Redacted for privacy Increased consumer demand for fresh ...

201
AN ABSTRACT OF THE THESIS OF Norberto Adre for the degree of Master of Science in Agricultural Engineering presented on July 31,1987 Title: Computer Simulation of Transient Refrigeration Load in a Cold Storage for Apples and Pears Abstract approved . Associate Professor M. L. Hellickson Increased consumer demand for fresh fruit throughout the year has created a need for long term storage. Long term storage of fruit uses more energy than fresh market products, thus increasing production cost. Pacific Northwest energy costs and more competition for markets has made energy conservation an important factor to be considered by the fruit industry. A BASICA computer program, RLSIM, was developed to predict the transient refrigeration load throughout the storage season in apple and pear cold storage warehouses. RLSIM accurately predicted the seasonal and component refrigeration system energy demand curves during the 1985-1986 cold storage season. The results also indicated that the largest single energy use component is the continuous operation of evaporator fans. Simulation of a six hours on and six Redacted for privacy

Transcript of Redacted for privacy Increased consumer demand for fresh ...

AN ABSTRACT OF THE THESIS OF

Norberto Adre for the degree of Master of Science in

Agricultural Engineering presented on July 31,1987

Title: Computer Simulation of Transient Refrigeration Load

in a Cold Storage for Apples and Pears

Abstract approved . Associate Professor M. L. Hellickson

Increased consumer demand for fresh fruit throughout

the year has created a need for long term storage. Long

term storage of fruit uses more energy than fresh market

products, thus increasing production cost. Pacific

Northwest energy costs and more competition for markets

has made energy conservation an important factor to be

considered by the fruit industry. A BASICA computer

program, RLSIM, was developed to predict the transient

refrigeration load throughout the storage season in apple

and pear cold storage warehouses. RLSIM accurately

predicted the seasonal and component refrigeration system

energy demand curves during the 1985-1986 cold storage

season. The results also indicated that the largest single

energy use component is the continuous operation of

evaporator fans. Simulation of a six hours on and six

Redacted for privacy

hours off fan cycling technique indicated a reduction of

23.75 percent could be achieved in overall refrigeration

system energy use in the cold storage warehouse. Cold

storage warehouse management can be improved by using the

results of RLSIM. Fan cycling schemes could be properly

employed without risk of increasing fruit temperature.

Recommendations were made to update research in areas of

cooling and respiration rates of various fruits in both

controlled atmosphere and common storage.

Computer Simulation of Transient Refrigeration Load in a Cold Storage for Apples and Pears

by

Norberto Adre

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed July 31.1987

Commencement June,1988

APPROVED:

Associate Professor of Agricultural Engineering in charge of major

_U £-£- Department Head of Agricultural Engineering

r Dean of Grarauate Schoo

Date thesis is presented July 31. 1987

Acknowledgements

I would like to extend my appreciation and gratitude

to my major professor, Dr. M. L. Hellickson. His insight,

patience and guidance to my academic and personal

development made this achievement possible.

Financially, I am grateful to Dr. J. C. Ringle for

awarding me the Graduate and Professional Opportunity

Program Fellowship during the 1985-1986 and 1986-1987

school years.

I am indebted to Bob Baskins of Duckwall-Pooley Fruit

Company and Frank Vignola at University of Oregon, Physics

Department for providing the information essential to the

research.

Many thanks to the entire staff and faculty of Oregon

State University Agricultural Engineering Department for

their warm hospitality. I will never forget the cheerful

ways of Professor D. Booster. Also, to my fellow graduate

students I would like to express my appreciation for their

assistance and camaraderie.

I would like to express my love and thanks to my wife

Jean and my son Elan to whom I shared the hard and good

times in completing this thesis.

TABLE OF CONTENTS

INTRODUCTION 1

LITERATURE REVIEW 6

I. Refrigeration Load 7

A. Building Heat Transmission Load 9

1. Transfer Function Method 10

2. Determination of Sol-air Temperatures. 12

B. Infiltration Heat Gain 14

C. Heat Gain due to Evaporator Fans 19

D. Product Load 20

E. Miscellaneous Heat Gains 22

II. Refrigeration Energy Conservation 24

PROCEDURE 28

I. Building Description . 28

II. Calculations and Development of RLSIM 33

A. Building Transmission Load 3 3

1. Determination of Solar Radiation Incident on Vertical Surface 34

2. Determination of Inside Partitions and Floor Heat Transmission Load ... 39

B. Infiltration Heat Gain 43

C. Heat Gain Due to Evaporator Fans 46

D. Heat Gain Due to Fruit 48

E. Miscellaneous Heat Gains 59

RESULTS AND DISCUSSION 64

CONCLUSIONS AND RECOMMENDATIONS 81

BIBLIOGRAPHY 85

APPENDIX l. Illustrations, Description, Thermal Properties of Layers and Transfer Function Coefficients of Walls, and Roof 87

APPENDIX 2. SOLAIRI and S0LAIR2 Program Listings ... 93

APPENDIX 3. Fruit Loading Schedules for the Zones . . . 103

APPENDIX 4. RLSIM Program listing 110

APPENDIX 5. RLSIM Output (without fan cycling) . . . 137

APPENDIX 6. RLSIM Program (with fan cycling) .... 164

LIST OF FIGURES

Figure 1. Isometric View of Cold Storage Warehouse . 29

Figure 2. Top View of Cold storage Warehouse .... 30

Figure 3. Sol-Air Calculation Flowchart 3 6

Figure 4. Exterior Surface Heat Transmission Load Calculation Flowchart 38

Figure 5. Floor Construction 40

Figure 6. Interior Wall and Floor Heat Transmission Load Calculation Flowchart 42

Figure 7. Flowchart for Calculation of Heat Gain Due to Infiltrating Air 44

Figure 8. Cooling Rate of d'Anjou Pears 49

Figure 9. Respiration Rate of Apples and Pears ... 53

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit 54

Figure 11. Cold Storage Warehouse Lighting Diagram. . 60

Figure 12a.Sol-air Temperature for Roof, South and North Walls (First 200 hours of August 1985) 66

Figure 12b.Sol-air Temperature for East, West and North Walls (First 200 hours of August 1985 67

Figure 12c.Global Radiation Incident on a Horizontal Surface (First 200 hours of August 1985) 68

Figure 13. Refrigeration System Energy Consumption Without Fan Cycling from 11 August 1985 to 6 February 1986 70

Figure 14. Refrigeration Load Breakdovm for the Entire Cold Storage Building by Components and Zones 72

Figure 15a.Refrigeration Load Breakdown Zone 1 & 2 . 74

Figure 15b.Refrigeration Load Breakdown Zone 3 & 4 . 75

Figure 15c.Refrigeration Load Breakdown Zone 5 ... 76

Figure 16. Zone 1 Building, Fruit and Fan Loads From 11 August 1985 to 6 February 1986. . 77

Figure 17. Refrigeration System Energy Consumption With Fan Cycling From 11 August 1985 to 6 February 1986 79

Figure 18. Refrigeration Load Breakdown for the Entire Cold Storage Building with Fan Cycling by Components and Zones 80

LIST OF TABLES

Table 1. Quantity of Apples and Pears and Approximate Cost of Electricity Used in Cold Storage in Washington, Oregon and California During the 1985-1986 Storage Season 5

Table 2. Oxygen, Carbon Dioxide and Temperature Requirements for CA Storage of Apples and Pear 7

Table 3. Heat Equivalent of Electric Motors 20

Table 4. Heat of Respiration Rates (kJ/tonjn day) for Apples and Pears at Different Temperatures 22

Table 5. Heat Production Rates of People in a Refrigerated Space* 24

Table 6. Floor Construction Description and Thermal Properties of Layers 40

Computer Simulation of Transient Refrigeration Load in a Cold Storage for Apples and Pears

INTRODUCTION

Simple preservation of food products has been

practiced for centuries. However, as world demand for food

increased, postharvest preservation of agricultural

products became increasingly sophisticated and complex.

Postharvest preservation of fresh fruits and vegetables

became a vital component in the overall effort to insure a

stable food supply for the world.

Fresh fruit industries have evolved from being able

to provide produce for a relatively short period after

harvest to nearly continuous supplies of certain

commodities. Fresh apples, for example, are available in

modern retail stores every month of the year. The largest

single factor contributing to this year-round availability

is utilization of modern cold storage warehouse and

transportation technologies.

One of the first successful cold storages for apples

was built in 1856 by Reverend Benjamin Nyce in Decator

County, Illinois (Taylor as cited in Ryall, 1982). Ice

harvested from nearby ponds was used to keep the fruit

cold. Mechanical refrigeration was initially used in the

2

southern United States to make ice in 1860. The first

installation of a mechanical refrigeration system for cold

storage in United States was in 1881 in Boston,

Massachusetts (Anderson,1953) .

Studies of the effects of atmosphere modification for

stored fruit most likely originated in England. Franklin

Kidd and Cyril West published results of research

conducted at Cambridge University in 1927 ( Ryall et

al.,1982). Their studies documented the use of gas-tight

chambers in which fruit, by respiration, depleted the

atmosphere of oxygen (©2) and built up carbon dioxide

(CO2)• The first commercial storage using this atmosphere

modification technique was built near Canterbury in Kent,

England.

R.M. Smock, who spent the summer of 1938 with Kidd

and West at Cambridge, along with Van Doren (1941)

published a bulletin at Cornell University giving

recommended atmosphere, temperatures and method of

constructing and operating Controlled Atmosphere (CA)

storage rooms. The term "controlled atmosphere", in this

bulletin, was adopted as to mean an atmosphere in which

the concentrations of O2, CO2 and temperature are

maintained at specific levels (Ryall et al., 1982). The

first three CA storages in the United States were put into

3

operation, in Hudson Valley, New York in 1940.

Forty five years later, the United States had an

approximate total of 13.7 million cubic meters of gross

refrigerated storage space used exclusively for apples and

pears, and 3 million cubic meters were CA storage (USDA

CRS,1985). The Pacific Northwest states of Washington and

Oregon had a total of 8.6 million cubic meters of

refrigerated storage agd 2.1 million cubic meters were CA

storage. This amount was 62 percent of the national total

and represented a four percent increase over October 1983

storage space.

The average cost _of electricity used for apple and

pear storage is approximately ^0._tjQL_50_c§.nts per bin1 per

month (Yost,1984). Table 1 illustrates the monthly amounts

of apples and pears held in cold storage during 1985-86

storage season in Washington, Oregon and California. The

total energy used was approximately 118 million kWh of

electricity and at five cents per kWh amounts to $5.9

million (adapted from USDA CRS,1985). Electricity cost per

bin varies from company to company, and depends largely on

the efficiency of the refrigeration system and management

practices.

1 A bin is a box measuring 1.19 m x 1.19 m x 0.71 m that holds approximately 0.36 metric tons of fruit.

4

Electricity rates for industrial consumers in the

Pacific Northwest increased from 1.17 cents/kwh in 1975 to

4.36 cents/kWh in 1985, while the commercial rates

increased from 1.84 cents/kWh in 1975 to 5.19 cents/kWh in

1985 (Pacific Power and Light, 1987). This represents an

increase of over 400 percent during the most recent ten

years.

Historically, Pacific Northwest electrical energy

rates were relatively low compared to other regions of the

United States. Consequently, regional operators of cold

storage warehouses have not seriously investigated energy

conservation practices to reduce operating costs. The high

demand for energy during operation of these cold storage

warehouses coupled with the rising cost of electricity led

to limited energy conservation studies of these

facilities.

One of the most promising studies done by G. Yost

(1984) in the early igso's reported that over 50 percent

of the refrigeration load could be attributed to heat

associated with evaporator fan operation. Yost

demonstrated that fan cycling, could substantially reduce

the amounts of electricity used for refrigeration during a

storage season.

This research was initiated with the following

objectives: 1) develop a computer model capable of

predicting the transient refrigeration load of a cold

storage warehouse; 2) use the model to analyze the major

components of the refrigeration load; and 3) predict

energy and storage cost savings through various fan

cycling technique.

Table 1. Quantity of Apples and Pears and Approximate Cost of Electricity Used in Cold Storage in Washington, Oregon and California During the 1985-1986 Storage Season. 1

Apples ^ ^ mm ^ MB av ^ ^ ^ ■

Pears Total Approximate Month tonm tonm tonm cost of

(X 1000) (x 1000) (x 1000) electricity^ (x 1000)

Aug ' 85 14 41 55 $54 Sep 85 496 179 675 $656 Oct 85 811 135 946 $920 Nov 85 703 100 803 $781 Dec 85 598 83 681 $662 Jan 86 477 64 541 $526 Feb 86 371 45 416 $404 Mar 86 297 29 326 $317 Apr 86 174 15 189 $184 May •86 100 2.3 102.3 $120 Jun •86 49 0.23 49.23 $48 Jul '86 10 34 44

» ^ am ^ B* «H ^ ^ «M ■

$43

From USDA, Crop Reporting Service, Statistical Reporting Service,1985 Cost of electricity =35 cents/bin/month. (Adopted from Yost,1984) tonjn = 1000 kG

LITERATURE REVIEW

Cold storage facilities for apples and pears are

commonly classified into two categories: Controlled

Atmosphere (CA) storage and Common storage. Controlled

Atmosphere storages are tightly sealed to prevent gas

leakage and the atmosphere within is modified according to

the storage requirement of the specific fruit. Fruit may

be kept in CA storage for eight months or more depending

upon the marketing schedule. Table 2 illustrates typical

CA storage atmospheres for several varieties of apples and

pears.

Common storages are refrigerated spaces that are not

sealed to control gas or air exchange. Fruit kept in

common storage typically will be sorted, packaged and

shipped within a relatively short time.

Refrigeration requirements in both types of fruit

storage systems are similar. Frequentlv,,,__Qne central

ref£i9SE?^'0^^SXife§liR.Jr^J!iS^~S£,.^i=n^:ain J^he desired

temperature_regime_ iri,„ several^j^^^j^^^qitBftgiu.^-t'Srage rooms.

The arrsijg.eme.Sit, will.- include a ^centralized qomgressor and

condenser with individual evaporator coils in each storage

room.

Table 2. Oxygen, Carbon Dioxide and Temperature Requirements for CA Storage of Apples and Pears1

Oxygen Carbon Temperature Fruit (%) Dioxide (C)

(%)

Apples Cortland 2-3 5 2.2 Delicious 1.5 - 2 1 - 2 -0.5-0 Golden Delicious 1.5 - 2 1 - 3 -0.5-0 Jonathan 2.5 - 3 0.5 - 5 2.2 (<lmo.)

0 (>lmo.) Mclntosh 2.5 - 3 2 - 3 (<lmo.) 2.2

5 (>lmo.) Yellow Newtown 3 5 - 6 4.4 Pears 2 - 2.5 0.8 - 1 -1.0

1 Adapted from The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, USDA ARS, Agriculture Handbook Number 66, 1986.

2 Recommended relative humidity 90-95%

I. Refrigeration Load

An accurate estimate of the refrigeration load is

basic to design and operation of either type of cold

storage. Refrigeration load is the rate of heat removal

from refrigerated space required to keep space and product

at desired condition (Pita, 1984). The daily, rather than

hourly, refrigeration load is used as the basis of

selecting refrigeration equipment due to compressor

running time. Compressors usually do not operate

8

continuously due to the differential in thermostat

control. Over a small range of satisfactory space

temperature the compressor cycles off. When the maximum

allowed space temperature is reached the compressor cycle

on. Therefore, compressor hourly load is greater than the

actual hourly refrigeration load of the cold storage

building. The hourly load for compressor can be calculated

by:

daily load Hourly load = running time^r

Running time of compressor also depends on the desired

cold storage temperature and the need to remove

accumulated ice from evaporator coils. Rooms maintained at

1.7 0C or above commonly use 16 hours as compressor

running time followed by a defrost cycle, and 18 to 20

hours without a defrost cycle (Pita,1984).

Refrigeration load consists of five major components:

1) building heat transmission load; 2) infiltration heat

gain; 3) product load; 4) heat gain due to evaporator

fans: and 5) miscellaneous heat gains. Building heat

transmission accounts for heat transferred into the

refrigerated space through its surfaces. Infiltration heat

gain is associated with outside air entering the

refrigerated space. Product load consists of heat removed

9

from and produced by the product brought into the

refrigerated space. Heat gain due to evaporator fans is

the heat generated and work done to the air by the fan and

fan motors. Miscellaneous_heat gains are heat produced by

lightSj^pegplj^an^jj^jsr equipment in the refrigerated

space.

A. Building Heat Transmission Load

The building heat transmission load is determined

from heat transferred through the building envelope which

includes walls, roof, and floor. Heat transmission through

the building envelope is influenced by: type and thickness

of insulation, type of construction, surface area,

temp^rature_dlffe.r_eEiceJOetween outside air and

refrigerated space, and solar radiation incident upon

exterior surfaces.

Design refrigeration load due to the walls, roof and

floor is usually computed based on steady state heat

transfer conditions. Fourier's equation for one-

dimensional steady state heat conduction through a

composite can be written in the form:

Q = U-A- (T0 - Ti) Eqn (1)

10

where Q : heat removed, kJ U : overall heat transfer coefficient of the

building, kJ / m2-hr-eC A : overall heat transfer area, m2

T^, T0 : design inside and outside temperature, respectively,°C

The overall heat transfer coefficient (U) is calculated by

the following equation:

U = 1 / Rt

where Rt = 1/fi + Xi/k! + x2/k2 + ... + l/f0

Rt : overall thermal resistance of the wall, roof or floor, m2-hr-0C/kJ

fi : inside film or surface conductance, W/m2-^ f0 : outside film or surface conductance, W/m2-0C

Xi,X2 : thickness of the material, m ki,k2 : thermal conductivity of the material, W/m-'K

The preceding method of computing heat transfer

through the building envelope is accepted engineering

practice for designing refrigerated buildings but not

sufficient for detailed energy analyses.

1. Transfer Function Method

ASHRAE Task Group on Energy Requirements (1976)

developed a procedure commonly called the Transfer

Function Method. This method_is_widely_usg_f-or-hQurly heat

11

transfer computer simulation through walls and roofs of,

commercial and residential buildings.

Transfer functions are sets of coefficients that

relate heat gain at some specific time to the value of one

or more driving functions at that time and to previous

values of both input and output functions. A weighing

factor is applied to each of the preceding values of heat

gain in determining the present value. Thermal

characteristics of the composite wall are represented in

the weighing factors. More accurate cooling load values

result from use of this method (Mitalas, 1972).

Assumptions used in the method are: 1) heat flow

through the building envelop is one-dimensional; and 2)

indoor temperature is constant. Sol-air temperatures are

used to represent the outside conditions. Both inside and

outside surface heat transfer coefficients are held

constant (ASHRAE,1985). Heat gain or loss is determined

from:

9e,t = A-[ I bn-(te/t_ndt) -I <V(qe,t_ndt)/A - trc- I cn] Eqn (2)

where A : indoor surface area of a roof or wall, m2

qe t : heat gain by the space through indoor surface of a wall or roof , W

t : time, hr dt : time interval, hr n : summation index ( number of coefficients)

12

te t-ndt : sol-air temperature at time t-ndt^C

trc : constant indoor air temperature, °C kn'cn : transfer function coefficients, W/m2-^

dn : transfer function coefficients, dimensionless

Transfer function coefficients for different types of wall

and roof construction are published in the ASHRAE Handbook

of Fundamentals (1985). Mitalas and Arsenault (1971)

provided a FORTRAN IV program to calculate transfer

function coefficients for specific roof, floor or wall

constructions not found in ASHRAE.

2. Determination of Sol-air Temperature

Sol-air temperature must be determined prior to the

u^e-_Qf--the--t-gans-£er-_£iinct ion method. Sol-air temperature

is defined as the temperature of the outside air that, in

the absence of all radiation exchanges, gives the same

rate of heat entry into the surface as would exist with

the actual combination of incident solar radiation,

radiant energy exchange with the sky and other outside

surroundings and convective heat exchange with the outside

air (ASHRAE,1985). The following method of estimating sol-

air temperature is presented in the ASHRAE Handbook of

Fundamentals (1985).

13

A heat balance at a sunlit surface gives the heat

flux:

where

q/A = a-It + h0- (t0 -ts) - eR Eqn (3)

q/A : heat flux, W/m2

a : absorptance of the surface for solar radiation

It : total solar radiation incident on the surface, W/m2

h0 : coefficient of heat transfer by longwave radiation and convection at the outer surface, W/m2-0C

to/tg : outdoor and surface temperature, respectively, 0 C

e : hemispherical emittance of the surface R : difference between the longwave

radiation incident on the surface from the sky and the surroundings and the radiation emitted by a blackbody at outdoor air temperature, W/m2.

Assuming the rate of heat transfer can be expressed in

terms of the sol-air temperature (te), then

q/A = h0- (te-t0) Eqn (4)

From equations (3) and (4)

te = t0 + a-(It/h0) - eR/h0 Eqn (5)

The longwave correction term (eR/h0) is -3.7 °C, using the

following: R = 63 W/m2 as an appropriate value for

horizontal surfaces that receive longwave radiation from

the sky only; setting e = 1 and h0 approximately

14

17 W/m2-0C. Common practice is to assume R = 0 for

vertical surfaces, thus eR/h0 = 0. Values of a/h0 range

from 0.026 TS^-'C/ W for light-colored surfaces to 0.052

m2-0C/ W for dark-colored surfaces (ASHRAE,1985).

