for process development to manufacturing of biological products; from 1.2 cm to 45 cm in diameter, they can be packed at different bed heights with nearly any choice of chromatography media

Process DevelopmentSmall Scale (0.5-cm to 5.0-cm diameter)

ManufacturingLarge Scale (8-cm to 60-cm diameter)

ScreeningSample

PreparationProcess

Validation Scale-Up Early PhaseClinical

Mid- to LatePhase Clinical Commercial

OPUS RoboColumnOPUS PipetColumnOPUS CentriColumn

OPUSMiniChrom

OPUSValiChrom OPUS columns

5 cm 8 cm 10 cm 14 cm 20 cm 25 cm 30 cm 45 cm 60 cm

0.05–0.06 m 0.2 mL to 10 mL 2–300 mL 0.1–1.75 L 0.5–85 L

Thermo Fisher Scienti�c: POROS ion exchange MilliporeSigma: Fractogel ion exchange; Eshmuno a�nity and ion exchangeGE Healthcare: MabSelect SuRe a�nity; Sepharose 4 and 6 FF, HP a�nity, ion exchange, and hydrophobic interaction; Capto ion-exchangeTosoh Bioscience: Toyopearl ion exchange and hyrophobic interaction

Examples of Resins Packed

Table 6: Labor cost savings of a prepacked, single-use column compared with a conventional chromatography process (10 L)

Day Operation LaborTotal

HoursHourly

Rate Cost1 Column and chemical procurement and

QC release1 FTE, 8 hours 8 $400 $3,200

2 Packing document preparation 1 FTE, 6 hours 6 $400 $2,4003 Buffer prep 2 FTEs, 16 hours 32 $400 $12,8004 Resin prep 2 FTEs, 4 hours 8 $400 $3,2005 Sanitize column, column packing and

column qualification2 FTEs, 8 hours 16 $400 $6,400

  Total Cost $28,000

Day Operation LaborTotal

HoursHourly

Rate Cost1 Column and chemical procurement and

QC release1 FTE, 3 hours 3 $400 $1,200

  Total Cost $1,200

Labor Cost Savings      $26,800

Page 5: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

associated with personnel in a GMP environment. And finally, they considered buffer preparation costs associated. Costs for packing and qualifying the column (scaled up to a 10-L resin bed) also were included. Personnel costs remain the same because the operational parameters remain similar. Buffer preparation costs become as outlined in Table 6. And Table 7 summarizes both the costs and savings that result.

Procurement costs for prepacked columns are higher than those for the individual components (e.g., columns and resins separately). But reducing the operational costs significantly outweighs that differential. Moreover, if a comparable low-cost substitute for a high-cost resin is available, then savings can be magnified substantially.

Review of Product Quality from Manufacturing Operations: Analysts ran purification campaigns for two different MAbs (an IgG1 and an IgG2a) to be used in clinical studies. Both campaigns involved high-performance, low-cost CaptivA protein A resin prepacked in 30-cm ID OPUS columns (Photos 1 and 2 on the first page of this article) using identical buffer systems and process parameters.

The prepacked columns had 12-cm bed heights packed with CaptivA resin. Clarified culture media from a 500-L bioreactor was loaded onto the column, which had been equilibrated with a phosphate buffer at pH 8.0, at a f low rate of 150 cm/h. Three wash steps were performed after the load (Figure 4), with a high-salt wash as the second step in that series. MAb elution was achieved by lowering the pH to 3.0. Following that, analysts held the elution pool at pH 3.5 for one hour to achieve virus inactivation. Then they adjusted pH to 5.0 for the subsequent cation-exchange purification step. Antibody quality was assessed following viral inactivation by testing purity with sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion high-performance liquid chromatographpy (SE-HPLC). Yield

Table 7: Cost and savings summary comparison

0.5 L 10 L 20 LConventional Prepacked Conventional Prepacked Conventional Prepacked

Packing $21,600 $1,200 $28,000 $1,200 $43,200 $2,400Processing $9,600 $6,400 $9,600 $6,400 $9,600 $6,400Buffer preparation