Therefore, from the given values of eR/h0, a/h0, total

solar irradiation, and ambient outdoor temperature, sol-

air temperature (te) can be computed using Equation 5.

B. Infiltration Heat Gain

Modern commercial cold storage warehouses are

designed to be gas-tight. All junctions between walls,

roof and floor are sealed. Doors are equipped with well-

fitted gaskets and any cracks around the doors are tightly

sealed. Hence, (injiQd^rn__cgjmmercial cold storage^ outside

air infiltration is limited to the opening and closing of

doors or similar openings/ (ASHRAE,1985).

-^Infiltration heat gain for cold storage warehouses

can be determined using an air exchange method, where mass

in-^flow equals mass out-flow less condensed moisture. The

following method was presented by ASHRAE (1985)to

estimate heat gain due to air exch^nge^infiltration.^

The equation for heat gain through a doorway due to

air exchange is :

15

Qt = Q-Dt-Df Egn (6)

where Qt : the average hourly heat gain for 24 hour, W Q : sensible and latent refrigeration load

for a fully established flow, W D-t : doorway open-time factor Df : doorway flow factor

The doorway open-time factor (D^) for cyclical, irregular

or constant door usage, alone or in combination can be

computed as follows ^^ ^ ^^ ^^

(P-ti + 60-to) Dt = Eqn (7)

3600'td

where 0^ : decimal proportion of time that

doorway is open during time period under consideration

P : number of doorway passages tp : door open-close time,sec/passage t0 : time door simply stands open,min t^ : the daily time period,hr

The_dogrway flow factor is_theratio of the actual air

exchangeto that offully established flow. A value of

0.80 is the average factor for most cases of infiltration

by air exchange whether the doorway is constantly open,

cyclically operated or in-between (ASHRAE,1985).

16

Gosney and Olama (1975) provide the following air exchange

equation for fully established flow :

where

Q = 0.221-A- (hi-hj.) -dj.- (l-di/dr)0-5- (g-H) 0-5-Fiii

Eqn (8)

A : doorway area, m2

hi : enthalpy of infiltration air, kJ/kg hr : enthalpy of refrigerated air, kJ/kg di : density of infiltration air, kg/a-' dr : density of refrigerated air, kg/m3

g : gravitational constant, 9.80665 m/sec2

H : doorway height, m Fm : density factor

= (2/(l+(dr/di)(1/3))1.5

Density and enthalpy must be determined first to use

Equation 8. The following equations 9 to 14 are important

relationships used to determine density and enthalpy of

both infiltrating and refrigerated air (ASHRAE,1985). Air

density can be estimated by :

where

d ■

d P *a T W

{(Ra-T)(1+1.6078-W)} Eqn (9)

w

density, kg/m3

pressure, kPa gas constant of air, 287 J/kg-0K absolute temperature, 0K humidity ratio, kg water vapor per kg dry air mass of water vapor in moist air sample,kg mass of dry air in moist air sample,kg

17

Air enthalpy can be estimated by:

h = t + W(2501 + 1.805-t) Eqn (10)

where h : enthalpy of air, kJ/kg t : dry-bulb temperature, "C W : humidity ratio, kg water vapor/ kg dry air

Humidity ratio for the refrigerated air can be estimated

by using:

W = 0.62198 •pw/(p-pw) Eqn (11)

where W : humidity ratio

pw : partial pressure of water vapor, kPa p : pressure in the refrigerated space, kPa

The partial water vapor pressure at constant pressure and

temperature can be estimated using:

RH = Pw/Pws Eqn (12)

where RH : relative humidity

pws : saturation water vapor pressure, kPa pw : partial pressure of water vapor, kPa

Saturation water vapor pressure over ice for temperatures

that range from -100 to 0 0C can be estimated using

(ASHRAE,1985):

ln(pws) = Ci/T + C2 + c3*T + C4-T2 + Cs'T3 + C6'T

4

+ C7'ln(T) Eqn (13)

18

where T : absolute temperature,"K

pws : saturation water vapor pressure, kPa Ci = -5674.5359 C2 = 6.3925247 C3 = -0.9677843-10"2

C4 = 0.62215701'10~6

C5 = 0.20747825-10"8

C6 = 0.9484024-10~12

C7 = 4.1635019

Saturation water vapor pressure over liquid water for

temperatures that range from 0 to 200"C can be estimated

using (ASHRAE,1985):

in (Pws) = C8/T + C9 + C10-T + Cn'T2 + C12-T3

+ Cia-lnfT) Eqn (14)

where T : absolute temperature,"K

pws : saturation water vapor pressure, kPa C8 = -5800.2206 C9 = 1.3914993

C10 = -0.04860239 cll = 0.41764768*10""4 c12 = -0.14452093•10~7 0x3 = 6.5459673

19

C. Heat Gain Due to Evaporator Fans

Refrigeration system efficiency depends to a great

extent on effective heat movement from stored fruit to the

evaporator coils. Increased static and velocity pressures

caused by evaporator fans as well as heat produced by the

fan motors increase air temperature in the refrigerated

space. Evaporator fans should be designed to mca

volumes of air whil^exprnndlflg—l^^ amounts of power.

Heat ^gain due to evaporator fans is the heat

equivalent of the electrical power used to drive the fan

i[iatsrs_jjicluding_efficiency losses^ The refrigeration load

due to evaporator fans can be computed using Table xl, and 3

the following equation:

where

Qf = Hp-C'24*ff Eqn (15)

Qf : heat gain due the fans, (kW) Hp : horsepower rating of the fan, (Hp) C : heat equivalent from Table "X. / (kW/Hp-hr) 24 : hours/day 3

ff : use factors

Evaporator fans are presently operated for long periods

during cold storage season. Reduction of evaporator fan

power costs as well as length of operation are important

aspects to be considered to be in energy conservation.

20

Table 3. Heat Equivalent of Electric Motors1

Connected load in Motor Hp Refrigerated space (kW/Hp/hr)

0.09 to 0.37 1.67 0.38 to 2.24 1.45 2.25 to 15.0 1.16

1 For use when both output and motor losses are dissipated within the refrigerated area. (Adapted from ASHRAE Handbook of Fundamentals. 1985. Chapter 29.

D. Product Load

Fruits in cold storage are alive and carry on

biological processes characteristic of all organisms. The

most important of these processes is respiration. During

respiration oxygen from the air is combined with the

carbon in plant tissue, occurring chiefly in sugars, to

form various decomposition products and eventually, carbon

dioxide, water and energy (Hardenburg et al.,1986):

C6H1206 + 602 6C02 + 6H20 + 673 kca:L

Energy released in the process is in the form of

heat. The amount of heat varies with fruit type and

increases as temperature increases up to about 38-40 C

(Hardenburg et al.,1986). This heat, called heat of

respiration, is always a part of refrigeration load.

21

Table 4 indicates the approximate heat of respiration

rates for apples and pears at various temperatures.

Product load consists of initial sensible heat due to

temperature difference between field and desired storage

conditions, and heat produced by fruit respiration during

storage.

The amount of heat removed in cooling a given mass

of fruit can be computed by:

Q = m-Cp- (Ti - T2) Eqn (16)

where Q : heat removed, kJ m : mass of produce , kg Cp : specific heat of produce, kJ/kg-0C

T1'T2 : initial and final temperature respectively,^

Removal of heat from fruit should be accomplished in a

given number of hours per day and the equivalent

refrigeration load is given by:

Product load.kJ (24hr) kW = (3600 n)

where n : number hours of cooling time

The remaining part of product load is heat

generated by fruit during storage which is calculated by:

Q = m-h'24 Eqn (17)

22

where Q : heat removed , kJ m : mass of produce, kg h : rate of respiration, kJ/kg hr

24 : hrs/day

Table 4. Heat of Respiration Rates (kJ/ton^'day) for Apples and Pears at Different Temperatures.1

Fruit 0 Temperature

5 10

0C 15 20

Apples, average of many cultivars

587- 1048

1299- 1844

3478- 7919

4317- 8967

Pears, late ripening

670- 922

1507- 3561

2011- 4819

7123- 10894

8380 18855

Pears, early ripening

670- 1257

1886- 3981

2514- 5447

8799- 13826

10055 23044

1 Adapted from ASHRAE HANDBOOK OF FUNDAMENTALS. Chapter 31, 1985. tonm (metric ton) = 1000 kg.

E. Miscellaneous Heat Gains

Miscellaneous heat gains account for the heat

generated by lights, equipment, and people that adds to

the refrigeration load.

Heat gain due to lights can be computed by

(ASHRAE,1985):

qi = TW*uf'sf Eqn (18)

23

where qi : heat gain from electric lights, W TW : total light wattage, W uf : use factor sf : special usage factor

The total light wattage (TW) is obtained from the

ratings of all fixtures installed for general

illumination. The use factor (uf) is the ratio of the

wattage in use to the total installed wattage. The special

allowance factor (sf) accounts for fluorescent and other

fixtures that require more energy than their rated

wattage. The special allowance factor for fluorescent

fixtures accounts for ballast losses, which can be as high

as 2.19 for 32 watt single lamp high-output fixtures on

277 volts. Special allowance factors for rapid start, 40-

watt lamp fixtures vary from 1.18 for two lamps on 277

volts to 1.30 for one lamp on 118 volts (ASHRAE, 1985).

Operation of any electric motor equipment in the

refrigerated space produces heat and adds to the

refrigeration load (ASHRAE,1985). The general equation for

calculating heat gain is:

kilowatt rating . load qm = % motor efficiency/100 factor ... EQN (19)

where qm : heat gain due to equipment, W

load factor : fraction of the rated load delivered

24

People working in cold storage warehouses release

heat and moisture at varying rates depending on

temperature, activity and clothing. Practical values are

indicated in Table 5.

Table 5. Heat Production Rates of People in a Refrigerated Space•!

Temperature Heat Produced per Person (•C) (Watts)

16.7 211 4.5 246

-1.1 278 -6.7 308

-12.2 352 -17.8 381 -23.3 410

1 Adapted from Dunham-Bush, Inc as cited in Refrigeration Principles and Systems, Pita (1984)

II. Refricreration Energy Conservation

A number of opportunities for energy savings exist in

fruit cold storage warehouses. Refrigeration system energy

usage is the largest electrical load in fruit packaging

and shipping companies. Another important factor is that

most refrigeration systems in cold storage warehouses were

designed during periods of low-cost energy.

25

Potential energy conservation schemes for

refrigeration system design and operation include: fan

cycling, reduced condensing pressures, optimized

compressor sequencing, and increased suction pressure

during non-process hours (URS,1985).

Fan cycling can decrease cold storage warehouse

energy consumption by reducing evaporator fan operating

time without damaging fruit quality. Yost (1984) studied

different fan cycling schemes such as eight hours on,

eight hours off; one hour on, one hour off; six hours on,

six hours__o.f=f.;„-one--hour--on.,J,_two hours off; and eight hours

on, 16 Jiours off. Fruit subjected to fan cycling showed no

significant quality difference compared to fruit stored in

rooms with fans running continuously. The study showed

energy savings ranged from 28-62 percent.

Refrigeration systems in general should be operated

at as low condensing pressure as possible in conjunction

with available condenser capacity. The system's

refrigeration effect (RE) increases as condenser pressure

decreases because the refrigerant requires less cooling.

Also, heat of compression (HC) decreases due to less work

required to compress the refrigerant over a smaller

pressure range. Therefore, a system's coefficient of

performance (RE/HC) increases with lower condenser

26

pressure. Several factors may impose a lower limit on

condensing pressure (URS,1985) such as:

a) Screw compressors are constructed with built-in volume

ratios chosen to match system pressure ratio.

Significantly lowering discharge pressure below design

pressure can decrease efficiency and cause

operational problems.

b) Direct expansion evaporators or intercoolers which may

be part of the system, could suffer a reduction in

capacity due to insufficient pressure difference across

the expansion valve.

c) Screw compressor liquid injection oil cooling systems

may require modification to operate satisfactorily at

lower pressures.

A typical estimate of energy savings that would result

from lowering the condensing pressure of a 3520 kW ammonia

refrigeration system from 1.14 MPa (32"C) to .97 MPa

(27"C) is from 969 kW to 746 kW. A reduction nearly 20

percent in power consumption would be realized (URS,1985).

Compressor sequencing can readily be optimized by

adding a programable controller based system. Such a

system can be programmed to: operate the most efficient

compressor; sequence compressors for distribution of wear;

27

and match capacity steps to system load changes

(11113,1985) .

Increasing suction pressure during non-process hours

decreases the power requirement per kW of refrigeration.

Non-process hours are periods when product and

infiltration load are minimvim. For apples and pears cold

storage, this period occurs when CA storage rooms are

sealed. The majority of cold storage operating time for

apples and pears falls into this category.

28

PROCEDURE

Computation of the daily refrigeration load required

detailed information of the construction and operation of a

specific cold storage warehouse. The building_selected as a

study stricture is owned and operated by Duckwall-Pooley

Fruit Company in Hood River, Oregon. Duckwall-Pooley

provided a complete set of structural blueprints as well as

detailed records of energy consumption for the 1984 and

1985 fruit storage seasons.

A computer program was developed to simulate the

refrigeration load of the study structure and predict

energy utilization under alternative management schemes.

The program. Refrigeration Load SIMulator (RLSIM), was

written in BASIC and operated on an IBM Personal Computer.

I. Building Description

The cold storage structure selected for analysis was

constructed in 1984 and located approximately 45 degrees

North Latitude and 121 degrees West Longitude. Enclosed

within the exterior walls are one large common storage and

three CA rooms. The CA rooms are approximately IS^iLJLfeY

13.25 m by 10 mand each__h.aKe_a_aapacityvof 1,245 bins oJ

29

fruit. The common storage area measures approximately 17.4

m by 39.6 m by 10 m and has a capacity of 4,3 65 bins of

fruit.

The storage building interior is divided into five

different temperature control zones. Figures 1 and 2 are

isometric and top view illustrations of the building,

respectively. The figures indicates the zones, locations of

CA and common storage rooms as well as the refrigeration

equipment.

LATITUDE 45 deg N

LONGITUDE 121 deg ¥

aaoun uyx

Figure l. Isometric View of Cold Storage Warehouse

N t

30

13.25 m 13.1 m 13.25 in

36.6 m

_.._ ; ZONE # 5 ZONE § A

COMMON STORAGE

DOOR 3.68 x &96 m

BUILDING HECHT - 10 m

39.6 m

Figure 2. Top View of Cold storage Warehouse

31

The building is constructed of tilt-up concrete. The

north, east, and west exterior walls, from outside to

inside, consist of 20.3 cm concrete, 12.7 cm polystyrene

molded beadboard insulation, 0.020 cm Gaco Flex2 (rubber-

like sealing compound), and 1.27 cm Zonolite 3300 (fire

retardant compound). The south exterior wall, from outside

to inside, consists of 25.4 cm concrete, 10.16 cm

polystyrene molded beadboard insulation, .020 cm Gaco Flex,

2.54 cm urethane, and 1.27 cm Zonolite 3300. The inside

partition walls consists of 0.020 cm Gaco Flex over 1.3 cm

plywood over 5.1 by 30.5 cm studs spaced at 81.3 cm on

center with insulation (R=3.34 m2*K/W) in-between.

The CA area roof construction is 0.95 cm built-up

roofing, 1.3 cm Fesco board (hard board used to cut down

solar load), 1.6 cm plywood, 86.4 cm air space, insulation

(R=5.28 m2,K/W), 1.6 cm plywood, and 0.020 Gaco Flex.

The common storage area roof construction consists of 0.95

cm built-up roofing, 2.54 cm. Fesco board, 17.8 cm

polystyrene molded beadboard, 1.6 cm plywood, and 0.020 cm

Gaco Flex.

The building floor is constructed of 15.2 cm concrete

slab on grade. Appendix 1 presents the construction of

2 Named brand products mentioned in this paper does not constitute product endorsement by the author.

32

walls and roof with the appropriate thermal properties.

The CA and common storage building was designed to

meet the following requirements:

1. JFrujjtL enters stor_ag_e__at ..3-5°.n. . 2. Fruit is loaded into two 30,800 box CA and one

60,000 box common storage in 14 days. 3. Design ambient conditions are 38"C dry bulb and

210C wet bulb. 4. Unit coolers are required to provide 9.44 m3/sec,box

and 3.5 kW of refrigeration per 1000 box of pears. 5. Condensers are sized to maintain approximately 32"C

temperature during building and fruit cool down.

The following refrigeration and CA equipment were

installed to meet the requirements:

1. One Vilter Model 4412 reciprocating compressor with 450 kW of refrigeration capacity while absorbing 102 kW.

2. One Mycon N6A reciprocating compressor with 134 kW of refrigeration capacity while absorbing 3 3 kW.

3. One BAG evaporative condenser Model VXC N275, 19 kW with two speed fan.

4. One 7.5 and one 3.7 kW water pumps for evaporator defrost.

5. Nine Krack Model WD5-8575 evaporators, three per CA room with 4.1 kW three phase fan motors. Capacity is 39 kW of refrigeration at 7.2 0C temperature difference (TD).

6. Ten Krack model WD3-5360 evaporators for common storage with 2.6 kW three phase fan motors. Capacity is 24.5 kW of refrigeration at 7.20C (TD).

7. Two roof type exhaust fans with approximately 340 rnVnun^j^papj^x^^^

"one^OXYDRAIN (oxygen reducing device) , power """"""""N rating is 35 kW, energy consumption rate is 2 kWh \ per cubic meter of O2• Two Molecular Sieve Absorbers (MSA) (carbon dioxide \ scrubbers), power rating 40 kWh peak demand and 21 ' kWh per hour of use.

33

II. Calculations and Development of RLSIM

A. Building Transmission Load

Thermal properties and description of the layers of

the walls and roof were tabulated in Appendix 1. The same

thermal properties were used as input to the FORTRAN IV

program of Mitalas and Arseneault (1971). The transfer

function coefficients acquired from the program were also

tabulated in Appendix 1.

Climatological records recorded at Hood River, Oregon

were obtained from the University of Oregon, Physics

Department. Recorded data included hourly air dry bulb

temperature, solar radiation./==;thmayit^jg|iitiq^ and^soil

temperature at three different depths^ Data from August

1985 to August 1986 were ac(^ired^o^5P.rrgspact.d^wi^h_the

1985-86 fruit storage season.

34

1. Determination of Solar Radiation Incident on Vertical Surface

The solar radiation data available were for a

horizontal surface. The data were adjusted for a vertical

surface using the following relationships (Task Group on

Energy Requirements, ASHRAE,1975):

Global radiation for a horizontal surface is

IDh " ^n*8131 (beta)

Idh - c,Idn

for a vertical surface

IDv = Idn'cos(theta) Idv " c,Idn,Fss + Pg'Fsg-Idn-(C+sin(beta))

Thus, for solar radiation measured on a horizontal surface,

the solar radiation on a vertical surface becomes:

Inh<cos(theta) Ij^v = sin (beta) Eqn (20)

where

Idv = {C-Fss+pg-Fsg- (C+sintbetam-Idh/C Eqn (21)

Idn : direct normal radiation on a clear day, w/m2 I^Y : direct radiation on vertical surface, W/m-2 IDh : direct radiation on horizontal surface, W/m2 I^y : diffuse radiation on vertical surface, W/m2 I^k : diffuse radiation on horizontal surface,W/m2

C : diffuse radiation factor, fraction Pg : reflectance of the foreground, fraction

beta : solar altitude angle, degrees

35

theta : angle of incidence, degrees sigma : tilt angle of the surface, degrees

Fss : angle factor between the surface and the sky, fraction

Fss = (l+cos(sigma)) = .5 for vertical surface

FSg : angle factor between the ground and the sky, fraction

Fsg = (l-cos(sigma)) = .5 for vertical surface

Global radiation on a vertical surface (Itv) ^s t*16 sum of

both direct and diffuse radiation is given by:

^v = IDv + Idv Ec3n (22)

Two short BASICA computer programs were developed to

estimate the hourly sol-air temperature of different wall

orientationg__Xsouth, east, west) and roof using Equations

5, 20, 21, and 22. The programs were entitled SOLAIR1 and

SOLAIR2. SOLAIR1 computed hourly sol-air temperature for

walls oriented south, east and west. SOLAIR2 computed

hourly sol-air temperature for the roof and north oriented

wall. Ambient temperature was used as the sol-air

temperature for the north facing wall since the surface

received negligible direct solar radiation. Figure 3

illustrates the basic computational flowchart and the

programs are listed in Appendix 7. The output files created

by the two programs were used as input to RLSIM.

36

/ Enter output & / / Input file nomea /

Open Input tc output fDee

Enter latitude, longitude vail azimuth tc wall tilt anlge.

Enter global k diffuse solar radiation on

' ja-hotpariial surface ^pffd^Gmp?) for o given day

Compute declination angle and equation of time

Compute hour angle, solar altitude angle. It angle of Incidence.

Compute direct It diffuse solar radiation on a vertical surface using Eqns 20.21 te 22

Compute sol—olr temp, for a given surface orientation and hour

(st?)

Figure 3. Sol-Air Calculation Flowchart

37

The hourly computation of the heat transmission

through the external walls and roof using Equation 2 is

illustrated in Figure 4. Small areas of south, east and

west walls were below ground level as indicated in Figure

1. The hourly heat transfer calculation of the wall area

below ground level was similar to that of the above ground

area with the exception of the temperature used. The hourly

ground temperature at the depth of 51 cm was used instead

of sol-air temperature.

38

NOTES

Input fiee

B.4h-~

©—

Roof — (Dj)

Vails N,E:,V I s

Exterior Surfaces

Floor ■*Hg) Assign appropriate transfer function coefficient files, leather data, U-values and area

Read In tenperature of last day of previous nonth

Yes

Compute heat gain of last day of previous nonth using Equation 1

Save heat gain and tenperature of last day of the nonth

Write dote, to Z0$

BT

Create hourly output files

Open transfer function/ file and read In / transfer function / coefficients /

X Open weather data and output files

WD$ : hourly weather doto

RCt : roof transfer function coefficients

WFJ : wall transfer function coefficients

Output File 10% : dolly heat gain

due heat transmission through building surfaces

Vor iables

L : zone number T2(L) zone storage temp. TR(U TNfL)

roof sol-oir temp. north wall sol -oir temp. (SOT)

TE(L) : east wall SOT TW(L) : west woll SOT AR surface area 0$ hourly output file GZ storting month

(1-yes.0-no) 01 roof (l-yes,0—no) BT zone heat gain from

building heat trans.

z Input date, sol—air

T Conpute hourly heat gain of surface using Equation 2

Sun hourly heat gain into dally heat gam

/Input dote, BT /

Add surface heat gointo BT

Figure 4. Exterior Surface Heat Transmission Load Calculation Flowchart

39

2. Determination of Inside Partitions and Floor Heat Transmission Load

Heat transmission through inside partitions was

assumed to be steady state as inside temperatures were

assumed constant throughout the simulation. When adjacent

rooms had the same temperature no heat was transferred

through the partition. Only two situations were considered

when adjacent rooms did not have the same temperature: 1)

the cold storage room that was adjacent to the engine room

which housed the compressors and other equipment; 2) the

fruit inside two adjacent rooms were stored at different

temperatures. Engine room temperatures ranged from 10-28

"C. A mean temperature of 19 "C was used for calculations.

Heat gained through a partition was computed using Equation

1.

Wall insulation extended two feet below floor level.

Figure 5 is the floor construction illustration and Table 6

describes the thermal properties of layers.

40

-25,4 cm

~ 10.2 en polystyrene noldeol beadtooard

rl5.2 en

61 en

30.5 en

soil

Figure 5. Ploor Coostruction

Table 6. Description and Thermal Properties of Layers

Layer Thickness (maters)

Conductlvfty (W/m'.K)

Resistance (m*. K/W)

Description

1 2 3

0.15 0.61

1.31 0.87

0.16 0.115 0.70

Totol 0.975

Inside surface concrete heavy dry soil

NOTE: overall heot tranemlwlon coeffldent " 1.02 W/tm^K)

41

Several assumptions were made to simplify floor heat

transfer calculation. Assumptions included: 1) heat

transfer horizontally through the perimeter wall was

assumed negligible thus the problem became one-dimensional

(upward into the room); 2) the 61 cm of soil (depth of

insulation) and the flooring materials were treated as a

composite; 3) the area daily average soil temperature at 51

cm depth was used as the temperature below the composite

floor. Using the above assumptions, hourly heat gain

through the floor was estimated using:

Qf = U-A- (Ts - Tr) Eqn (23)

where

Qf : heat gain through the floor, kJ A : area of the floor, m2

Ts,Tr : temperature of the soil and room, respectively ,'C

The computational flowcharts for the interior walls and

floor heat transfer are illustrated in Figure 6.

Assign U—volue on<j oreo o' surfoce

Assign tenp, of adjacent zone

Compute the steady state heat gam through the given surface

Floor

© 42

Creole output ffiename

Assign U—volue <k surloce oreo

I Open weother data it output files

' Input dote, ove. doily ground temp, ot 51 cm depth

Compute daily steady state heat gain through floor using Eon. 23

/ Input dote, BT /

Add heat gain from surface to BT

Write dote, 8T to 20$

Figure 6. Interior Wall and Floor Heat Transmission Load Calculation Flowchart.

43

B. Infiltration Heat Gain

Bins of fruit were moved in and out of the cold

storage building through only one door (see Figure 2). Air

exchange at that specific door during the loading and

unloading of fruit was the major infiltration load.

Average daily temperature ^nd monthly humid_ity_ratio

were used to_compute density and enthalpy of the

^infiltrating air using Equations 9 and 10, respectively.

Indoor relative humidity was assumed to be 95 percent.

Saturation water vapor pressure inside the storage space

was computed using either Equation 13 or 14 depending on

the desired storage temperature.

The assumed constant relative humidity, computed

saturation water vapor and Equation 12 were used to compute

indoor partial water vapor pressure. Equation 11 was used

to compute humidity ratio of the refrigerated air.

Refrigerated air density and enthalpy were calculated using

Equation 9, and 10, respectively. The doorway open factor

(D-t) was assumed to be 0.75 and the flow factor (Df) was

0.85. Equations 7 and 8 were used to compute the air

exchange and heat gain due to the opening and closing of

the door. Figure 7 illustrates the computational

flowchart.

44

©

Compute saturation wotor vapor presaure for temp. <= 0 C using Eqn 13

Aulgn It open Input and output flies

Compute sQturaUon water vapor pressure for temp. > 0 C using Eqn 14

Compute partial

preaaure of water

vopor (Eon 12) If" Compute humidity ratio using Eqn 11

Compute specific volume deneity, and enthalpy using Eqns 9 It 10

, Read date, daily outside eve. temp. /

Convert room and

InfUtrotlng olr temp.

to absolute temp.

Compute density, specific

volume, and enthalpy

of InfUtrotlng olr

WA$

Ql$

TA T3 ; T4. :

T2(L) : HI. HR

VI, VR

01

W

NOTES

calculation steps for refrigerated air

Input file

daBy outdoor ave. temp.

Output file

dally heat gain from InfUtrotlng olr

Variables daily ave. temp dally ave. absolute temp, absolute room temp, room temp. Infiltrating k room air enthalphy Infiltrating k room air specific volume daDy heat gain from hfiltraUng air

: humidity ratio

|Compute deneity foctor, Fm

Compute sensible it latent heat gain from air exchange using Eqn 8

Adjust heat gain using Eqn 7.

/Write date, 01 to Ql>

(Retum)

Figure 7. Flowchart for Calculation of Heat Gain Due to Infiltrating Air.

45

An assumption was made that air movement inside the

cold storage warehouse distributed infiltrating air as a

function of zone air volume. Thus, the heat gain for a

specific zone was adjusted accordingly by the ratio of zone

air volume to overall air volume of Jthe building.

CA rooms were sealed once loaded to full capacity. Air

infiltration into sealed CA rooms was negligible. Common

storage rooms were not sealed and frequently opened to

unload fruit. During the periods when CA rooms were sealed,

infiltrating air heat gain due to the opening and closing

of the door remained in the common storage area.

The initial volume of warm air in all zones was added

ts_infiltration load durlng^ystem^jstart up. The air

temperature was assumed to be 13°C and Equation 13 was used

to compute the amount of heat removed by the refrigeration

system.

The defrost cycle increased the temperature of each

zone approximately 1.90C thus adding to the refrigeration

load. Defrost cycles were accomplished by running warm

water (approximately 22°C) over the evaporator coils. Heat

gained due to this process was added to the infiltration

load since the source of heat transfer was deliberate

infiltration. Heat gain was estimated using:

46

qdf = (V/12.5)-Cpa-TD Eqn (24)

where Sdf : heat gain due to defrost cycle, kW V : volume of air in the zone, m3

12.5 : air specific volume, m3/kg cpa : specific heat of air, kJ/kg'-C TD : temperature difference, "C

C. Heat Gain Due to Evaporator Fans

The three CA storage rooms each have three 4.1 kW fans

and the common storage area has ten 2.6 kW fans. These fans

were generally on for 24 hours per day except during a

defrost cycle. The average defrost cycle was approximately

10 minutes. The number of defrost cycles per day depends on

the refrigeration load. Defrost cycles occurred as often as

every three hours during the loading of the fruit. When

fruit reached the desired storage temperature, evaporator

coils were defrosted every six hours (Baskins, 1986).

All fans were located and operated within the

refrigerated space. Consequently, all the power used to

drive the fans were converted to heat. The heat gain due

evaporator fan operation for each zone was calculated

using:

kW'nf Tih qf = EFF Eqn (25)

47

where qf : heat generated by the fan, kWh kW : rated kilowatt of the fan nf : number of fans nh : number of operating hours

EFF : efficiency of the fan, fraction

Maximum efficiency of an electric motor occurs between 75

percent to 110 percent of rated full capacity (ASHRAE,

1985). Fan motor efficiency was assumed to be 85 percent.

The number of defrost cycles was determined from the

amount of fruit being loaded. Evaporator fan operating

hours were adjusted accordingly :

if nbf < 20 then ff = 1 if 21 < nbf < 101 then ff = 4 if nbf > 100 then ff ■ 8

where nbf : number of bins of fruit loaded ff : number of defrost cycles per day

Heat gain due to evaporator fan operation with the

operating time adjustment was determined by:

qf = qf• (nhf-0.167'nd) Eqn (26)

where nhf : fan operating time, hr

0.167 : average time for defrost cycle, hr nd : number of defrost cycles

48

D. Heat Gain Due to Fruit

Heat gain due to the fruit consisted of several

parameters including; pull-down load, cooling rate, fruit

loading schedule, bin materials, and fruit respiration.

Refrigeration load associated with removal of field

heat from fruit is termed pull-down load. Heat removal rate

during pull-down is influenced by initial temperature of

the product, packing container type and storage

configuration. Wang and Mellentin (1976) reported cooling

rates of d'Anjous pears subjected to various bin storage

conditions. A polynomial fit of the data presented provided

the following cooling rate correlation between time and

temperature for pears in unlined and uncovered bins:

T = 19.41 - 0.948*t + 0.014't2 - 0.00007-t3 .. Eqn (27)

where T : temperature ,° C t : time in storage, hours

Figure 8 indicates how well equation 27 fit the data. The

coefficient of determination (r2) is 0.99. The cooling time

range of Equation 27 is limited to three days (72 hours).

The correlation was used to simulate the cooling rate of

both apples and pears stored in a cold storage warehouse.

49

20.00 -i

~| i i i i i i i i i | i i -'i i i i i i i | i i i i i i i i i | i i i i i -i r r i |

0 20 ■ 40 60 80 time (hr)

Figure 8. Cooling Rate of d'Anjou Pears (Data versus Model)

50

Fruit loading schedule dramatically affects the

magnitude of the refrigeration load. The amount of fruit

loaded also influences the following: forklift operation

time; the number of defrost cycle increases or decreases

according to the amount of fruit loaded; evaporator fan

operation as affected by the number of defrost cycles; and

outside air infiltration increases. All of the above were

accounted for in the subroutine to compute the product

load.

An assumption was made that the daily load of fruit

were all added at one time with an average bulk

temperature. This assumption was necessary to monitor fruit

quantity and temperature change on a daily basis. The

hourly temperature change of a specific fruit load was

estimated using Equation 27. Appendix 3 shows the fruit

loading schedule for each zone used as input to RLSIM.

The daily temperature difference was estimated using

Equation 27. The heat removed from the fruit was estimated

using the daily temperature difference of the specific

fruit load, and equation:

qm = 363 -nb-Cpp-Ct!^)' 1/3600 Eqn (28) where

qjn : heat removed from the fruits, kWh nb : number of bins

Cpp : specific heat of fruit, kJ/kg'F 363 : kg of fruit per bin

51

('tl~t2) : daily temperature difference, F 1/3 600 : conversion factor from kJ to kWh

Similarly, heat removed from the bin material was

calculated by:

Sbm ~ 8.eeSTlb'Cpy,* (t1-t2)'1/3600 .... Eqn (29)

where Sbm nb

cpw 8.8B3

(ti-t2)

heat removed from the fruits, kWh nximber of bins specific heat of wood, kJ/kg*F kg of wood per bin daily temperature difference, F

The remaining part of product load is the heat gain

due to fruit respiration. Respiration rates of apples and

pears were shown in Table 4. Using linear regression and

data transformation, the following correlations were

derived to estimate respiration rates as a function of

temperature:

Pears

Qr = 1493.887'exp(0.141247'T) Eqn (30)

Apples

Qr = 1083.586'exp(0.115013'T) Eqn (31)

where Qr : heat of respiration, kJ/ton^'day T : temperature,0 C

52

The models were valid only for a -1.1 to 20 0C temperature

range. Figure 9 indicates how well the models fit the data.

The coefficient of determination (r2) for both models is

0.97.

The product load due to the fruit respiration was

estimated using the correlation equations 30 and 31. The

temperature (T) during pull-down was estimated using

Equation 27 then held constant when the desired storage

temperature was reached. The heat gain was estimated by:

0.363

where

qr a Qr- 3600 •24*nb Eqn (32)

qr : heat gain from fruit respiration, kWh Qr : respiration rate from Equation 30 & 31

kJ/tonm'day tonm = 1000 kg 0.363 : tonm/bin

1/3600 : conversion factor from kJ to kWh 24 : hours/day nb : number of bins

Figure 10 illustrates the flowchart for computing the heat

gain from fruit, heat gain due to evaporator fans

operation, heat gain from air infiltration, and

miscellaneous heat gains.

53

25000 -i

20000-=

71 15000-d c

10000

5000

Pears Apples

0 "i 11 i i i i i i i ii i i i i i i i i i i ii i i i 111 11 i i ii i i i i i 111 i -2 2 6 10 14 18

Temperature (C)

Figure 9. Respiration Rates of Apples and Pears (Data versus Model)

9 Comput* OA 4C OOF

Compute Ql Q1=Q1«V(L)/VT

CH-Ql+QA

_/WHt« DI.Ql/ / h oi> /

/Input DYFH1,FN$. 7 /rP(l,DV),BZ(LDY).CL /

54 NOTES

Input FJM

Qlf : daDy h«at gain from Infiltrating air due to air exohonge

FZ$ : Fruit loading eehedule

Output FDee ZF| : zone daDy heat gah from fruit 2$ : zone odjueted dolly heat

gain from tnffltratlng air FL$ : zone odJUstsd daDy heat gain

from evaporator fan operation UQi : zone daOy heat gain from

Ilghte, forWlfta and peraonnel

Functlone

FNUBHG : heat removed from bin material (Eqn 29)

FNMFHG : heat removed from fruit (Eqn 28) FNFRK : heat gain from foridlft operation (Eqn 34) FNPQ : heat gain from working personnel

(Eqn 35)

Variables

QA : Initial heat gain from warm air h zone

QDF : heat gain from one defrost cycle

01 : daDy heat gain from Infltratlng abr results of air exchange

D1 : proceealng day DY1 : start—up day V(L) : zone air volume, L«zone# VT : total air volume of

building

DOS : starting date to unseal CA

DON) : 2nd turn an date of common storage

room COF : code to cheek If zone

Is shut down(1—yes. 0-no)

GS : code to check If zone Is eecledO-)«ss,0-no)

GC : code to check If next loading day Is on proceeding month (l—yes, 0—no)

GU : code to check If next loading day Is rUH on processing month

BZ(UDY) : number of bins of fruit loaded In zone

L at day OS BN(L) : total number of bins of

fruit In zone I TPfLOV) : temp, of fruit load

at day DY DY : loading day H1 : loading hour

FUt : type of fruit GL : code 1 » first loading

2 - loading 3 «• zon». sealed

after loading 4 - unloadkig

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit.

55

No /2Z'«\ Yea .

NOTES

Function!

FNTP : Eqn (27) FNRHO : Eqn (30)

FNARHC : Eqn (31J

OL«4

Subtract amoont of fruit unloodod from zona oecummulatad total

COF(LH

Computo heat gain from reaplroOon of botch of fruit b«for« ramovol from ion« (uolng FNRHO)

Compute nsot gain from foftottt and paraonnal using

FNFRK It FUPQ

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit (continuation).

NOTES

Computa heot gain from rssplratlon of the now load of fruit using rocl«ving tsmp. fc fUncOon FNRHC of FNARHC

tatarmtna hours romolnlnq In day

Loop to computa hourly hact gain from reaplratlon of batch of fruit for rsmalntng hours of tha day using functions FNTP le FNRHO or FNAf?HG

Computa haot ramovsd from load of fruit and bin material during Uma when load was flrrt loaded to end of day. Using functions FNMFHG k FNMBHG

Variables

ff : number of defrost cyds/day II : hour* of light operation

QP : heat gain from specific load of frolt

OTZ. : daDy total heat gain from fruit

MO : daDy Mlac heat gain OFT : daSy heat gah from

operation of fans FRK : daDy heat gain from

operation of forldlfts PO : daDy heat gain from

working personnel LQ : daDy heat gain from

lights J2 : number of days h

month D£ : ending day of the

cold storage seaeon

56

©-

Sum heat removed and heat from reaplraUon Into QP

Computa heat gain from operation of forWlfts and working personnel using functions FNFRK * FNPQ

X Allocate tnffltratlon load to zone tc If zone Is sealed add zone Infiltration load to common storage room load

Adjust heat gain due to operation of fan k lights using Eqn 26 le 34

n:

ff-1 D - *

ff - 4 n - a

Sum Misc. heat gain Into UQ Sum 01 * QDF»ff Into 01

Compute heat gain from reepfratlon of fruit already In zone at storage temp. uelng FNTKHG or FNTARHG

Sum oil heat gains from fruit Into OPZ

/WHte DY, QFZ to Zft / _/ Write DY. 01 to 01$ / / Write DY, OFF to Ftf / / WHte DY, MO to MQt /

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit (continuation).

57

1=3, D8«»DY-I

Compute resplrotlon h«ot goln using TP(UD8)

Add hour hact gain of 06 to doOy haot gob of PY

I

DY 08

BZ(U08)

TP(l,08)

QP(DY)

BN(L)

NOTCS

Vcrtablu

numbar of days prior to DY procaaslng doy pravlous loading day fruit load of zone L. at day 08 (no. of bins) temp, of BZ(L,D8) at day DY storaga temp, of zone L haot gain from fruits for doy DY total numbar of bins of fruit In zone L already at rtorage tamp.

Determine TP(1»D8) using Eqn 27 for next hour

Add BZ(L.D8) to BN(L)

TP(LD8)«-T2(L)

Compute heat gain from BZ(UD8) respiration at storage tamp.(T2(L)) for remaining hours of doy DY

T Compute heat removsd from BZ(U08) te bin materials before T2(L) was reochad

Sum all heat gains due to BZ(U08) and add to OP(D>0

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit (continuation).

58

Ctotarmlnfl ramolnlng houm of DY

0S(L) » 1 Clone fit

Add B2(UDY) to BN(L) ••t TP(1,0Y)-TZ(L)

Loop to computa hoot gain from BZ(UOY) due to rwplroUon k heat removal for the remalder of DY. Using functlona FNRHG, FNTP.FNMBHO k FNMFHG

Compute heat gain from BZ(l.DY) reeplrotlon for remaining houri of DY

Compute heat gain from forkllft operation uelng functions FNFRK tc FNPQ

Figure 10. Subroutine Flowchart Computation for the Heat Gain Due to Fruit (continuation).

59

E. Miscellaneous Heat Gains

Operation of lights, equipment and presence of working

personnel in the refrigerated space added heat to the

space. The amount of fruit loaded or unloaded influenced

the length of working day thus affecting the number hours

when lights were on, equipment used and personnel working

in the refrigerated space. Miscellaneous heat gains were

composed of heat generated from lights, equipment and

working personnel.

The cold storage warehouse lighting diagram is

illustrated in Figure 11. All lights were 215 watt, 277

volt VHO fixtures with two lamps (Baskin^gse) . Each CA

room has six fixtures while the common storage room have 15

fixtures. The heat gain from lights was estimated using

(ASHRAE, 1985):

qi = LW-sf'nf'h Eqn (33)

where qi : heat gain from lights, kWh LW : rated wattage of the lighting fixture, kw sf : special allowance factor nf : number of lighting fixtures h : operation time per day, hr

60

N

Figure 11. Cold Storage Warehouse Lighting Diagram.

61

The special allowance factor of 1.18 which correspond to

rapid start lamp fixtures on 277 V, was used (ASHRAE^SSS) .