$57,600 $38,400 $86,400 $57,600 $129,600 $86,400

Total $88,800 $46,000 $124,000 $65,200 $182,400 $95,200Differential $42,800 $58,800 $87,200

Table 8: CaptivA resin elution concentration and yield for an IgG1 MAb

Column StepElution Volume

(OD280) Elution Concentration

Total MAb Recovered

Step Yield

Process Yield

CaptivA resin elution 41.53 L 3.63 mg/mL 150.75 g 85.3% 84%

Sent 9:51 AM

A 10% improvement in yield!?!

Yes on top of a 15% shorter run time!Lab Tech || Mark D. || 9:54 AM

Learn more at www.ham-info.com/1160

Incyte Measures Viable Cell Density in Real Time

Incyte is insensitive to media changes, microcarriers, dead cells, and floating debris. It can be used to monitor changes in cell physiology, cellular respiration, viral infection timing, automated harvesting, and much more.

Optimize Your Process

© 2016 Hamilton Company. All rights reserved.

800-648-5950www.hamiltoncompany.com

PLATINUMELECTRODES

ELECTRICFIELDS

VIABLE CELLS

POLARIZE

DEAD CELLS HAVE DAMAGED MEMBRANES AND DO NOT POLARIZE

BPI_Dec_Hamilton.indd 1 11/18/16 1:54 PM

Page 6: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

50 BioProcess International 14(11) December 2016

and concentration were determined by measuring optical density at 280 nm and an enzyme-linked immunosorbent assay (ELISA).

The next steps of this purification process were cation-exchange chromatography followed by viral filtration and anion-exchange membrane chromatography, then finishing with diafiltration. Analysts tested the final MAb for purity using SDS-PAGE and SE-HPLC and measuring leached protein A and residual HCPs and DNA. Tables 8–11 summarize the results (see also Figures 5 and 6). They demonstrate that this MAb purification process is amenable to the use of prepacked chromatography solutions. Product quality remains very good with a low-cost, high-performance capture affinity resin.

Expanded Opportunity for Early Phase Clinical Manufacturing Cost Containment: Having seen the

potential savings related to CaptivA resin, the CMO and its client wondered whether further savings could be achieved by bringing in ready-to-use, prepacked columns filled with that resin. In an effort to evaluate the potential for even more cost savings — and to add reliability from MAb process development to manufacturing — Repligen proposed OPUS prepacked chromatography columns with CaptivA resin. Goodwin Biotechnology and its client agreed to extend the economic assessment to that platform (Figure 7). The contract manufacturer is implementing the range of columns into its existing process f low plans.

In conjunction with Bioprocess Technology Consultants (BPTC), Repligen developed a predictive model for identifying available cost savings from “outsourcing” column packing. This model identifies each task required to bring a traditional glass

column into a current good manufacturing practice (CGMP) facility. It takes into account labor time and rate for each task along with the amount of raw materials and solutions required and related sourcing costs. Each input is made available for review. Using the model, it is now possible to ascribe a dollar and labor-resource cost to an organization for preparing, packing, cleaning, and storing glass columns for reuse. If that cost is compared with the prepacked-column cost, the potential for savings can be seen immediately when implementing prepacked columns in place of traditional self-packed glass columns. Figure 9 shows typical costs associated with delivering a 30-cm diameter packed glass column ready for use in a GMP facility. Figure 10, shows the cost for delivering a ready-to-use prepacked OPUS column of the same diameter and specifications — with a savings of 40% (US$21,000).

Combining those savings with that from using high-performance, low-cost CaptivA protein A resin yields dramatic potential economic implications. The cost for an organization to deliver a 30-cm ID, 12-cm bed-height glass column packed with an alternative protein A affinity resin ready for use in a GMP facility is about $280,000 (Figure 11). An equivalent 30-cm OPUS column packed with CaptivA resin would cost that same organization about $137,000

Figure 9: Cost of preparing a traditional 30-cm glass column ready for use in a GMP facility

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

Cost

(US$

)

Totalstorage cost

Column postusesuite labor materials Column preparationsuite labor materials

Totalresin cost

Capitalcharges

$0

Table 10: Analysis of quality metrics for a purified IgG1 MAb

Test ResultAppearance Clear/colorlesspH 6.04Concentration measured by UV absorption bicinchoninic acid assay (BCA) total enzyme-linked immunosorbent assay (ELISA) high-performance size-exclusion liquid chromatography (HPLC-SEC)

5.0 mg/mL5.1 mg/mL5.2 mg/mL5.4 mg/mL

Purity measured by HPLC-SEC 99.8%Reduced sodium-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

Heavy chain (HC) 52.3 kDa; light chain (LC) 28.1 kDa; purity 98.0%

Nonreduced SDS-PAGE Major band: 185.8 kDa (purity 75.9%)

Isoelectric focusing (IEF) results Four bands; range 7.4–7.8 (major band at pI = 7.5)

Specific ELISA results Concentration 5.27 mg/mL; specific activity: 105%

Host cell protein measured by ELISA 5.08 ppm (each ng/mg)Residual protein A 0.2 ppm (each ng/mg)

Table 11: CaptivA resin elution concentration and yield for an IgG2a MAb

Column Step

Elution Volume

(OD280) Elution Concentration

Total MAb Recovered

Step Yield

Process Yield

Residual Protein A Monomer

Elution 23.83 L 0.398 mg/mL 9.48 g 86.6% 85% 4.3 ng/mL 100%

Table 9: Quality attributes of a purified IgG1 MAb with CaptivA resin in a prepacked OPUS column as the capture step

Purified IgG1 MAbMonomer (SE-HPLC)

Leached Protein A

Residual HCP Residual DNA

Protein A capture 98.6% NA NA NACEX polish 99.4% 1.4 ppm 229 ppm <2 pg/mg MAbUF/DF product 99.8% <1 ppm 5 ppm <2 pg/mg MAb

Page 7: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

52 BioProcess International 14(11) December 2016

to implement into a GMP-ready process (Figure 12). That would allow a CMO to save its contract client >$140,000 for an early phase clinical manufacturing process.

save time, save money

Working collaboratively, the supplier, contract manufacturer, and biopharmaceutical client have demonstrated that for two different MAbs in both small- and large-scale manufacturing processes, adopting a cost-effective protein A resin can significantly minimize cash burn for a startup company in the early phases of clinical development. CaptivA resin is functionally capable of replacing more expensive protein A resins without compromising product quality or process workflows. Combining that with adoption of prepacked chromatography columns brings even more pronounced client savings, exceeding $100,000 at the 30-cm scale.

Note that the contract manufacturer also expects to obtain benefits from implementing the prepacked OPUS chromatography platform. Improved profitability, organizational effectiveness, and ultimately customer satisfaction expect to be accrued through increases in efficiency that can be broadly characterized in three key areas: resource management, manufacturing timing, and facility turnaround.

Resource Management: Biomanufacturers need to focus their highly skilled, highly compensated

resources on value-added tasks other than column packing. Many companies report losing 10–25% of their packing time to repacks and outright pack failures. Such inefficiencies can be prevented by using prepacked columns instead.

Manufacturing Timing: If chromatography columns are not packed and ready to go for the start of a GMP downstream processing campaign, manufacturing slots can be lost and entire client processes delayed with the risk of a significant “knock on” effect. This adversely affects profitability and customer satisfaction. Purchasing prepacked columns ready for GMP processing helps biomanufacturers limit these risks.