Daily operation time of lights depended upon the number of

bins of fruit loaded per day. Light fixtures operating time

was determined using the following guideline:

nbf < 21 then 11=4 20 < nbf < 101 then 11=8 nbf > 100 then 11=10

where nbf : number of bins of fruit 11 : operating hours of lights, hr

Heat gained from other equipment used in the

refrigerated space was mostly from forklifts. Two 26 kW

forklifts were operated during fruit loading

(Baskins,l986). The heat gain was calculated using:

Sfk = (26/MEF)-load factor*400/nb'8•0.5 Egn (34)

where qffc : heat gain from forklifts, kWh 26 : kilowatt rating of the forklifts, kW

MEF : motor efficiency, 0.85 load factor = .60, approximately 60% of power is used

400 : maximum number of bins that can be loaded in eight-hour working day.

nb : actual number of bins loaded 0.5 : ratio of the time spent in the refrigerated

space to the total time 8 : number of hours per working day

62

People working in cold storage rooms were usually

forklift drivers. Heat gain due to the presence of these

personnel in the refrigerated space was estimated by:

where

qp = np'0.278'400/nb-0.5'8 Eqn (35)

qp : heat gain from people, kWh np : number of personnel

0.278 : heat release rate from Table 5, kW 400 : maximum number of bins loaded per eight-

hour working day. nb : actual number of bins loaded 0.5 : ratio of the time spent in the refrigerated

space to the total time 8 : number of hours per working day

All the calculation subroutines along with the input

data formed the computer program RLSIM. The input to RLSIM

was in English units and the final output was converted to

SI unit (kWh).

The first five pages of RLSIM were default data, brief

explanations of constants, and output format. The

calculation sequence of RLSIM was building heat

transmission load, infiltration load and product load.

Product load calculations included fan and miscellaneous

loads. Loops were used for repeated calculations of daily

refrigeration load. Each component of the refrigeration

63

load was calculated monthly and then summed at the end of

the season.

Checks for the dates such as: sealing CA rooms,

turning off and on the common storage refrigeration system,

and last day of the season were incorporated into the

program. Flags were used as a method to account for: closed

CA room; days of loading, unloading or no activity; and

when a system was off.

The output of RLSIM was formatted so as to be easily

inputed into a LOTUS 123 spreadsheet. LOTUS 123 was used to

analyze and create graphic representations of the results.

Appendix 4 is a complete listing of the computer program

RLSIM.

64

RESULTS AND DISCUSSION

The results of this research are based on operation of

the Duckwall-Pooley cold storage warehouse from August 11,

1985 to February 6, 1986. All three CA storage rooms were

filled and sealed by September 30,1985. The common storage

area contained fruit from August 11, 1985 until December

10,1986, at which time the refrigeration system for zones 4

and 5 was turned off. On January 28,1986 the refrigeration

system for zones 4 and 5 was restarted to accommodate fruit

removal from CA rooms in preparation for shipment.

The first part of the energy usage simulation included

determination of sol-air temperatures for the different

building outside surface orientations. S0LAIR1 and S0LAIR2

output for the first 200 hours of the month of August are

presented in figures 12a and 12b. Figure 12c is the

recorded global solar radiation incident on a horizontal

surface. The hourly sol-air temperatures for the roof were

calculated using a/h0 equal to 0.15 for light-colored

surfaces. The longwave correction (eR/h0) used for

horizontal surfaces was -3.90C. Figure 12a (day one)

indicated a temperature increase of approximately 20oC for

the roof when receiving 3,300 kJ/m2 of global solar

radiation (Figure 12c, day one).

65

The longwave correction for vertical surfaces was

assumed to be zero while a/h0 remained equal to 0.15. A

temperature increase of nearly 15"C on the south oriented

wall was indicated (Figure 12a, day one) for 3,300 kJ/m2 of

global solar radiation incident on a horizontal surface.

Figures 12a, 12b and 12c indicate several physical

phenomenon:

1) Time variation of the occurrence of the daily maximum

sol-air temperature on different surface orientation due

to rotation of the earth.

2) Smooth-shaped curves for the south wall and roof

indicate that both received direct solar radiation for

longer periods of time in comparison to spiked-shape

curves for the east and west walls.

3) The seventh day indicates decreased surface temperatures

due to an overcast day. The sol-air temperature curves

are similar in shape and magnitude except for the north

wall. This indicates that even on an overcast day

north oriented walls have a lower surface temperature

than other wall orientations.

The S0LAIR1 and SOLAIR2 results were comparable to the

sample calculations and tabulated sol-air temperatures in

ASHRAE (1985).

60—i

40-

£ 20-

Roof

I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | 0 50 100 150 200

Tim« (hr)

Figure 12a. Sol-air Temperature for Roof, North and South Walls (First 200 hours of August 1985)

67

n n u

^ W

Z.

o

•o

CM

1-8

I

o w

3

O 3

S5-5

o o

«

.O

i i | I i I i i i i I I | I I I 'l I I

o

11 is

o w

JO

CO

8 (0)

sjn^B

JBdm

sj, JT

»-1OS

68

- A -a

I I I 111 I I I I I I I I I I 11 1111 1

111111 11 11 111 111 I

o

o

?

o

-o

o

•o

O

o at •c W

o id

a

Xto

oo> «-<

if o o

«i 0 2

•So

(dlM

OS

-1

w

3 o

O

o

o

n

o

o

o

o

o

o

2 ta/fsi

0)

00

69

Two simulations were performed with RLSIM: 1)

simulation of 24 hour operation of the evaporator fans; and

2) simulation of evaporator fan cycling. The cycle

simulated fans operated on a schedule of six hours on

followed by six hours off.

Results from RLSIM when fan cycling was not

incorporated are illustrated in Figure 13. Duckwall-Pooley

Fruit Company provided the daily kWh usage in the cold

storage building for the season. The recorded kWh data

provided was energy usage for the entire building, which

included energy used for lighting, CA equipment and other

equipment such as water pumps for defrosting the evaporator

coils. The energy used by the OXYDRAIN and two molecular

sieve absorbers was subtracted from the actual kWh data,

thus providing a more accurate kWh usage for the

refrigeration system.

The refrigeration load computed by RLSIM was converted

to energy using the definition of coefficient of

performance (COP). COP is defined as the ratio:

COP = Qp/P >^ . r8 %

COP : coefficient of performace Qp : refrigeration capacity (kW) P : power, (kW)

70

The^refrigeration system COP was determine by dividing

the RLSIM refrigeration load results by a number until a

graph of the results coincided with the actual kWh data.

The_calculated COP was 2.3. This COP represents the overall

efficiency of the system (refrigeration load divided by the

gross power input). The value is realistic for ammonia

refrigeration systems of this size and type.

6000-

5000-

4000 -

3000-

2000 -

1000 -

Simulation result

Actual IcWh

(Hllllll l||[||llllll[||llllll|IIIIIIIIIIIIIIIIIIl/ IIIIIIIIIII|IINIIIII1III1IIIII|IIII llll | Nil Illl|lllllllll'i iii|iimmiiimiiiii| 40 60 80 100 120 140 160 180

DAY 20

Figure 13. Refrigeration System Energy Consumption Without Fan cycling form 11 August 85 to 6 February 86.

71

The actual overall energy consumption of the building

for the 1985-86 season was 262,879 JcWh (energy used by the

CA equipment were excluded). Seasonal energy use predicted

by RLSIM was 258,355 kWh, 1.7 percent lower than the

actual. The major difference between simulation and actual

energy consumption is in the JLast_ few days of the season as

indicated in Figure 13. Simulation of the actual management

procedures used during that short period was not accurate

due to lack of data.

The fruit loading schedules in Appendix 3 were

determined from temperature charts recorded on site and

Baskins (1986). The spikes in Figure 13 indicate fruit

loading periods. The period from approximately day 60 to

day 120 indicates that the CA rooms were sealed and the

common storage room was still in operation. The common

storage refrigeration system was shut off from day 120 to

day 165 and was turned on again after day 165.

Figure 14 presents the percentage of the refrigeration

load corresponding to components and building zones.

Refrigeration load components percentages are as follows;

fan load 44.1 percent, fruit load 29.4, building load 13

percent, infiltration load 10.7 percent and miscellaneous

load 2.8 percent.

72

FHUIT (29.4»)

ZONE "S (20.M)

ZONE M (20.3*)

COUPONENTS

BLDO (13.0S)

INF1L (10.7«)

yiSC (2.8X)

FAN (•U.l*)

ZONES

ZONE •) (20.0)

ZONE "S (21.811)

ZONE H (17.S«)

Figure 14. Refrigeration Load Breakdown for Cold Storage Building by Components and Zones.

73

The refrigeration load percentage of each zone is

approximately 20 percent as indicated in Figure 14. Zone

three, a CA room, had the lowest percentage (17.5 %)

because it was sealed early in the season.

Figures 15a-15c illustrate the refrigeration load

component percentages for each zone. The pie charts

indicate that the fan load comprised the largest component

of the refrigeration load in all zones.

Figure 15b indicates that 51.9 percent of zone three

refrigeration load was due to the operation of the

evaporator fans. Again, zone three was sealed early in the

season and remained as such for the longest time period.

Figure 16 presents the three major components of zone

one refrigeration load; building, fruit and fan loads. The

fan load was constant throughout the season while fruit

load was constant once the product reached the desired

storage temperature. The building heat transmission load

varied as a function of the outdoor temperature. Similar

observations were made for the other zones.

74

BLDO (11.11)

FRUn (31.CW) INF1L (7.250

UISC (1.9«)

FAN (48.8*)

ZONE 12

FRUIT (33.1*)

BLDO (11.7*)

INFIL (7.3*)

UISC (2.5*)

FAN («.»*)

Figure 15a. Refrigeration Load Breakdown Zone 1 & 2

ZONE M

75

FRurr (28.4)0

INFtl. (2.6»)

FAN (51.M)

ZONE •*

FRim (27.7X)

BLDO (13.4)0

INF1L (17.7«)

UISC (3.9*)

FAN (37.4a)

Figure 15b. Refrigeration Load Breakdown Zone 3 & 4

76

ZONE #B

FRUfT (26.SX)

BIBG (13.7X)

l^4FU. (17.950

U1SC (4.1 X)

FAN (37 JX)

Figure 15c. Refrigeration Load Breakdown Zone 5

2000—1

1500 - Building Heat Transmission Load Fruit Load

Fan Load

iiilimiiimmiiliiimiiiiiiiimiiiiiimiiiimiijiiiiiiiiijiimmimi^ 0 20 40 60 80 100 120 140 160 180

DAY

Figure 16. Zone 1 Building, Fruit and Fan Loads From 11 August 1985 to 6 February 1986

•-4

78

Results from RLSIM simulating fan cycling are shown in

Figure 17. The fan cycling technique of six hours on, six

hours off was simulated by changing the operation time of

the evaporator fans from 24 hours to 12 hours.

The season overall energy use predicted by RLSIM using

fan cycling is 200,458 kWh which is 23.75 percent lower

than the actual kWh used. The overall refrigeration load

from evaporator fan operation decreased from 262,032 kWh to

128,870. A reduction of 50.8 percent in energy usage.

Figure 18 indicates energy use percentage by the

refrigeration load components and zones when fan cycling

was employed. When fan cycling was incorporated, the fruit,

not the fan load, comprised the largest load on the system.

The load percentage of each zones are approximately the

same as the results without fan cycling. The numerical

results of both simulations are tabulated in Appendix 5.

6000—1

4000-

2000

Simulation result

Actual kWh

liiiiiiiniiiiiiiii|iiiMiiiiimiii!ii|iiiiiiiiiiiiiiiiiii|iiiiiiimiiiiiiiii|iiniiiiiiiiiiiiiii|iiiiiiiiiiiiiiiiMi|iiiiHiiiiuiiM 40 60 80 100 120 140 160 180 20

DAY

Figure 17. Refrigeration System Energy Consumption With Fan Cycling From 11 August 1985 to 6 February 1986

COMPONENTS 80

BLDG (16.8X)

FRUIT (37.9X)

INFIL (13.8X)

U1SC (3.EX)

FAN (28.050

ZONES

ZONE #3 (20.8X)

ZONE f* (21.IX)

ZONE #1 (19.8X)

ZONE t2 (21.6X)

ZONE fi (16.6X)

Figure 18. Refrigeration Load Breakdown for the Entire Cold Storage Building with Fan Cycling by Components and Zones.

81

CONCLUSIONS AND RECOMMENDATIONS

Increased consumer demand for fresh fruit throughout

the year has created a need for more long term storage.

Long term storage of fruit uses more energy than fresh

market products, thus increasing production costs and

consumer prices.

Pacific Northwest energy costs have increased over 400

percent during the most recent ten years. During periods of

low prices, energy conservation in the fruit industry was

not considered important. Present energy costs and more

competition for markets has made energy conservation an

important factor to be considered by the fruit industry.

Computer energy audits of buildings such as motels and

hotels, public and residential buildings are being

effectively used. However, an energy audit mechanism

specifically tailored for analysis of cold storage

warehouses was not previously available.

A BASICA computer program, RLSIM, was developed to

predict the transient refrigeration load throughout the

storage season in apple and pear cold storage warehouses.

RLSIM is operational on a IBM Personal Computer or PC

compatible and is interactive to allow individualized

inputs by the user.

82

Several conclusions were derived from this study:

1. Results of the simulations of the Duckwall-Pooley fruit

storage warehouse were used to analyze the refrigeration

load components and assess areas with the greatest

potential for energy conservation. RLSIM accurately

predicted seasonal and component refrigeration system

energy demand curves.

2. The largest single energy use component in long term

storage is the continuous operation of evaporator fans.

Figures 15a to 15c indicated approximately 37 to 52

percent of the zone refrigeration load result from

evaporator fan operation.

3. Simulation of a six hours on and six hours off fan

cycling technique indicated a reduction of 23.75 percent

could be achieved in overall refrigeration system energy

use in the cold storage warehouse.

4. Cold storage warehouse management can be improved by

using the results of the simulation. Figure 16, in

particular, illustrates that as outdoor temperature

decreased, building heat transmission load decreased.

83

During this period fan cycling schemes could be

efficiently employed without risk of increasing fruit

temperature.

The following recommendations for additional research are

presented:

1. Measurement of wall and roof temperatures in addition to

soil temperature and weather data would provide a check

for the sol-air simulation.

2. Documentation of actual fruit loading and unloading

schedules rather than estimation from temperature data.

3. Additional studies are required to determine cooling

rates of different fruits in various storage

configurations. The cooling rate of d'Anjou pear was

used for both apples and pears in this study.

4. Documentation of respiration rate data from fresh fruit

in Controlled Atmosphere storage environments.

No information are presently available. The respiration

rates of apples and pears in CA storage were assumed the

same as in regular cold storage.

84

5. Use RLSIM to analyze the refrigeration load of cold

storage warehouses in different geographical locations.

6. Extend RLSIM to determine changes in the refrigeration

system efficiency as the cooling load changes.

85

BIBLIOGRAPHY

American Society of Heating, Refrigeration and Air Conditioning Engineers Inc. 1985. ASHRAE Handbook of Fundamentals.

ASHRAE Task Group on Energy Requirements for Heating and Cooling of Buildings. 1975. Procedure for Determining Heating and Cooling Loads for Computerizing Energy Calculation, pp 182.

Anderson, O.E. Jr. 1953. Refrigeration in America. Princeton University Press.

Baskin, R. 1986. Refrigeration Specialist. Duckwall Pooley Fruit Company, Hood River, Oregon. Personal Communication.

Devore, J. and Peck R. 1986. Statistics The Exploration and Analysis of Data. West Publishing Co. pp. 699

Fenn, D. 1986. 1-2-3 Command Language. Que Corporation, pp. 527.

Fisher, D.V. 1960. Cooling Rates of Apples Packed in Different Bushel Containers and Stacked at Different Spacings in Cold Storage. ASHRAE Transactions 1725: 414-422. June.

Hardenburg, R.E , Watada, A.E and Wang, C.Y.. 1986. The Commercial Storage of Fruits. Vegetables, and Florist and Nursery Stocks. USDA. Agricultural Research Service, Agriculture Handbook Number 66. pp.130

Hunter, D.L. 1982. CA Storage Structure. Oregon State University School of Agriculture Symposium Series No. 1. Controlled Atmospheres for Storage and Transport of Perishable Agricultural Commodities: 19-31.

McQuiston, F.C. and Parker, J.D. 1982. Heating.Ventilating, and Air Conditioning. 2nd Ed. John Wiley & Sons. pp. 666

Mitalas, G.P. and Arseneault, J.G.. 1971. Proceedings of the Conference on "Use of Computers for Environmental Engineering Related to Buildings", Gaithersburg, Maryland. National Bureau of Standard Building Sciences. Series 39: 633-667. October.

86

Mitalas, G.P. 1968. Calculation of Transient Heat Flow Through Walls and Roofs. ASHRAE Transactions Vol.74, Part II: 182-188.

Pita, E.G. 1984. Refrigeration Principles and Systems. John Wiley & Sons. pp. 424

Pacific Power and Light. 1987. Portland, Oregon. Personal Communication.

Ryall, A.L. and Pentzer, W.T. 1982. Handling. Transportation and Storage of Fruits and Vegetables. 2nd Ed. Vol. 2. AVI Publishing Company. Inc.

Stephenson, D.G. and Mitalas, G.P. 1971. Calculation of Heat Conduction Transfer Function for Multi-layer Slabs. ASHRAE Transactions. Vol.75, Part II: 117-126.

URS Corporation. 1985. Energy Cost Reduction an Updated Program for Northwest Food Processor. Technical Reference Manual, Refrigeration section.

USDA. 1986. Capacity of Refrigerated Warehouses. Crop Reporting Service, Statistical Reporting Service. February.

USDA. 1986. Cold Storage 1985 Summary. Crop Reporting Service, Statistical Reporting Service. March

USDA. 1986. Noncitrus Fruits and Nuts 1985 Summary. Crop Reporting Service, Statistical Reporting Service. January.

Wang, C.Y. and Mellentin, W.M. 1976. Effect of Different Handling Methods on Cooling Rates and Moisture Loss of d'Anjou Pears Stored in Bins. Hortscience. Vol.11: 397-398.

Yost, G.E. 1984. Energy Savings Through the Use of Fan and Refrigeration Cycling in Apples Cold Storage. Transactions of ASAE. 2: (2) 497-501.

APPENDICES

87

APPENDIX 1

Illustrations, Description, Thermal Properties of Layers and Transfer Function Coefficients of Walls, and Roof.

88

Concrete Wall (N,E tt W)

Table Al. Description and Thermal Properties of Layers

Layer Thickness Conductivity Density (met«r«) (W/m*K) te/m3)

Sp. Heat Resistance Description (kS/VK) (m^K/W)

1 _ — — 0.03 outside surface 2 0.20 1.31 2240.0 0.83 0.15 PC panel 3 0.13 0.035 28.8 1.21 3.71 moldod bead board 4 — — — — .2 mm Gaco Flax S 0.013 0.16 BOO.O 0.83 0.08 Zonollte 3300 6 — — —

Total 0.12 4.08

Inside surface

NOTE: Overall heot transmission coafficlent » 0^44 W/(m>.K)

Table A2. Wall Transfer Function CoefficUnts

n b c2 d W/m K W/m K

0 0.000000 Z532701 1.000000 i 0.000346 -5.926944 -8.734016 2 0.004010 4.676236 3.938881 3 0.005867 -1.413780 -0.644606 4 0.001698 0.148640 0.037480 5 0.000102 -0.004851 -0.000721 6 0.000000 0.000017 0.000000

NOTES: 1. Output of FORTRAN IV Progrem Of Uttoloe ond Arseneoult (1971): sampling Interval used - 1 hour; thermal properties used were tabulated In Table Al.

2. e Is dbnenelonleu

89

Concrete Wall (south)

Table A3. Description and Thermal Properties of Layers

Layer Thickness (matera)

Conductivity (W/m'K)

Dens to/'

Sp. Heat (WAfl'K)

Resistance (m*.K/W)

Description

1 - - - — 0.03 outside surface 2 0.254 1.31 2240.0 0.83 0.18 PC panel 3 0.10 0.035 28.8 1.21 2.89 molded bead board 4- — — — — .2 mm Goco Rex 5 0.025 0.023 24.0 1.58 1.10 polyurethane 6 0.013 0.160 800.0 0.83 0.08 Zonollte 3300 7

" " ' Total

0.12 Inside surface

4.41

NOTE: Ovsralt hoot trenmteslon coefficient «" 0.227 W/Cm*. K)

Table A4. Vail Transfer Function Coefficie'nts

n b cl d W/m K W/m K

0 0.000000 Z500506 1.000000 i 0.000028 -6.681685 -10.569463 2 0.000764 6.416208 6.446783 3 0.002391 -2.668988 -1.589605 4 0.001522 0.470980 0.164777 5 0.000239 -0.032580 -0.006384 8 0.000011 0.000557 0.000080 7 0.000000 0.000000 0.000000

NOTES: 1. Output of FORTRAN IV sampling Interval used tabulated h Table A2.