Facility Turnaround Time: Count the number of days it takes in suite to pack and unpack three columns for a typical MAb process. Multiply that by a number of campaigns throughout the year, and consider what could be done with that time instead. Prepacked columns can shorten facility turnaround times, ultimately helping to make room for more campaigns in the same period.

a savings equation

Finally, note that savings could be multiplied by a factor of three: one for each process purification step that can be switched to a prepacked column in a typical three-step purification process. The resulting savings then would be multiplied again by the number of campaigns in time to achieve a full program savings:

Total Savings = C(P × S)

where C = number of campaigns, P = number of purification steps, and S = savings per step. •

Dana C. Pentia is a senior application scientist, Arielle Fabiano was an R&D intern, James R. Peyser is senior director of bioprocess development, and corresponding author Steve Tingley ([email protected]) is vice president of

Figure 12: Cost of procuring a prepacked 30-cm × 12-cm OPUS column packed with CaptivA resin ready for use in a GMP facility

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

Column take-downsuite labor materials

Column operationsuite labor materials

Column preparationsuite labor materials

Prepackedcolumn and

resin cost

Cost

(US$

)

Figure 11: Cost of a 30-cm × 12-cm glass column self-packed with an alternative protein A affinity resin ready for use in a GMP facility

 0

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

Total storage costs

Column Postusesuite labor materials

Column Operationsuite labor materials

Column Preparationsuite labor materials

Totalresin costs

Cost

(US$

)

Combining the prepacked column savings with those from using a high-performance, low-cost protein A resin yields DRAMATIC potential economic implications.

Figure 10: Cost of procuring and preparing a prepacked 30-cm OPUS column ready for use in a GMP facility

  0

  5,000

10,000

15,000

20,000

25,000

30,000

35,000Co

st (U

S$)

Column take-downsuite labor materials

Column preparationsuite labor materials

Prepackedcolumn

cost

Page 8: Reducing Clinical-Phase Manufacturing Costs€¦ · 14/12/2016  · operations, and Manufacturing KeyWords: cost control, Modeling, downstreaM processing, strategy level: advanced

December 2016 14(11) BioProcess International 53

sales and marketing at Repligen Corporation in Waltham, MA, www.repligen.com. Maryel Gonzalez-Perez is senior manager of assay development and quality control, Jack Vicalvi was manager of downstream process development, and corresponding author Muctarr Sesay, PhD, ([email protected]) is chief scientific officer at Goodwin Biotechnology in Plantation, FL, www.goodwinbio.com. CaptivA and OPUS are trademarks of Repligen Corporation. POROS is a registered trademark of ThermoFisher Scientific Inc. Fractogel is a trademark of MilliporeSigma. MabSelect, SuRe, and Capto are trademarks of GE Capital. TOYOPEARL is a registered trademark of Tosoh Bioscience.

For reprints, contact Rhonda Brown of Foster Printing Service, [email protected], 1-866-879-9144 x194.

contriBute to BPi in 2017!BPI will publish short supplements (“featured reports”) within each issue in 2017. Each report will include two or three contributed articles on specific aspects of the general theme. Share your expertise by contacting the editor in charge of each featured report:

Anne Montgomery (editor in chief) [email protected] in Outsourcing — Who, What, When, Where, and How: technology transfer, contract testing, and biosimilars (March 2017; materials due 15 January 2017)

Training the Next Generation of BioProcess Experts: in-house training; outsourced training; product and technical training; career and management training (October 2017; materials due 15 August 2017)

Maribel Rios (managing editor) [email protected] Therapies — Advancing Regenerative Medicine: cell, gene, and tissue therapies (February 2017; materials due 15 December 2016)

Emerging Therapies — Advancing Next-Generation Recombinant Proteins: ADCs, recombinant vaccines, antibody fragments, bispecifics, and fusion proteins (September 2017; materials due 15 July 2017)

Process Monitoring and Control — The Heart of QbD; upstream, downstream, and fill–finish process monitoring and control (November 2017; materials due 15 September 2017)

Cheryl Scott (senior technical editor) [email protected]

Technical Challenges in Biosimilar Development: characterization, regulatory and nomenclature issues, and clinical testing (April 2017; materials due 15 February 2017)

Single-Use Technologies Enable Continuous Processing: integrating upstream and downstream processing; continuous upstream technologies; continuous downstream technologies (May 2017; materials due 15 March 2017)