2. c Is dlmensionless

Program Of Mltalas and Arveneault (1971); 1 hour; thermal properties used were

90

Inside Partition Wall

Table A5. Description and Thermal Properties of Layers

Layer Thickness Conductivity Density (metora) (W/m'K) Qct/nfl)

Sp. Heat Resistance Description (kJAg*K) (m2.K/W)

1 & 10 — - — — 0.12 Inside aurface 2*9 0.013 0.16 800.0 0.83 0.08 Zonollte 3300 3 * 9 — — — — — .2 mm Coco Flex ♦ It 7 0.013 0.12 544.0 1.21 0.11 plywood 5 0.3048 0.12 544.0 1.21 Z64 rtud 6 0.140 0.047 9.6 0.83 3.00 Insulation

Batwoan Fromlng At framing

Total Realrlonce 3.62 3.16

percent aroo 93.73 6.2S

Total r««letonca of woll = 0.9375O.B2 + .0625*3.16 •» 3.59 (m^K/W)

Ovsrall hoot tronstnlaalon coefficient ■■ 0.279 W/(ma>K)

NOTE: Coefficients of woll transfer function were not uaed for computing heat transfer through Inside partition wall.

91

Roof (common storage room)

Table Afi. Description and Thermal Properties of Layers ■■'" I ' "" " —^M—M-™ | -■■■■I | — ■■ II I —II I I

Layer Thickness Conductivity Density Sp. Heat Resistance Description (mater*) (W/m'K) (kg/ml J (W/ko'K) ^.K/W)

1 2 3 4 S 6

am tM)25 0.178 0.016

aie 0X6 (L03S oaa

usao saao

544.0

— 0.03 outalds aurfao* L46 OM built-up roof L29 0.42 Fesco Board 0J7 5.08 noldsd to«ad board 120 0.13 plywood *"

Total S^e Inside surface

NOTE: Overall heat tranmlsalon coefflctant - 0.170 W/Cm^K) Roof frofia was not considered In U—factor etettrWnatlon

Table A9. Roof Transfer Function Coefficients'

n b c1 d W/m K W/m K

0 (U100244 2^73998 3.680000 i a016392 -3^17831 -4^86360 E OJ03SA3S L339739 a936723 3 aOU440 -ai30231 -aoeoass 4 0.000461 0X01306 0.000364 3 aMotm (U)00006

NOTES: 1. Output of FORTRAN IV sampling Interval used tabulated h Table A8.

Z c Is dhnensionlBss

Program Of Ultalas and Arsenaault (1971); > 1 hour; thermal properties used were

92

Roof (CA rooms)

U7 n

Table A6. Description and Thermal Properties of Layers

Layer Thickness (metara)

Conductivity (W/m'K)

Density Sp. Heat (WAJJ'K)

Resistance (tn'oK/W)

Description

1 - - - - 0.03 oirUfd* Ktrfaoa

2 0.01 0.16 U20J) M6 04)6 buftt-up roof 3 0.013 aoe ZBBJ0 129 023 rosco Board 4 aoit (US 344JJ L20 0J3 plywood S - - - - 0.16 .M * a»~ spaci 6 041245 0.04 93 0.83 6.126 haulotlon 7 0.016 002 544J) L20 003 plywood 8

' , "■ '

-JUS Total 601

tnstd* surface

NDTD Dv«rall Iwat -transnlBaon coofflOeni " 1J64 V/<n*.IO Roof frane was ncrt oonsldwrod In U-f actor d»t«mfetatlon

Table A7. Roof Transfer Function Coefficients.1

b W/m K

cl d W/m K

2^32448 •3£49864 -44)8783 1238032 0.730073

-04»9384 -04)84776 04)00403 04)00108 0.000000 0.000000

0 1 2 3 4 5

0.000727 0.022748 04)32649 04)1)9436 04)00091 0.000000

NOTES: 1. Output of FORTRAN IV Program Of Ultaloa and Araaneault (1971): sampling Intsrval umd - 1 hour; thaanal propertlsa usad wart tobulotad In Table A6.

2. o Is dlmanalonless

93

APPENDIX 2

SOLAIRl and SOLAIR2 Program Listings

94

10 • Program S0LAIR1 20 CLEAR:CLS 3 0 ' This program converts direct solar radiation on a 40 ' horizontal surface to the same on a vertical surface 50 ' of different orientation using method outline in 60 ' the Literature Review and ASHRAE's Procedures for 70 ' Determining Heating and Cooling Loads for 80 ' Computerizing Energy Calculations (1975). 81 ' The weather data format is as follows: 90 ' 1-7 station number 100' 8-10 resolution and time code 110' 11-14 element number 120' 15-2 0 year,month,day 13 0' 21 24 starting hour & minute 131' 25 27 exponent for data 132' 28-243 24 groups of 9 characters, each group 13 3' contains information on one hour data 140' 150' Element number defines the type of data such as 160' 1000 - global insolation, 2010 - direct, 170' 3000 - diffuse, and 9300 ambient temp. 171' The direct insolation data was not used instead 180' it was computed according to procedure describe 190' The output of this program is an hourly sol-air 200' temperature for a vertical surface of specific 205' orientation. The output files are named as follows: 210' S.8, E.8 or W.8 for the month of August 220' oriented south, east or west, respectively. 23 0' The format of the output is as follows: 240' 1-6 year,month,day 250' 7-246 24 group of 10, each group contains 255' hourly solair temp, starting at 0100 260' 270' dimension statement 280' 290 DIM V(24),FLAG(24),T1(24),DF(24),D1(24) 300' 310' input statement 320' 330 INPUT " enter output file ( S.month) ";0$ 340 INPUT " enter input file #1 (month)";F$ 350 INPUT " enter input file #2 (month)";A$ 360 INPUT " enter input file #3 (month)";B$ 37 0 LOCATE 10,10:COLOR 31:PRINT " COMPUTING !":COLOR 7 380' 3 90' constants 400'

95

410 PI=355/113 420 DEG = 180/PI 430 RAD = PI/180 440' 450' input parameters 460' 470 LAT = 45 : LO=121 • latitude and longitude 480 WA= 0 ' wall azimuth 490 WT=90 • wall tilt angle 500' 510' convert degrees to rad 520' 53 0 WA = WA*RAD : WT=WT*RAD 540 RHO =.2 :LAT=LAT*RAD:LO=LO*RAD 550' 560 ^FREC"') 570' open input and output files 580' define input field ( line input length = 256 ) 590' 600 OPEN 0$ FOR OUTPUT AS #2 610 OPEN •lR»,l,F$,256 620 FIELD #1,7 AS STA$/3 AS RES$/4 AS ELMT$,6 AS 0$^ AS START$/3 AS EX$,216 AS VALU$ 630 OPEN "R"/3,A$,256 640 FIELD #3,7 AS ST$,3 AS RS$,4 AS EMT$,6 AS 01$^ AS STRT$,3 AS E$,216 AS VLU$ 650 OPEN ,IR";4,B$,256 660 FIELD #4,7 AS ST4$,3 AS RS4$,4 AS £1114$, 6 AS D4$,4 AS STR4$,3 AS E4$,216 AS VL4$ 670' 680• input global insolation 690' 700 GET #1 710 IF VAL(EIiMT$)=2010 THEN 1380 720 IF VAL(ELMT$)=1000 THEN 760 ELSE 700 730' 740' day and month 750* 760 DAY=VAL(RIGHT$(D$,2)):M1=VAL(MID$(D$,3,2)):GOSUB 1890 770 IF DAY>J2 THEN 1380 780 PRINT #2,USING"######,,;VAL(D$) ; 800 V(I)=(VAL(MID$(VALU$/J,7)))/11.4 805 FLAG(I)=VAL(MID$(VALU$,K,2)) 810 IF V(I)>1000 OR V(I)< 0 THEN V(I) = 0 82 0 NEXT I 830' 840' input diffuse insolation

96

850' 860 GET #4 870 IF VAL(EMT4$)=3000 THEN 880 ELSE 1380 890 FOR 1=1 TO 24:J=(I-l)*9+l:K=J+7 900 DF(I)=(VAL(MID$(VL4$/J,7)))/11.4 905 FLAG(I)=VAL(MID$(VL4$/K,2)) 910 IF DF(I)>1000 OR DF(I)<0 THEN DF(I) « 0 9201

930 V(I)=V(I)-DF(I) • direct = global-diffuse 940 NEXT I 950' 960 GOSUB 1630 ' compute declination angle 970 GOSUB 2280 • compute equation of time 980' 990' hour angle computation 1000' 1010 FOR T=l TO 24 1020 HI = (-TAN(LAT)*TAN(D)) 103 0 IF H1>1 THEN H1=1:IF HK-1 THEN Hl=-1 1040 H2 = 1.5708-2*ATN(H1/(1+SQR(1-H1A2))) 1050 H = (15*(T-12+8+EOT)*RAD)-LO 1060' 1070• compute directional cosines and Y 1080' 1090 GOSUB 1720:GOSUB 1490 1100 IF ABS(H)>ABS(H2) THEN 1140 ELSE 1150 1110' 1120• compute diffuse radiation incident 1121' on a vertical surface 1130' 1140 V(T) =0 : DF(T)=0 :GOTO 1220 1150 R=COSI/COSZ 1160 IF R>1 THEN R=.5 1170 V(T)= V(T)*R 1180 IF COSZ< 0 OR COSK 0 THEN V(T)=0 1190 R1=.5*(C1 +.1*(C1+C0SZ))/C1 12 00 IF Rl > 1 THEN Rl=l 1210 DF(T)=DF(T)*R1 1220 NEXT T 12301

1240' 1250'/

input ambient temperature

12 6PC GET, 1270 IF VAL(EMT$)=9300 THEN 1280 ELSE 1260 1280 IF VAL(D$)=VAL(D1$) THEN 1320 ELSE 1380 1290' 13 00' compute solair temperature

97

ISIO* 1320 FOR 1=1 TO 24:J=(I-l)*9+l:K=J+7 13 30 Tl(I)=(VAL(MID$(VLU$,J,7)))*.l*(9/5)+32 13 35 FLAG(I)=VAL(MID$(VLU$/K,2)) 1340 T1(I)= T1(I) +.15*(V(I)+DF(I)) 1350 PRINT #2,USING»#######.##,,;T1(I); 13 60 NEXT I 1370 GOTO 700 1380 CLOSE #1:CLOSE #2 :CLOSE #3 :CLOSE #4 1390' 14 00' create next output file 1410' 1420 EX$=RIGHT$(0$,2):L$=LEFT$(0$,1) 1425 IF VAL(EX$)=>10 THEN EX$=RIGHT$(0$,3) 1430 IF L$="S,, THEN 1440 ELSE 1450 1440 O$=',E"+EX$:WA=-90*RAD:LOCATE 20,10:COLOR 31 1445 PRINT"EAST WALL":COLOR 7:GOTO 560 1450 IF L$="E" THEN 1460 ELSE 1470 1460 O$="W"+EX$:WA=90*RAD:LOCATE 20,10:COLOR 31 1465 PRINT"WEST WALL":COLOR7:GOTO 560 1470 COLOR 7 :CLS:BEEP:BEEP:END 1480' 1490• subroutine to compute Y variable 1500' " Y factor is used to compute diffuse radiation 1510' on vertical surface (TGER,1975 p. 31)" 1520' 1530' Y 1540' 1550 YY1 = .070634 - 8.290891E-04*J1 1560 YY2 = 1.504817E-05*J1A2 - 9.649692E-08*J1A3 1570 YY3 = 8.952301E-10*J1A4 - 5.941521E-12*J1A5 1580 YY4 = 1.699131E-14*J1A6 - 1.692554E-17*J1A7 1590 C1=YY1+YY2+YY3+YY4 1600 IF COSI=-.2 THEN Y=.45 1610 Y=.55+.437*COSI+.313*COSNA2 1620 RETURN 1630' 1640' subroutine to compute declination angle 1650' 1660 Q = -24.469391# + .2079597*J1 1670 Ql= 8.951877E-05*J1A2 + 3.668529E-05*J1A3 1680 Q2= -3.649357E-07*J1A4 + 1.19722E-09*J1A5 1690 Q3= -1.573939E-12*J1A6 + 6.629037E-16*J1A7 1700 D=Q+Q1+Q2+Q3 :D=D*RAD 1710 RETURN 1720' 173 0' directional cosines of direct solar beam

98

1740' 1750 COSZ =COS(LAT)*COS(H)*COS(D) + SIN(LAT)*SIN(D) ^eo1 1770' cosine of the incident angle 1780' 1790 Al=SIN(D)*SIN(LAT)*COS(WT) 1800 A2=-SIN(D)*COS(LAT)*SIN(WT)*COS(WA) 1810 A3=COS(D)*COS(LAT)*COS(WT)*COS(H) 1820 A4=COS(D)*SIN(LAT)*SIN(WT)*C0S(WA)*COS(H) 183 0 A5=COS(D)*SIN(WT)*SIN(WA)*SIN(H) 1840' 1850 C0SI=A1+A2+A3+A4+A5 1860' 1870 RETURN 1880' 1890' month and day subroutine 1900' 1910 IF Ml = 1 THEN 1920 ELSE 1940 1920 Jl = DAY :J2=31 1930 RETURN 194 0 IF Ml = 2 THEN 1950 ELSE 1970 1950 Jl = 31 + DAY :J2=28 1960 RETURN 1970 IF Ml = 3 THEN 1980 ELSE 2000 1980 Jl = 59 + DAY :J2=31 1990 RETURN 2000 IF Ml = 4 THEN 2010 ELSE 2030 2010 Jl = 90 + DAY :J2=30 2020 RETURN 2030 IF Ml = 5 THEN 2040 ELSE 2060 2040 Jl = 120 + DAY :J2=31 2050 RETURN 2060 IF Ml = 6 THEN 2070 ELSE 2090 2070 Jl = 151 + DAY :J2=30 2080 RETURN 2090 IF Ml = 7 THEN 2100 ELSE 2120 2100 Jl = 181 + DAY :J2=31 2110 RETURN 2120 IF Ml = 8 THEN 2130 ELSE 2150 2130 Jl = 212 + DAY :J2=31 2140 RETURN 2150 IF Ml = 9 THEN 2160 ELSE 2180 2160 Jl = 243 + DAY :J2=30 2170 RETURN 2180 IF Ml = 10 THEN 2190 ELSE 2210 2190 Jl = 273 + DAY :J2=31 2200 RETURN

99

IF Ml = 11 Jl = 304 + RETURN IF Ml = 12 Jl = 334 + RETURN

THEN 2220 ELSE 2240 DAY :J2=30

THEN 2250 ELSE 2260 DAY :J2=31

2210 2220 2230 2240 2250 2260 2270' 22801

2290' 23 00 B1=-3.56137-.37352*J1-.0046821*J1A2 2310 B2=2.8362E-04*JlA3-3.185087E-06*J1A4 232 0 B3=1.519254E-08*J1A5-3.317278E-11*J1A6

+2.725225E-14*J1A7 2330 EOT =(Bl+B2+B3)/60 2340 RETURN

subroutine to compute equation of time

100

10 'Program S0LAIR2 2 0 CLEAR:CLS

This program computes solair temperatures for horizontal surface and creates two output files. The two output files are R.# and N.# where R stands for roof, N stands for north and # stands for the given month. Both the input and output formats are the same as that of SOLAIR1.

30 40 50 60 70 80 90 100 • dimension statement 110 • 120 DIM V(24),FLAG(24),T(24),T1(24) 13 0 ' input statement 140 • 150 INPUT " ENTER INPUT #1 FILENAME ";F$ 160 INPUT •• ENTER INPUT #2 FILENAME ";G$ 170 INPUT " enter output filename (r.# :# month )";0$ 180 EX$ = RIGHT$(0$,2) 190 IF VAL(EX$)=>10 THEN EX$=RIGHT$(0$,3) 200 02$=,IN"+EX$ 210 ' open input and output files 220 ' 23 0 OPEN 0$ FOR OUTPUT AS #3 240 OPEN 02$ FOR OUTPUT AS #4 250 OPEN "R,,,1,F$,256 260 FIELD #1,7 AS STA$,3 AS RES$,4 AS ELMT$,6 AS D$,4 AS

START$,3 AS EX$,216 AS VALU$ 28 0 OPEN "R",2,G$,256 290 FIELD #2,7 AS ST$,3 AS RS$,4 AS ELT$/6 AS Dl$,4 AS

STRT$,3 AS E$,216 AS VLU$ 310 LOCATE 10,20 :COLOR 31:PRINT" Computing ":COLOR 7 32 0 " ^ 33 0 ' Vinput ambient temperature 340 GET #1 _ 350 IF VAL(ELMT$)=9300 THEN 360 ELSE 340 360 DAY=VAL(RIGHT$(D$,2)):M1=VAL(MID$(D$,3,2)):G0SUB 620 370 IF DAY>J2 THEN 610 380 PRINT #4,USING"######,,;VAL(D$) ; 390 PRINT #3,USING,,######H;VAL(D$) ; 400 FOR 1=1 TO 24:J=(I-l)*9+l:K=J+7 410 T(I)=(VAL(MID$(VALU$,J,7)))*.l*(9/5)+32 420 FLAG(I)=VAL(MID$(VALU$,K,2)) 430 PRINT #4,USING »#######.##»;T(I); 44 0 NEXT I 450 • 460 • input global radiation 470 GET #2

101

480 IF VAL(ELT$)=1000 THEN 490 ELSE 470 490 IF VAL(D$)<>VAL(D1$) THEN 610 500 FOR 1=1 TO 24:J=(I-l)*9+l:K=J+7 510 V(I)=(VAL(MID$(VLU$/J,7)))/11.4 52 0 FIiAG(I)=VAL(MID$(VLU$,K,2) ) 530 IF V(I)>1000 OR V(I)<0 THEN V(I)=0 540 • 550 ' compute solair temperature 560 T1(I)= T(I)+.15*V(I)-6 570 IF T1(I)<T(I) THEN T1(I)=T(I) 580 PRINT #3fUSING "#######.##";T1(I); 590 NEXT I 600 GOTO 340 610 CLOSE:CLS:BEEP:BEEP:END 620 • 630 » Month and day sul 640 IF Ml = 1 THEN 650 ELSE 670 650 Jl = DAY :J2=31 660 RETURN 670 IF Ml = 2 THEN 680 ELSE 700 680 Jl = 31 + DAY :J2=28 690 RETURN 700 IF Ml = 3 THEN 710 ELSE 730 710 Jl = 59 + DAY :J2=31 720 RETURN 730 IF Ml = 4 THEN 740 ELSE 760 740 Jl = 90 + DAY :J2=30 750 RETURN 760 IF Ml = 5 THEN 770 ELSE 790 770 Jl = 120 • f DAY :J2=31 780 RETURN 790 IF Ml = 6 THEN 800 ELSE 820 800 Jl = 151 f DAY :J2=30 810 RETURN 820 IF Ml = 7 THEN 830 ELSE 850 830 Jl = 181 + DAY :J2=31 840 RETURN 850 IF Ml = 8 THEN 860 ELSE 880 860 Jl = 212 + DAY :J2=31 870 RETURN 880 IF Ml = 9 THEN 890 ELSE 910 890 Jl = 243 + DAY :J2=30 900 RETURN 910 IF Ml = 10 THEN 920 ELSE 940 920 Jl = 273 + DAY :J2=31 93 0 RETURN 94 0 IF Ml = 11 THEN 950 ELSE 970

102

950 Jl = 304 + DAY :J2=30 960 RETURN 970 IF Ml = 12 THEN 980 ELSE 990 980 Jl = 334 + DAY :J2=31 990 RETURN 1000 ■ subroutine for computing equation of time 1010 • 102 0 Bl=-3.56137-.37352*J1-.0046821*J1A2 103 0 B2=2.83 62E-04*J1A3-3.185087E-06*J1A4 1040 B3=1.519254E-08*J1A5-3.317278E-11*J1A6

+2.725225E-14*J1A7 1060 EOT =(Bl+B2+B3)/60 1070 RETURN

103

APPENDIX 3

Fruit Loading Schedules for the Zones

3

o ft

O

O

0.

(D

II II

II

II

■r^ w

W M

C

O M

H-

3

>• 0 3

M

0>

H-

0

01 p

.rt

0>

(0

H-H

- p

, P)

3

p

. M

lQ

M

3

(0

iQ

0.

M

O

(U

P>

M)

0.

ft

H-

A

3

»1

iQ

M

O

(U

ct.

H-

3

iQ

00

00

03

00

00

09

00

00

00

03

00

00

00

00

09

00

00

00

00

00

00

00

00

ooooooooooooooooooooooo

tOtO

MN

>tO

tO|-

,l-l|

-lHV

OV

OU

>V

OV

OV

O00000900000009

o

oo

oo

ou

)t>

>^

o^

J^

>^

o^

)^J

^J

(-J

^J

to^

-,^-,l

-•l-

'l-,

CT»0

1 1I^

U>

IOI-

'HO

V00001i|

i.rO

HO

UlH

OV

OO

O^

JC

r>01

HH

HH

HM

H'H

HI-

'l-'H

HH

HI-

'MH

'HI-

'HM

H

totv

juia

^c

nc

hc

nu

iuiC

Tiw

oo

ww

^^

-Jo

oo

ui-

Jc

n

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

o

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

o

^ '

TJ h

i *U h

d ^

j ht

f h

i h

i h

i h

i h

i h

i ^

hih

ihjh

ihih

ihi^

hi

WM

WM

WM

WM

MW

MW

MM

WW

WW

WW

MM

M

oo

oo

oo

oo

oo

vo

roio

^o

io^

ioim

oo

oi^

JO

i

l

I

l

I

l

I

I i

IHH

HM

HI-

'HI

IW

MM

WH

H'H

MN

JH

I-'

VO

OIO

IOIO

IOIO

IOIU

IOIO

VO

OO

OIO

OO

OO

OO

O

OIO

OO

OO

OO

OO

OO

IOO

OO

OO

OO

OO

O

l(s

.^^l

^l

t^l^

4^

4^

^.4

^U

MrO

N>

tOi(

^rO

K>

N>

rOM

MI-

'

1 ^

1

1

L^rf

Date ^yitundd)

i

H

i 1

H-

1 1

&

1 1

(D

1

Fruit Type

Bulk Temp

i

i

1

O

25 1

! "'I!

i

wB i

1

H-f

l)

1 1

3

fi

1 1

01

1 1

1

1

1

1 O

1 1

O

1 1

&

1 1

<D

1 1

H

1

CO

o 3*

(D c (0

1 o

I

H)

I ,2

' (+

IT

" O

P>

P

. P"

3

H

O

in o

c -H

-d n> o ^1

■P

■ri

2'

O

0) rH

-d 0) xi u (0

OJ

pi Q)

(Q

EH

■P

-H

0)

0)

•H

rH

f>jM

{M

O)M

Oj^

,'*'>

*'^

,'«*M

'oir

>j(N

CM

f>jr

gn

'^^

i,i

i'^j''«

*'sr«

*'!)<^

^j<

oooooooooooo

oinmooooooooo

oooooo^

inooooooooo

oooooo-^

vDC

MfM

CN

jCM

CN

jcNrgcgcg

HH

Hd

fO

rH

Hn

HrM

OJfH

fM

rilO

lOJC

gtM

HH

HH

rH

fH

HH

HH

HH

I I I I I I

I I I I I I I I I I

r>in

'*in

r-m'^

,ooo

oooo

ooon

o\o

i>-oooooooooo

vovovovovovo^

on

coon

nn

voio

mvoin

voin

oooooooooo

MW

WW

WW

WW

MW

WW

WW

pq

WW

WW

WW

WW

WW

WW

WW

Pq

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOO

ino

MO

CM

Mcg

inm

nv

or^

injn

otN

H

rH

HH

HH

HH

rH

HH

HH

Hf

— ^

^^

^O

OO

OO

OO

O

OrH

NO

cg

rg

ojv

oin

no

oin

M

-•-'■•

-H

HH

r-IH

HH

HrH

H

vo

coa

>O

Hn

"*

'*in

«)r^

oo

o\<

Nr>

^'in

r>a

)Ooo

CT

>O

HiH

fgn

'*in

vo

H

HH

rjO

JC

MO

jHH

iHrH

rH

rH

OJC

MO

aM

OJO

jnO

iCan

nO

OO

OO

O

ooooooco

ooooco

ata

tata

tatcrta

tak

ata

tcnata

tr-iHiH

r-icMM

rsirgfN

irg

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

inio

min

mm

intn

min

mtn

min

tnin

mm

inin

vo

vo

vo

vo

vo

vo

vo

vo

vovo

ooooooooooooooco

coooco

ooooooooooooooooooooooooooooco

oooooooo

00000000(X

)000000000009000000000000000000(X

>000009

OO

OO

OO

OO

OO

OO

OH

HH

OO

OO

OO

OO

H

HH

HH

HH

HH

HH

HH

WW

roO

OO

OO

OO

OO

OO

OC

DO

O

MW

HH

HH

HH

OO

OO

OtJ

rO

tOfO

IOH

HH

HH

H

HO

V0

00

-J0

JU

>H

«J

~J

01

U>

HH

VD

>J

HO

«)<

»^

I0>

01

it»

HH

HH

HH

HH

HH

HH

HH

HH

OH

HH

OH

HH

•Nui<-j<nui4^0\^)O(n>t^uiN>'vi'v]ui(»(0Hou>N>oa>

oooooooooooooooooooooooo

oooooooooooooooooooooooo

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

u>

coco

u)O

JU

Jto

ujw

cow

wcJ

ww

tJo>

crio

>(^

{y>

CT

>o

>cn

o

oo

oo

oo

oo

oo

oo

oo

ow

oi*

'U)rooi<

»o

l I

I

l I

l

I

I I

I I

I I

IH

HI

IHH

HH

HH

tO

WIO

WH

HH

H

Uim

UlU

lUlV

OO

OU

!U

10

00

00

0*»

-0

00

00

00

O

OO

OO

OIO

OO

OO

OO

OO

OO

IOO

OO

OO

O

^.^

^^

a^

^^

^^

^^

^^

^^

^u

Mto

to

ro

Mro

H

(D

ft

a H

tsi o 3

(D

CO

CO

o tr

(D a c H

(D o H-

rt

o o-

H-

3

H

O

en

a\ 0

1 01

O H

H M

H

H t

o NJ M

M I

O NJ !

-• O

O O

O

oo o

vo

a\ 0

1 u>

00

09

00

00

00

09

00

00

00

00

00

00

00

00

00

00

09

00

00

00

00

00

00

00

0)

tnu

ioio

ioio

ioio

ioio

ioiu

ioio

ioio

ioio

iuiu

ioit

no

ioio

i H

HH

J-'H

'MH

I-'H

MI-

'OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

M

HH

HH

I-'I-

<I-IH

'OO

VO

10

VO

VO

U)V

OU

)V0

10

V0

U)V

01

OO

OO

9O

OO

OO

OO

OO

OO

OO

OO

9O

O

OM

rO

NJW

ro

HI-

'MO

OtO

H'H

'K-'

HI-

'MI-

'l-'

OO

OO

MN

JtO

IOM

tOH

t-'H

HH

l-

,VD

^401U

)H,V

0^

JO

1W

IO^

I09'«

J01i^

U)N

)t-'

O00vJa>

f000vJit

».W

HO

W)0

9~

J0IN

)

00

09

00

00

00

00

00

00

00

00

00

00

00

00

09

00

00

00

00

00

00

09

00

00

00

00

00

00

00

00

00

00

00

09

09

09

00

00

00

00

00

~

-"O

1U

lU1

O1

01

UlO

IOIO

1O

lOIO

IO1

01

UlU

lO1

01

01

OI0

1O

l01

01

UlU

10

1O

I0l0

I01

UIO

I01

tn0

10

10

l M

MM

l-«

l->

l-«

l-<

l->

l-<

l->

l-<

MI-

'(-,0

00

00

00

00

00

00

0000

0000

00

0

H1

O H

H H

H

yiH

Oo

oiM

Hio

oi^

a*

MH

HH

HI-

'I-'

HH

HH

HH

HH

HH

'HH

HH

HH

H

HH

'HH

I-'J

-'H

I-'H

MI-

'I-'

MI-

'HI-

'I-'

H'M

I-'I-'

I-'I-'

I-'I-'

I-'M

I-'I-'

I-'I-'

I-'I-'

I-'

_ O

MW

U1

0>

U>

*.O

«J

CT

»U

10

0-g

ui0

0-g

i00

0O

U!U

!U1

Ot0

U1

MN

>t0

U!W

O

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

ooooooooooooooooooooo

oooooooooooooo

obbooooooooooooooooo

WWWWMWWWWMWWWWMWWWWWWWWWMWMWWWWWWWWWMWWWW

u)U

)uu

)uu

)CJu

>cj

u)u

>u

tJL

ou

)uiu

iitk

u>

uu

u)U

)uu

)0)U

)u>

u>

u>

<n

(n(n

cn(n

o>

a\<

no>

o\o

\ O

OO

OO

OO

OO

OO

OO

OO

OU

ll0O

OO

OO

OO

OO

OO

OU

!O00«g

00i^

Ul\0U

lOV

0

I I

l

I

I

I

l

I

I

I

I

I I

I

l

l

l

l

l

I

I

I

I H

IHH

HH

HM

HM

HM

HIW

N)

HH

MM

MM

I-'H

MH

HH

MtO

WM

HH

MH

tO

M

O

I

«)O

OO

OO

OO

OO

OO

01O

O01O

OO

OO

OO

OO

OO

OO

01O

UJ01O

O0

lOW

01

O

HV

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

O

M^

^^

^^

^^

^^

^^

^^

^M

tvJrO

^^

J^

^^

^^

^^

^-^

-^

WtO

tO

tO

MW

tO

tO

tO

MH

\c:

!

Date fymmdd)

i ^

i 1

H-

1

i "

i

Fruit Type

Bulk Temp

I

i

i i

o a

; i

1 H

> g

1

i

3 i

1

OJ &

1 1

H-(

0 1

13 4

1 1 0

)

1

i n

i 1

O 1

i p

. i

i

ID

i

m

o tr

(D a

0 (D

tS)

O

O

H)

3 -2

p-

*. r

t o 01

p.

p- 3

O

0000030000090900(X

)

oo

oo

oo

oo

o

OO

OO

OO

tJ

WN

)

cn

ui^

toro

i-'i-'

ovo

HH

HH

HH

HH

H

MU

1tO

MM

(J1*>

-tO

Cri

O

OO

OO

OO

OO

O

OO

OO

OO

OO

MWWWMMWWW

OOOOOOOOO

I I

I I

I H

HH

tO

MH

HM

tO

y

ioio

ioo

oio

ioio

o

oo

oo

oo

oo

^^

^■t^

it^

tOM

MtO

o

00

109

Schedule of Fruit Loading Zone # 5

Date Time Fruit Bulk Number Code (yymmdd) Type Temp of Bins

850812 1200 PEAR 69 300 1 850816 0900 PEAR 60 100 2 850817 1200 PEAR 65 200 2 850818 1200 PEAR 69 100 2 850819 1100 PEAR 65 300 2 850820 1500 PEAR 64 200 2 850826 1200 PEAR 60 200 2 850827 1500 PEAR 60 400 2 850828 1500 PEAR 65 100 2 850901 1800 PEAR 30 -300 4 850913 1800 PEAR 30 -100 4 850914 1500 PEAR 30 -100 4 850915 1600 PEAR 30 -100 4 850917 1600 PEAR 30 -100 4 850918 1200 PEAR 30 -300 4 850920 1200 PEAR 30 -100 4 850921 1200 PEAR 30 -200 4 850924 1000 PEAR 59 100 2 850925 1000 PEAR 64 100 2 851002 1400 PEAR 52 200 2 851003 1300 PEAR 50 200 2 851004 1000 PEAR 30 -200 4 851120 1300 PEAR 30 -100 4 851122 1100 PEAR 30 -100 4 851126 1600 PEAR 30 -100 4 851128 1400 PEAR 30 -100 4 851130 1500 PEAR 30 -100 4 851202 1200 PEAR 30 -100 4 851204 1100 PEAR 30 -100 4 851206 1200 PEAR 30 -100 4 851207 1500 PEAR 30 -100 4 851208 1800 PEAR 30 -99 4 851210 0100 PEAR 30 -1 4 860128 1500 PEAR 30 200 2 860129 1600 PEAR 30 200 2 860130 1200 PEAR 30 300 2 860131 1400 PEAR 30 100 2 860201 1500 PEAR 30 200 2 860202 1200 PEAR 30 -400 4 860203 1100 PEAR 30 -300 4 860206 1200 PEAR 30 -300 4

110

APPENDIX 4

RLSIM Program listing

Ill

-inp.uiL_fi.l.< weather data format "N.81

10 CLEAR 2 0 CLS 30 1$=" REFRIGERATION LOAD SIMULATION ":Z=(80-LEN(T$))/2 40 X$=,, by Norberto Adre ,I:XL=(80-LEN(X$) )/2 50 COLOR 7,0:LOCATE 1,1:PRINT TAB(Z) 51 COLOR 0,7:PRINT T$:COLOR 7,0 6 0 LOCATE 23,1:PRINT TAB(XL):COLOR 0,7:PRINT X$:COLOR 7,0 70 LOCATE 3,20:PRINT CHR$(201):LOCATE 3,21 71 PRINT STRING$(40,205) 80 LOCATE 3,61:PRINT CHR$(187);TAB(79);» " 90 FOR 1=4 TO 20 100 LOCATE 1,1:PRINT TAB(20);CHR$(186):LOCATE 1,61 101 PRINT CHR$(186) ;TAB(79) ;•' " 110 NEXT I 120 LOCATE 21,20:PRINT CHR$(200):LOCATE 21,21 121 PRINT STRING$(40,205) 130 LOCATE 21,61:PRINT CHR$(188);TAB(79);" " 14 0 TM1=TIMER 150 160 • FILES 170 180 190 191 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420

N is wall orientation 8 is the month

output files daily format "ZBl.prn" ZB stands for Zone Building envelope 1 is the zone prn is used for input for LOTUS 123

daily format "Zll.prn" ZI stands for Zone Infiltration load 1 is the zone prn is used for input for LOTUS 123

daily format "ZFl.prn" ZF stands for Zone Fruit load 1 is the zone prn is used for input for LOTUS 123

daily format "FLl.prn" FL stands for Fan Load 1 is the zone prn is used for input for LOTUS 123

transfer coefficient format "WT.l" WT - wall type 1 code for the type

112

430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 631 640 641 650 660 661 670 680 690 700 710 711 720 730 740 750 755 760 770 780 790 800 810 820 830 840

daily format "ZTl.prn" ZT stands for ZONE TOTAL Load 1 is the zone prn is used for input for LOTUS 123

building totals format "BT.prn" BT stands for building total prn is used for input for Lotus 123

DIMENSION DIM B(10),C(10),D(10),W(12) DIM QR(24) ,QN(24) ^£(24) ,QW(24) ,08(24) DIM Q(24),QH(24),QHT(24) DIM QI(32),QFN(24),QFE(24),QFW(24) DIM QFS(24) ^0(6) ,1^2(6) DIM Nl(6) ,E1(6) ^1(6) ,81(6) ^1(6) DIM TN(24),TE(24),TW(24),TS(24),TR(24) DIM Tl(24),1(24)/TF(24),10(12) DIM TA(32),TFN(24),TFE(24),TFW(24),TFS(24),T2(6) DIM PN(6) ^£(6) ,PS(6) ,PW(6) DIM AZN(6),AZE(6),AZW(6),AZS(6) DIM UV(6),UR(6) DIM NA(6),SA(6),WA(6),EA(6),RA(6),FA(6) DIM WF$(6),RF$(6) DIM NG(6),SG(6),WG(6),EG(6) DIM V(6),CA(6) DIM LW(6) ,NF(6) ,liPF(6) ,LF(6) ,SF(6) ,NL(6) ,FC(6) DIM TP(6,32),BZ(6,32),T9(6,32) DIM BN(6),QP(32),GS(6),GOF(6),H2(32)

INPUT DEFAULT VALUES

113

850 860 870 880 890 900 910 911 920 930 940 950 955 960 965 970 980 990 1000 1001 1010 1011 1020 1030 1040 1050 1060 1070 1080 1081 1090 1100 1110 1120 1130 1140 1150 1160 1161 1170 1180 1190 1200 1210 1220 1230 1240

DS$ =,l850814" DE$ =,•860206l,

DO$ ="851227" DON$="860122"

dates

' starting date of the season ' ending date of the season 1 starting date for unsealing CA's 1 approx. date when common storage

is turned on again

average monthly ground temperatures @ 20 inches

TG(1)=38.3 :TG(2)=40.5 :TG(3)=48.3 :TG(4)=51.7 TG(5)=56.9 :TG(6)=68.5 TG(7)=70.6 :TG(8)=70.6 :TG(9)=63.5 :TG(10)=54.8 TG(11)=47 :TG(12)=40

i

1 average monthly humidity ratio

W(1)=.0039:W(2)=.00443:W(3)=.00572:W(4)= .00509 W(5)= .00704:W(6)= .00771 W(7)=.00765:W(8)=.00761:W(9)=.00727:W(10)=.00579 W(ll)=.00354:W(12)=.00259

average relative humidity of the rooms

door area (sq.ft) and height (ft) RH=.95

AD=156 :HD=13

gas constant(Ib-ft/lbm-R) & pressure (Ib/sq.ft)

R=53.3 :PR=2088.88

doorway open-time factor (dt) and flow factor (df)

DT=.75 : DF=.8 : HO= 8 'HO - hour of operation (hrs)

specific heat of wood (cpw) and mass of wood per bin(mpw) specific heat of pear (cpp) and specific heat of air (cpa)

MPW =19.5 : CPW = .29 : CPA= .24 : CPP=.896

horsepower rating of the forklift

FRKHP =30

number of hours the fan are on per day

H

H

=«=

CO

w

3 II n

cn CM r>

■sj 1 n in

rg r> o o o o o

ra II II II II II H CM

n H

w

8 gg

&g

g

CO

w

o

ts)

CO

55 H

(M

CO H

CM 0) w

+J H=

s s s s fc II II II II II

■<*

rH fe

O

I ■H

pq ^^

^-^

^

II nJ o

H ca o

H oi

fe > O

——

— —

W

</> </l- i/)- </> </>• S *■

• b

ft, |i( pH pH - - &

!2&

rtrt

<u c o N

a) a) &

&

■p-p

H <H

H

O

(0 O

> u

<H

«W

<»-( o o o u u u a) a) <u

in n

O

J ii n II

0) c o tsi

si o (d

^

o

(0

n) a

+J

c

H

H

<u c o N

0)

(0 u o (0

c o o o

o

a> c o N

<M

o a) s II s

w

■<* (M O O

S5

II II

II II

O

^-^ *—

^fc o^^^^k

N

H H

H H

^-^ S

-^» N

M^ <

W

■P

a w

s w

C

1SJ tSl N

NI

0) 0

(0

<<

<<

-r-> •o n>

id

(M

o

a)

■p

ai a) o

iH

<M

^ fH

o

O

at 0

>

u o vo

a) C

H rH

O O

<w

at CD

<M

O

II II II II o

<u O rH

M O

^

j -H

^

II II II II rH

-P

H

rH H

H

a)

<d o

-H

>

>_

'>^N

_'

R H H

H

rH

> . J

55 W

S W

>

<.

■»—

H

(!< A 04 ft

+» o o

o o

id

55 W £

W

a

CO

CO H

CM

II II II II

H H

HH

O O

•>* O O O

O

CM

CO

VO O O

O

) O

VO

00

>*

'i* rH

rH rH

rH

CM

CM

II II II II II

II

>! H

H H i

H H H H

55

H ^

U)

Pi

H H

H

<<

<

55 M S

^

fe

oo

oo

oo

oo

oo

oo

oo

oo

oo

ocg

in

in

vot^

coC

TiO

rHC

Mn

^in

vo

t^ooC

TiO

HC

Mfo

nn

<

^^

cMC

MC

^JC

Mn

f^n

nc^

c^r)n

c^coM

•M,

HrH

HrH

HrH

rH

HH

rH

rH

rH

rH

HH

rH

H

OOOOOOOOOOOOOOOOOOOOOOOOOO

rii-iii^

j,i

nv

or

>»ooo^

OH

(>jn

'*in

vor*eo(n

oH

c>

in^

'invor»ooC

T>

^

•^^

■^•^

•^•^

^•^

^to

inin

inin

inin

intn

tnvovovovovovovovovovo

rH

i-HrH

rH

rH

rH

rH

rH

rH

rH

rH

rH

rH

rH

HrH

rH

HrH

rH

i-HrH

rH

rH

rH

rH

rH

rH

rH

rH

115

1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160

V(l)= 72000!

NF(1)=3 HPF(1)=5.33

NL(1)=6 LW(1)=112.5 LF(1)=2 SF(1)=1.18

i

FC(1)=1245

T2(l)=33 i

i

•type of zone i

CA(2)=1 i

•type of wall Nl(2)=3 El(2)=3 Wl(2)=3 Sl(2)=2

Rl(2)=l i

NA(2)=1200 SA(2)=960 WA(2)=1860 EA(2)=1860 RA(2)=2400 FA(2)=2640

V(2)' 72000!

NF(2)=3 HPF(2)=5.33

NL(2)=6 LW(2)=112.5 LF(2)=2 SF(2)=1.18

nvuober of fans and size • number of fans ' horsepower rating of the fan

number of lights 1 number of fixtures 1 lamps wattage 1 number of lamps per fixtures 1 special allowance factor

fruit capacity (bin)

storage temperature (F)

zone #2 (CA or Common storage)

adjacent to ZONE AZN(2)=4 AZE(2)=3 AZW(2)=1 AZS(2)=0

partition wall? PN(2)=1 PE(2)=1 PW(2)=1 PS(2)=0 type of roof

area :NG(2)=0 :SG(2)=240 :WG(2)=0 :EG(2)=0

volume (cubic feet)

number of fans and size 1 number of fans • horsepower rating of the fan

number of lights ' number of fixtures 1 lamps wattage ' number of lamps per fixtures • special allowance factor

116

2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630

FC(2)=1245 i

T2(2)=33

•type of zone i

CA(3)=1 i

•type of wall Nl(3)=3 El(3)=l Wl(3)=3 Sl(3)=2 •

Rl(3)=l i

NA(3)=1200 SA(3)=920 WA(3)=1860 EA(3)=1670 RA(3)=2400 FA(3)=2400

i

V(3)=72000! i

NF(3)=3 HPF(3)=5.33

i

i

NL(3)=6 LW(3)=112.5 LF(3)=2 SF(3)=1.18

i

FC(3)=1245 i

T2(3)=30

i

i

•type of zone i

CA(4)=0

fruit capacity •fruit capacity in BINS

storage temperature (F)

zone #3

(CA or Common storage)

adjacent to ZONE # AZN(3)=5 AZE(3)=0 AZW(3)=2 AZS(3)=0

partition wall? PN(3)=1 PE(3)=0 PW(3)=1 PS(3)=0

type of roof

area :NG(3)=0 :SG(3)=280 :WG(3)=0 :EG(3)=190

volume (cubic feet)

number of fans and size • number of fans ' horsepower rating of the fan

number of lights • number of fixtures ' lamps wattage ' number of lamps per fixtures ' special allowance factor

fruit capacity •fruit capacity in BINS

storage temperature

zone #4

(CA or Common storage)

117

2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900 2910 BINS 2920 2930 2940 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 3060 3070 3080 3090

'type of wall Nl(4)=l El(4)=0 Wl(4)=l Sl(4)=3

i

Rl(4)=2 i

NA(4)=1515 SA(4)=1515 WA(4)=1178 EA(4)=0 RA(4)=2727 FA(4)=2727

i

V(4)=81810!

NF(4)=5 HPF(4)=3.5

NL(4)=9 LW(4)=112.5 LF(4)=2 SF(4)=1.18

i

FC(4)=2183

T2(4)=30

partition wall? adjacent to ZONE PN(4)=0 : AZN(4)=0 PE(4)=0 : AZE(4)=0 PW(4)=0 : AZW(4)=0 PS(4)=1 : AZS(4)=1

type of roof

area :NG(4)=0 :SG(4)=0 :WG(4)=0 :EG(4)=0

volume (cubic feet)

number of fans and size 1 number of fans 1 horsepower rating of the fan

number of lights • number of fixtures 1 lamps wattage 1 number of lamps per fixtures 1 special allowance factor

fruit capacity • fruit capacity in

storage temperature (F)

zone #5

•type of zone (CA or Common storage) i

CA(5)=0 i

•type of wall partition wall? adjacent to ZONE # Nl(5)=l : PN(5)=0 : AZN(5)=0 El(5)=l : PE(5)=1 : AZE(5)=6 Wl(5)=0 : PW(5)=0 : AZW(5)=0 Sl(5)=3 : PS(5)=1 : AZS(5)=3 • type of roof Rl(5)=2 i

NA(5)=1737 area

118

3100 3110 3120 3130 3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 3540 3545 3550

SA(5)=1515 WA(5)=0 EA(5)=1382 RA(5)=3052 FA(5)=3052

i

V(5)=89935! i

i

NF(5)=5 HPF(5)=3.5

i

i

NL(5)=9 LW(5)=112.5 LF(5)=2 SF(5)=1.18

i

FC(5)=2182 i

T2(5)=30 i

T2(6)=65 i

volume (cubic feet)

number of fans and size ' number of fans 1 horsepower rating of the fan

number of lights 1 number of fixtures 1 lamps wattage ' number of lamps per fixtures 1 special allowance factor

fruit capacity •fruit capacity in BINS

storage temperature (F)

zone #6

sum total air volume of the building

FOR 1=1 TO NZ VT=VT+V(I) GOF(I)=0 • GS(I)=0 » BN(I)=0 ' NEXT I • ***************************************************

rooms are initially open rooms are initially not sealed rooms are initially empty

• STARTING MONTH M2=VAL(MID$(DS$/3/2)) : M3=VAL(MID$(DE$/3,2))+1 DY2=VAL(RIGHT$(DS$,2)) i

M=M2-1:IF M<1 THEN M=12 GQ=1:GZ=1 i

E1$=STR$(M):E2=LEN(E1$)-1 L$=»MONTH » ##":Ll=21+(39-LEN(L$))/2 LOCATE 14,21:PRINT TAB(LI) PRINT USING "MONTH = ##,I;M WN$=HN.,I+RIGHT$(E1$/E2) :WD$=WN$:G=1

119

3555 IF GQ=1 THEN GOSUB 6560 3560 WE$="E.II+RIGHT$(E1$,E2) :WD$=WE$:G=2 3565 IF GQ=1 THEN GOSUB 6560 3570 WW$="W."+RIGHT$(E1$/E2):WD$=WW$:G=3 3575 IF GQ=1 THEN GOSUB 6560 3580 WS$="S."+RIGHT$(E1$/E2):WD$=WS$:G=4 3585 IF GQ=1 THEN GOSUB 6560 3590 WR$="R."+RIGHT$(E1$,E2):WD$=WR$:G=5 3595 IF GQ=1 THEN GOSUB 6560 3600 WG$=,,FH20."+RIGHT$(E1$/E2) :WD$=WG$:G=6 3601 IF GQ=1 THEN GOSUB 6560 3610 IF GQOl THEN 3660 3 620 GQ=0:M=M2:GOTO 3520 3630 • 3640 •********************************************** 3650 ' 3660 • ZONE CALCULATION 3670 WD$=WN$:WA$="TA.,I+RIGHT$(E1$,E2) 3680 GOSUB 8670 ' compute average daily ambient temp. 3690 • 3700 QI$="IN."+RIGHT$(E1$,E2) 3705 GOSUB 8830 'compute infiltration 3710 ' 3720 WD$=WG$:WA$=,ITAG20.,I+RIGHT$(E1$,E2) 3730 GOSUB 8670 ' compute avg. daily soil (§20'■) temp. 3740 ' 3750 ' ZONE LOOP BEGINS 3760 • 3770 FOR L=l TO NZ 3780 L$="Z0NE ##":L1=21+(39-LEN(L$))/2 3790 LOCATE 8,21:PRINT TAB(LI):COLOR 31 3791 PRINT USINC'ZONE ##";L:COLOR 7,0 3800 ' 3810 • ROOF 3820 • 3830 LOCATE 11,21:PRINT TKB(58)}" " 3840 L$="ROOFl, : Ll=21+(39-LEN(L$) )/2 3850 LOCATE 11,21:PRINT TAB(Ll);L$ 3860 G1=0 3870 RC$ = RF$(R1(L)):WD$ = WR$ 3871 AR = RA(L): U=UR(R1(L)) 3880 IF GZ <>1 THEN 3920 3890 FOR 1=1 TO 24 3900 T(I)=TR(I) :Q(I)=U*AR*(T(I)-T2(L) ) 3901 NEXT I 3910 GOTO 3950 3920 FOR I =1 TO 24

120

3930 Q(I)=QR(I):T(I)=TR(I) 3940 NEXT I 3950 0$=HRZ.":GOSUB 7300 3960 FOR 1= 1 TO 24 3970 QR(I)=Q(I):TR(I)=T(I) 3980 NEXT I 3990 ' 4000 ' NORTH WALL 4010 ' 4020 LOCATE 11,21:PRINT TAB(58);" " 4030 L$="NORTH WALL":Ll=21+(39-LEN(L$))/2 4040 LOCATE 11,21:PRINT TAB(L1);L$ 4050 Gl=l 4060 K$=0$ 4070 RC$ = WF$(N1(L)):WD$ = WN$ 4075 AR = NA(L):U = UV(N1(L)) 4080 AZ=AZN(L) : P=PN(L) 4090 IF AR=0 THEN 4350 • check area of wall 4100 IF Pol THEN 4140 ' check if partition 4110 IF T2(L)<>T2(AZ) THEN 4120 ELSE 4350 • check if 4111 ' temperature of adjacent zone is same 4120 TC=T2(AZ) :0$=,,NZ.":GOSUB 7940 4130 GOTO 4350 4140 IF GZ <>1 THEN 4180 ' check if starting month 4150 FOR 1=1 TO 24 ' last day of previous month 4160 T(I)=TN(I) • temp and Q's 4161 Q(I)=U*AR*(T(I)-T2(L)) 4162 NEXT I 4170 GOTO 4210 4180 FOR I =1 TO 24 • insert values into 4190 Q(I)=QN(I):T(I)=TN(I) • calculation mode 42 00 NEXT I 4210 0$="NZ1.,,:GOSUB 7300 • calculation 422 0 FOR 1= 1 TO 24 4230 QN(I)=Q(I):TN(I)=T(I) ' save last day's T's & Q's 4240 NEXT I 4250 IF NG(L)=0 THEN 4350 4260 IF GZOl THEN 4300 4270 FOR 1=1 TO 24 4280 T(I)=TF(I):Q(I)=U*NG(L)*(T(I)-T2(L)):NEXT I 4290 GOTO 4310 4300 FOR 1=1 TO 24 :T(I)=TFN(I):Q(I)=QFN(I):NEXT I 4310 K$=0$:WD$=WG$:AR=NG(L) 432 0 0$=»NZ.":GOSUB 7300 4330 FOR 1=1 TO 24 :QFN(I)=Q(I):TFN(I)=T(I):NEXT I 4340 ' 43 50 • EAST WALL

121

4360 • 4370 LOCATE 11,21:PRINT TAB(58);" " 438 0 L$=,'EAST WALL" :L1=21+(39-LEN (L$) )/2 4390 LOCATE llf21:PRINT TAB(Ll);L$ 4400 Gl=l 4410 K$=0$ 4420 RC$ = WF$(E1(L)):WD$ = WE$:AR = EA(L): U=UV(E1(L)) 443 0 AZ=AZE(L) : P=PE(L) 4440 IF AR=0 THEN 4700 4450 IF P<>1 THEN 4490 4460 IF T2(L)<>T2(AZ) THEN 4470 ELSE 4700 4470 TC=T2(AZ) ^^'EZ." :GOSUB 7940 4480 GOTO 4700 4490 IF GZ <>1 THEN 4530 4500 FOR 1=1 TO 24 4510 T(I)=TE(I):Q(I)=U*AR*(T(I)-T2(L)):NEXT I 4520 GOTO 4560 453 0 FOR I =1 TO 24 4540 Q(I)=QE(I):T(I)=TE(I) 4550 NEXT I 4560 0$="EZl.,,:GOSUB 7300 4570 FOR 1= 1 TO 24 4580 QE(I)=Q(I):TE(I)=T(I) 4590 NEXT I 4600 IF EG(L)=0 THEN 4700 4610 IF GZOl THEN 4650 462 0 FOR 1=1 TO 24 4630 T(I)=TF(I) :Q(I)=U*NG(L)*(T(I)-T2(L)) :NEXT I 4640 GOTO 4660 4650 FOR 1=1 TO 24 :T(I)=TFE(I):Q(I)=QFE(I):NEXT I 4660 K$=0$:WD$=WG$:AR=EG(L) 4670 0$="EZ.":GOSUB 7300 4680 FOR 1=1 TO 24 :QFE(I)=Q(I):TFE(I)=T(I):NEXT I 4690 ' 4700 ' WEST WALL 4710 ' 4720 LOCATE 11,21:PRINT TKB(58);" " 4730 L$=,,WEST WALL" :L1=21+(39-LEN(L$) )/2 4740 LOCATE 11,21:PRINT TAB(Ll);L$ 4750 Gl=l 4760 K$=0$ 477 0 RC$ = WF$(W1(L)): WD$ = WW$ 4771 AR = WA(L):U=UV(W1(L)) 478 0 AZ=AZW(L) : P=PW(L) 4790 IF AR=0 THEN 5050 4800 IF P<>1 THEN 4840 4810 IF T2(L)<>T2(AZ) THEN 4820 ELSE 5050

122

4820 TC=T2(AZ):0$="WZ.":GOSUB 7940 4830 GOTO 5050 4840 IF GZ <>1 THEN 4880 4850 FOR 1=1 TO 24 4860 T(I)=TW(I) :Q(I)=U*AR*(T(I)-T2(L)) .'NEXT I 4870 GOTO 4910 4880 FOR I =1 TO 24 4890 Q(I)=QW(I):T(I)=TW(I) 49 00 NEXT I 4910 0$=,,WZ1.": GOSUB 7300 4920 FOR 1= 1 TO 24 4930 QW(I)=Q(I):TW(I)=T(I) 494 0 NEXT I 4950 IF WG(L)=0 THEN 5050 4960 IF GZOl THEN 5000 4970 FOR 1=1 TO 24 4980 T(I)=TF(I):Q(I)=U*WG(L)*(T(I)-T2(L)):NEXT I 4990 GOTO 5010 5000 FOR 1=1 TO 24 :T(I)=TFW(I):Q(I)=QFW(I):NEXT I 5010 K$=0$:WD$=WG$:AR=WG(L) 502 0 0$=,,WZ.,,:GOSUB 7300 5030 FOR 1=1 TO 24 :QFW(I)=Q(I):TFW(I)=T(I):NEXT I 5040 • 5050 • SOUTH WALL 5060 ' 5070 LOCATE 11,21:PRINT TAB(58);" " 5080 L$=l,SOUTH WALL" : Ll=21+(39-LEN(L$) )/2 5090 LOCATE llf21:PRINT TAB(Ll);L$ 5100 61=1 5110 K$=0$ 5120 RC$ - WF$(S1(L)): WD$ = WS$ 5121 AR = SA(L):U=UV(S1(L)) 5130 AZ=AZS(L) : P=PS(L) 5140 IF AR=0 THEN 5400 5150 IF P<>1 THEN 5190 5160 IF T2(L)<>T2(AZ) THEN 5170 ELSE 5400 5170 0$=,,SZ.":GOSUB 7940 5180 GOTO 5400 5190 IF GZ <>1 THEN 5230 52 00 FOR 1=1 TO 24 5210 T(I)=TS(I):Q(I)=U*AR*(T(I)-T2(L)):NEXT I 5220 GOTO 5260 5230 FOR I =1 TO 24 5240 Q(I)=QS(I):T(I)=TS(I) 5250 NEXT I 5260 0$«»,,SZl.,,:GOSUB 7300 5270 FOR 1= 1 TO 24

123

5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550 5560 5570 5580 5590 5600 5610 5620 5630 5631 5640 5650 5660 5670 5680 5690 5700 5710 5720 5730

QS(I)=Q(I):TS(I)=T(I) NEXT I IF SG(L)=0 THEN 5400 IF GZOl THEN 5350 FOR 1=1 TO 24 T(I)=TF(I):Q(I)=U*SG(L)*(T(I)-T2(L)):NEXT I GOTO 5360 FOR 1=1 TO 24 :T(I)=TFS(I):Q(I)=QFS(I):NEXT I K$=0$:WD$=WG$:AR=SG(L) 0$="SZ.":G0SUB 7300 FOR 1=1 TO 24 :QFS(I)=Q(I):TFS(I)=T(I):NEXT I

i

• FLOOR i

LOCATE 11,21:PRINT TAB(58);" " L$=»FLOOR,, :Ll=21+(39-LEN(L$))/2 LOCATE 11,21:PRINT TAB(LI);L$ G1=1:K$=0$ 0$="HZ.•' AR = FA(L) U=UF GOSUB 7300

EVAPORATOR FANS

FQ(L)=HPF(L)*2545/.85*NF(L) '

LIGHTS

LQ(L)=LW(L)*SF(L)*NL(L)*LF(L)*3.413

FRUIT LOAD

LOCATE 11,21:PRINT TAB(58);" " L$=,,FRUIT, LIGHTS, INFILTRATION & FANS" Ll=21+(39-LEN(L$))/2 LOCATE 11,21:PRINT TAB(LI);L$ FZ$="FZ"+RIGHT$(EX$,EL) GOSUB 9360

NEXT L ' END OF ZONE LOOP

*************************************************

• COMPUTATION FOR ANOTHER MONTH BEGINS HERE

124

5740 5750 5760 5770 5780 5790 5800 5810 5820 5830 5840 5850 5860 5870 5880 5890 5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 6000 6010 6020 6030 6040 6050 6060 6070 6080 6090 6100 6110 6120 6130 6140 6150 6160 6170 6180 6190 6200

M=M+l:KILL QI$:KILL WA$:GZ=0 IF M>12 THEN M=M-12 IF M=M3 THEN 5790 GOTO 3520

i

• SUMMATION OF TOTAL LOAD FOR ZONES AND BLDG i

LOCATE 11, 21: PRINT TAB(58);" •' L$="OVERALL TOTAL FOR ZONES AND BUILDING" Ll=21+(39-LEN(L$))/2 LOCATE 11,21:PRINT TAB(LI);L$ i

FOR L=l TO NZ L$="ZONE #":Ll=21+(39-LEN(L$))/2 LOCATE 8, 21-.PRINT TAB (58);" " LOCATE 8,21:PRINT TAB(LI):PRINT USING "ZONE #";L EX$=STR$(L):EL=LEN(EX$)-1

create output files

ZB$="ZB"+RIGHT$(EX$,EL)+".PRN" ZD$="ZDI,+RIGHT$ (EX$, EL) +" . PRN" ZF$="ZF"+RIGHT$(EX$,EL)+".PRN" ZI$="ZII,+RIGHT$ (EX$, EL) +" . PRN" FL$="FL"+RIGHT$(EX$,EL)+".PRN" MQ$="MQ"+RIGHT$(EX$,EL)+".PRN" ZT$="ZT,,+RIGHT$ (EX$, EL) +" . PRN" BT$="BTI,+RIGHT$ (EX$, EL) +" . PRN" IF L=NZ THEN BT$="BT.PRN" IF L=l THEN 6110 E9$=STR$(L-1):E9=LEN(E9$)-1 BT1$="BT"+RIGHT$(E9$,E9)+".PRN"

i

i

OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN G2=0 i

open input and output files

BT1$ FOR INPUT AS #6 ZD$ FOR INPUT AS #1 ZI$ FOR INPUT AS #2 ZF$ FOR INPUT AS #3 FL$ FOR INPUT AS #4 MQ$ FOR INPUT AS #5 ZT$ FOR OUTPUT AS #7 BT$ FOR OUTPUT AS #8 ZB$ FOR OUTPUT AS #9 :QZT=0:BT=0

125

6210 ' read and total daily heat gain i 6220

6230 IF E0F(1) THEN 6470 6240 INPUT #1,D1$,QB 6250 IF G2=l THEN 6310 6260 IF E0F(2) THEN 6470 6270 INPUT #2,D2$,QI 6280 INPUT #3/D3$,QFR 6290 INPUT #4,D2$,QFF 63 00 INPUT #5,D2$/MQ 6310 DAY=VAL(RIGHT$(D2$,2)):DY=VAL(RIGHT$(Dl$,2)) 6320 IF DY<DAY THEN 6330 ELSE 6340 6330 G2=l :GOTO 6230 6340 G2=0 6350 QZT=QB+QI+QFR+QFF+MQ 63 60 IF QFR=0 AND QI=0 THEN QZT=0 6370 IF L<>1 THEN 6380 ELSE 6400 6380 INPUT #6,D6$tBTl 6390 BT=BT1+QZT:G0T0 6410 6400 BT=QZT 6410 WRITE #7/VAL(D2$),QZT 6420 WRITE #8,VAL(D2$),BT 643 0 IF QFR=0 AND QFF=0 THEN QB=0 6440 WRITE #9,VAL(D2$),QB 6450 QZT=0:QB=0:QI=0:QFF=0:QFR=0:MQ=0:BT=0:BT1=0 6460 IF VAL(D2$)=>VAL(DE$) THEN 6470 ELSE 6230 6470 CLOSE:KILL ZD$:IF L<>1 THEN KILL BT1$ 6480 NEXT L 6490 • 6500 ' 6510 TM2=TIMER:TIM=(TM2-TMl)/3600 6520 LOCATE 20,28:COLOR 0,7 6521 PRINT USING "TIME OF RUN IS ###.## hrs ";TIM 6522 COLOR 7,0 653 0 END

************************************************* SUBROUTINES FOLLOW

subroutine to save temp, of last day of prior month before start-up

6540 6550 6560 6570 6580 6590 6600 OPEN "R",2,WD$,246 6610 FIELD #2, 6 AS D$, 240 AS V$ 6620 GET #2 663 0 DAY =VAL(RIGHT$(D$,2)):M1=VAL(MID$(D$,3,2)) 6640 GOSUB 8250 6650 IF DAY=J2 THEN 6660 ELSE 6620

126

6660 6670 6680 6690 6700 6710 6720 6730 6740 6750 6760 6770 6780 6790 6800 6810 6820 6830 6840 6850 6860 6870 6880 6890 6900 6910 6920 6930 6940 6950 6960 6970 6980 6990 7000 7010 7020 7030 7040 7050 7060 7070 7080 7090 7100 7110 7120

ON G GOTO 6670,6710,6750,6790,6830,6870 FOR 1=1 TO 24:J=(I-1)*10+1 TN(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN FOR 1=1 TO 24:J=(I-1)*10+1 TE(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN FOR 1=1 TO 24:J=(I-1)*10+1 TW(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN FOR 1=1 TO 24:J=(I-1)*10+1 TS(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN FOR 1=1 TO 24:J=(I-1)*10+1 TR(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN FOR 1=1 TO 24:J=(I-1)*10+1 TF(I)=VAL(MID$(V$,J,10)) NEXT I CLOSE #2:RETURN

subroutine to read transfer function coefficients for roof and walls

OPEN RC$ FOR INPUT AS #1 CS = 0! : N=0! INPUT #1, B(N) ,C(N) ^(N) CS = CS + C(N) IF B(N)=0 AND D(N)=0 AND C(N)=0 THEN 7020 ELSE 7030 NC = N:GOTO 7040 N=N+l:GOTO 6990 CLOSE #1 RETURN i

' subroutine to compute heat gain by conduction 1 through roofs and walls

FOR K=l TO 24 BS = 0 : DS = 0 FOR I =1 TO NC

127

7130 J=(I-1) 7140 IF J=0 THEN 7200 ELSE 7150 7150 JJ = K-J 7160 IF JJ=0 THEN JJ =24 7170 IF JJ<0 THEN JJ=24+JJ 7180 BS - BS + B(J)*T(JJ) 7190 GOTO 7210 7200 BS = BS + B(J)*T1(K) 7210 KK=K-I 7220 IF KK<=0 THEN KK=24+KK 7230 DS = DS + D(I)*Q(KK)/AR 7240 NEXT I 7250 ' 7260 Q(K) = (BS-DS - T2(L)*CS)*AR 7270 T(K)= T1(K) 7280 NEXT K 7290 RETURN 7300 • 7310 ' subroutine to sum and save heat gain for zone 7320 • 73 3 0 EX$=STR$(L) 7340 EL = LEN(EX$)-1 7350 0$ = 0$ + RIGHT$(EX$,EL) 73 60 IF LEFT$(0$/2)="HZ" THEN 7400 ELSE GOSUB 7590 7370 ' 7380 RETURN ' back to zone loop 7390 ' 7400 GOSUB 7940 7410 ZD$=,,ZD"+RIGHT$ (EX$, EL) +" . PRN" 7420 OPEN "R,,,4,0$/246 7430 FIELD #4, 6 AS D$,240 AS QV$ 7440 OPEN ZD$ FOR APPEND AS #5 7450 GET #4 7460 DAY=VAL(RIGHT$(D$,2)) 7470 00=0 ' initialize g daily 7480 FOR I =1 TO 24:J=(1-1)*10+1 7490 QH(I)=VAL(MID$(QV$/J,10)) 7500 QD=QD+QH(I) 7510 NEXT I 7520 IF VAL(D$)<(VAL(DS$)-3) THEN 7450 7530 WRITE #5,VAL(D$),00 7540 IF VAL(D$)=>VAL(DE$) THEN 7570 7550 IF DAY=>J2 THEN 7570 7560 GOTO 7450 7570 CLOSE :KILL 0$:RETURN 7580 ' 7590 ■ transient heat gain through roof and walls

128

7600 ' 7610 GOSUB 6920 7620 OPEN "R", 2,^70$, 246 7630 FIELD #2,6 AS D$/240 AS TL$ 7640 OPEN 0$ FOR OUTPUT AS #4 7650 IF GlOl THEN 7730 7660 OPEN "Rl,

/3/K$/246 7670 FIELD #3,6 AS Dl$,240 AS QV$ 7680 GET #3 7690 FOR 1=1 TO 24:J=(I-1)*10+1 7700 QH(I)=VAL(MID$(QV$,J,10)) 7710 NEXT I 7720 • 7730 GET #2 7740 DAY=VAL(RIGHT$(D$,2)):M1=VAL(MID$(0$,3,2)) 7741 GOSUB 8250 7750 FOR 1=1 TO 24:J=(I-1)*10+1 7760 T1(I)=VAL(MID$(TL$,J,10)) 7770 NEXT I 7780 » 7790 PRINT #4,USING"######";VAL(D$); 7800 L$=,,day =":Ll=21+(39-LEN(L$))/2 7810 LOCATE 16,21:PRINT TAB(LI);L$;DAY 7820 GOSUB 7090 7830 FOR 1=1 TO 24 7840 QHT(I)=0 7850 IF GlOl THEN QH(I)=0 7860 QHT(I)=QH(I)+Q(I) 7870 PRINT #4,USING"#######.##»;QHT(I); 7880 NEXT I 7890 IF DAY=>J2 THEN 7910 7900 IF GlOl THEN 7730 ELSE 7680 7910 IF GlOl THEN 7930 7920 CLOSE :KILL K$:RETURN 7930 CLOSE :RETURN 7940 • 7950 ' temp, of unconditioned space is constant 7960 • 7970 IF LEFT$(0$,2)=,IHZ•' THEN 8020 7980 FOR 1=1 TO 24 7990 Q(I)=U*AR*(TC-T2(L)) 8000 NEXT I 8010 • 802 0 ' subroutine to add constant Q to the transient Q 8030 ' 8040 OPEN 0$ FOR OUTPUT AS #4 8050 IF LEFT$(0$,2)<>"HZ,, THEN 8070

129

8060 OPEN WA$ FOR INPUT AS #5 8070 OPEN nRn,3,K$,246 8080 FIELD #3,6 AS Dl$,240 AS QV$ 8090 GET #3 8100 IF LEFT$(0$,2)<>,IHZ,I THEN 8130 8110 INPUT #5,0$,TAG 8120 Q(I)=U*AR*(TAG-T2(L)) 8130 DAY=VAL(RIGHT$(D1$,2) ) 8140 PRINT #4/USING

,l######,l;VAL(Dl$) ; 8150 FOR 1=1 TO 24:J=(I-1)*10+1 8160 QHT(I)=0 8170 QH(I)=VAL(MID$(QV$/J,10)) 8180 QHT(I)=QH(I)+Q(I) 8190 PRINT #4,USING"#######.##";QHT(I); 8200 NEXT I 8210 IF VAL(DI$)=>VAL(DE$) THEN 8240 822 0 IF DAY=> J2 THEN 8240 8230 GOTO 8090 8240 CLOSE : KILL K$: RETURN 8250 • 8260 • Month and day subroutine 8270 • 8280 IF Ml = 1 THEN 8290 ELSE 8310 8290 Jl = DAY :J2=31 :J3=31 8300 RETURN 8310 IF Ml = 2 THEN 8320 ELSE 8340 8320 Jl = 31 + DAY :J2=28 :J3=31 8330 RETURN 8340 IF Ml = 3 THEN 8350 ELSE 8370 8350 Jl = 59 + DAY :J2=31 :J3=28 8360 RETURN 8370 IF Ml = 4 THEN 8380 ELSE 8400 8380 Jl = 90 + DAY :J2=30 :J3=31 8390 RETURN 8400 IF Ml = 5 THEN 8410 ELSE 8430 8410 Jl = 120 + DAY :J2=31 :J3=30 8420 RETURN 8430 IF Ml = 6 THEN 8440 ELSE 8460 8440 Jl = 151 + DAY :J2=30 :J3=31 8450 RETURN 8460 IF Ml = 7 THEN 8470 ELSE 8490 8470 Jl = 181 + DAY :J2=31 :J3=30 8480 RETURN 8490 IF Ml = 8 THEN 8500 ELSE 8520 8500 Jl = 212 + DAY :J2=31 :J3=31 8510 RETURN 8520 IF Ml = 9 THEN 8530 ELSE 8550

130

8530 8540 8550 8560 8570 8580 8590 8600 8610 8620 8630 8640 8650 8660 8670 8680 8690 8700 8710 8260 8720 8730 8740 8750 8760 8770 8780 8790 8800 8810 8820 8830 8831 8840 8850 8860 8870 8880 8890 8900 8910 8920 8930 8940 8950 8960 8970

Jl = 243 + DAY :J2=30 :J3=31 RETURN IF Ml = 10 THEN 8560 ELSE 8580 Jl = 273 + DAY :J2=31 :J3=30 RETURN IF Ml = 11 THEN 8590 ELSE 8610 Jl = 304 + DAY :J2=30 :J3=31 RETURN IF Ml = 12 THEN 8620 ELSE 8630 Jl = 334 + DAY :J2=3J. ~:J3=30~ RETURN ^-'-"-"""*'

i

i

• subroutine to solve daily avg. ambient temp/,

OPEN ,,R,,,2/WD$/24~6 " " FIELD #2,6 AS D$,240 AS V$ OPEN WA$ FOR OUTPUT AS #3 GET #2 DAY=VAL(RIGHT$(D$,2)):M1=VAL(MID$(D$,3,2)):GOSUB

TA(DAY)=0 FOR 1=1 TO 24:J=(I-1)*10+1 T(I)=VAL(MID$(V$,J,10)) TA(DAY) =TA (DAY) +T (I) NEXT I TA(DAY)=TA(DAY)/24 WRITE #3,VAL(D$),TA(DAY) IF DAY=>J2 THEN 8810 GOTO 8700 CLOSE :RETURN

subroutine to compute infiltration by air exchange method

open input and out files

OPEN WA$ FOR INPUT AS #1 OPEN QI$ FOR OUTPUT AS #4 i

1 change room temp, to absolute temp i

T4=T2(5)+459.67 i

' compute saturation pressure of water vapor

IF T2(5)<=32 THEN 8970 ELSE 9010 C=-10214.16/T4 - 4.8932631# - .0053769056#*T4 +

131

.00000019202377#*T4A2 8980 C1=3.5575832D-10*T4A3 + 9.0344688D-14*T4A4 +

4.1635019#*LOG(T4) 8990 C2=C+C1 9000 PWS=EXP(C2):GOTO 9070 9010 C=-10440.4/T4 - 11.2946669# - 2.700133E-02*T4 +

.00001289706#*T4A2 9020 C1=-2.478068E-09*T4A3 + 6.5459673#*LOG(T4) 9030 C2=C+C1:PWS=EXP(C2) 9040 ' 9050 ' refrigerated air — absolute humidity, 9060 ' enthalpy, specific volume & density 9070 PW=PWS*RH j^" 9080 W=.62198*PW/(^PR/144^PWJ 9090 VR=(R*T4/PR)*Cr+"1.6078*W) :RHR=1/VR 9100 HR=(.24*T2(5))+(W*(1061+.444*T2(5))) 9110 • 9120 ' input daily ave. outside temp, change it to abs. 9130 ' 9140 INPUT #1,D$,TA 9150 DAY=VAL(RIGHT$(D$,2)) 9160 QI(DAY)=0 9170 T3=TA+459.67 9180 ' 9190 ' infiltrating air — specific volume, enthalpy 9200 • density and density factor 9205 ' , 9210 VI»(R*T3/^)*(1+1.6078*W(M)) :RHI-1/VI 9220 HI=(.24*TA)+(W(M)*(1061+.444*TA)) 9230 FM=(2/(1+(RHR/RHI)A(1/3)))A1.5 9240 IF (RHI/RHR) > 1 THEN 9290 9250 • 92 60 ' heat gain 9270 ' 9280 Q=795.6*AD*(HI-HR)*RHR*(1-RHI/RHR)A.5*(32.2*HD)A.5*FM 9281 GOTO 9300 9290 Q=0 93 00 QI(DAY)=Q*DT*DF*HO 9310 WRITE #4,VAL(D$),QI(DAY) 932 0 IF DAY=>J2 THEN 9340 9330 GOTO 9140 9340 CLOSE:KILL WA$:RETURN 9350 • 9360 ' subroutine to compute heat gain from fruits 9370 ' 938 0 ' initial heat removal of room air QA 9390 ' and heat gain from one defrost cycle

132

9400 9410 9420 9430 9440 9450 9460 9470 9480 9490 9500

QA=(V(L)/13)*CPA*(60-T2(L)) QDF=(V(L)/12.5)*CPA*2.5

functions

DEF FNMBHG(L,D5)> DEF FNMFHG(L,D5)' DEF FNFRK(L,D5) > DEF FNPQCI^DS) DEF FNTP(Kl)

9510 DEF FNRHG(L,D5) =

9520 DEF FNTRHG(L,B1)=

9530 DEF FNARHG(L/D5)=

9540 DEF FNATRHG(L,B1)

9550 9560 9570 9580 9590 9600 9610 9620 9630 9640 9650 9660 9670 9680 9690 9700 9710 9720 9730 9740 9750 9760 9770

MPW*CPW*BZ (L,D5) * (T9 (I^DS) -TP(L, D5) ) BZ(L, D5) *800*CPP*(T9(L,D5)-TP(L,D5)) FRKHP*2545*BZ(L,D5)/200*4 880*BZ(L/D5)/200*4 66.9706-1.713847*Kl+0.02572983*K1A2- .0001249*K1A3 (104.312045/24)* exp(0.078464*TP(L,D5)) *BZ(L,D5)*.4 (104.312045/24)* exp(0.078464*T(2)) *((BN(L)-B1)*.4) (120.55146/24)* exp(0.063898)*TP(L,D5) ) *BZ(L,D5)*.4 =(120.55146/24)* exp(0.063898)*TP(L,D5)) *((BN(L)-B1)*.4)

create output files

ZF$=',ZF"+RIGHT$ (EX$, EL) +•'. PRN" ZI$=,IZIII+RIGHT$(EX$/EL)+I,.PRN" MQ$=»MQII+RIGHT$ (EX$, EL) +" . PRN" FL$=,,FL,,+RIGHT$ (EX$, EL) +••. PRN" i

1 open input and output files i

OPEN QI$ FOR INPUT AS #1 OPEN FZ$ FOR INPUT AS #2 OPEN ZF$ FOR APPEND AS #3 OPEN ZI$ FOR APPEND AS #4 OPEN FL$ FOR APPEND AS #5 OPEN MQ$ FOR APPEND AS #6 GC=0:GM=0 • rooms are not initially closed

IF GZ=1 THEN 9750 ELSE 9930 DYl=DY2-3 IF EOF(l) THEN 11360 INPUT #1,D1$,QI

133

9780 9790 9800 9810 9820 9830 9840 9850 9860 9870 9880 9890 9900 9910 9920 9930 9940 9950 9960 9970 9980 9981 9990 9991 10000 10001 10010 10020 10021 10030 10031 10040 10041 10050 10051 10060 10070 10080 10090 10100 10110 10120 10130 10140 10150 10160 10170

QFZ =0:MQ=0 i

check for start-up day

IF VAL(RIGHT$(D1$,2)) < DYl THEN 9760 IF VAL(RIGHT$(D1$,2)) = DYl THEN 9850 GOTO 9930 QI=QI*V(L)/VT + QA WRITE #3,VAL(D1$),QFZ WRITE #4,VAL(D1$),QI+QDF WRITE #5,VAL(D1$)/FQfL) WRITE #6/VAL(Dl$)^Q

loading

IF EOF(l) THEN 11360 INPUT #1,D1$,QI QFZ=0:GB=0:D5=VAL(RIGHT$(D1$,2)) QP(D5)=0:TP(L,D5)=0:BZ(L,D5)=0:PQ=0:FRK=0 IF CA(L)<>1 THEN 10000 IF VAL(Dl$)=VAL(DO$) THEN GS(L)=0 • check for

unsealing the CA GOTO 10020 'next check is

for common rm. only IF VAL(Dl$)=VAL(DON$) THEN GOF(L)=0 'check for 2nd

turned-on date of common storage zones 4&5

IF GOF(L)=l THEN 11080 • check if the system is on

IF GS(L)=1 THEN 10810 ' room is sealed, FZ$ is closed

IF GC=1 THEN 10810 • different month, FZ$ is closed

IF GM=1 THEN 10150 ' still the same ' month, FZ$ still open

read in fruit loading schedule

IF EOF(2) THEN 11080 INPUT #2,DY$,H$,FR$,FT$,BN$,GL

check date

IF VAL(DY$)<VAL(D1$) THEN 10090 IF VAL(DY$)=VAL(D1$) THEN 10190 IF VAL(MID$(DY$,3,2))=M THEN 10770 CLOSE #2:GC=l:GOTO 10810

134

10180 ' 10190 GC=0:GM=0:BZ(L,D5)=VAL(BN$) 10200 TP(L,D5)=VAL(FT$):QP(D5)=0 10210 H1=VAL(LEFT$(H$,2)) 10220 ON GL GOTO 10260,10420,10420,10670 10230 ' 1024 0 ' GL=1 initial loading 10250 • 102 60 IF F^^'PEAR" THEN QP(D5) =FNRHG(L,D5) ELSE

QP(D5)=FNARHG(L,D5) 10270 H2(D5)=24-H1 10280 FRK= FNFRK(L,D5) 10290 PQ = FNPQ(L,D5) 10300 T9(L,D5)=TP(L,D5) 10310 FOR Kl=l TO H2(D5) 10320 TP(L,D5)= FNTP(Kl) 10330 IF F^^'PEAR" THEN QP(D5) =QP(D5)+FNRHG(L,D5) ELSE

QP(D5)=QP(D5)+FNARHG(L,D5) 10340 NEXT Kl 103 50 QBM=FNMBHG(L,D5) 10360 QM=FNMFHG(L,D5) 10370 QP(D5)=QP(D5)+QM+QBM 10380 GOTO 11080 10390 ' 10400 • GL=2 or GIr=3 ; loading 10410 • 10420 H2(D5)=24-H1 10430 IF GL=3 THEN 10440 ELSE 10450 10440 GS(L)=l:CLOSE #2 10450 IF TP(L,D5)=<T2(L) THEN 10470 ELSE 10500 10460 IF FN$«nPEARn THEN 10480 ELSE 10490 10470 BN(L) =BN(L)+BZ(L,D5) 10471 TP(L,D5)=T2(L):B1=BZ(L,D5):GB=1 10480 QP(D5)=(FNRHG(L,D5))*H2(D5): GOTO 11080 10490 QP(D5)=(FNARHG(L,D5))*H2(D5): GOTO 11080 10500 IF FN$="PEAR" THEN QP(D5)=FNRHG(L,D5) ELSE

QP(D5)=FNARHG(L,D5) 10510 FRK=FNFRK(L,D5) 1052 0 PQ= FNPQ(L,D5) 10530 T9(L,D5)=TP(L,D5) 10540 FOR Kl=l TO H2(D5) 10550 TP(L,D5)=FNTP(K1) 10560 IF FN$=,,PEAR11 THEN 10570 ELSE 10580 10570 QP(D5)=QP(D5)+FNRHG(L,D5):GOTO 10590 10580 QP(D5)=QP(D5)+FNARHG(L,D5) 10590 NEXT Kl 10600 QM= FNMFHG(L,D5)

135

10610 QBM= FNMBHG(L,D5) 10620 QP(D5)=QP(D5)+QM+QBM 10630 GOTO 10810 10640 ' 10650 • GL=4 , unloading 10660 • 10670 BN(L)=BN(L)+BZ(L,D5) 10680 IF BN(L)<=0 THEN GOF(L)=l 10690 TP(L,D5)=T2(L):BZ(L,D5)=ABS(BZ(L,D5)) 10700 IF FN$="PEAR" THEN QP(D5)=FNRHG(L,D5)*H1 ELSE

QP(D5)=FNARHG(L,D5)*H1 10710 FRK=FNFRK(L,D5) 10720 PQ =FNPQ(L/D5) 10730 GOTO 11080 10740 ' 10750 » same month 10760 ' 10770 GM=1 10780 ' 10790 * check temp, of fruit load up to 3 days prior D5 10800 ' 10810 FOR 1=1 TO 3 10820 GB=0:D8=D5-I 1083 0 IF D8<=0 THEN D8=J3+D8 10840 H3=24:QP(D8)=0 10850 T9(L,D8)=TP(L,D8) 10860 IF BZ(L,D8)<0 THEN 11050 10870 IF TP(L,D8)<=T2(L) THEN 10980 ELSE 10880 10880 FOR Kl =1 TO 24 10890 H2(D8)=H2(D8)+K1 10900 TP(L,D8)=FNTP(H2(D8)) 10910 IF TP(L,D8)<=T2(L) THEN 10920 ELSE 10950 1092 0 TP(L,D8)=T2(L):BN(L)=BN(L)+BZ(L,D8):GB=1 10930 H3=24-K1:H2(D8)=0:B1=BZ(L/D8):GOTO 10990 10940 IF F^^'PEAR" THEN 10950 ELSE 10960 10950 QP(D8)=QP(D8)+FNRHG(L,D8):GOTO 10970 10960 QP(D8)=QP(D8)+FNARHG(L,D8) 10970 NEXT Kl 10980 H3=0 10990 QM =FNMFHG(LfD8) 11000 QBM=FNMBHG(L,D8) 11010 IF F^^'PEAR" THEN 11020 ELSE 11030 11020 QP(D8)=QP(D8)+(FNRHG(L,D8))*H3:GOTO 11040 1103 0 QP(D8)=QP(D8)+FNARHG(L/D8)*H3 11040 QP(D5)=QP(D5)+QP(D8)+QM+QBM 11050 NEXT I 11060 •

136

11070 • 11080 VI=V(NZ) 11090 FOR 1=1 TO NZ 11100 IF GS(I)=1 THEN 11110 ELSE 11120 11110 VI=VI+V(I) 1112 0 NEXT I 1113 0 IF L=4 OR L=5 THEN VI=VI/2 ELSE VI=V(L) 11140 IF GS(L)=1 THEN 11150 ELSE 11160 11150 QI=0:LQ(L)=0 11160 IF BZ(L,D5)<20 THEN 11170 ELSE 11180 11170 QDEF=QDF:FF=1:LL=6 11180 IF BZ(L/D5)>=20 AND BZ(L,D5)<100 THEN 11190 ELSE 11200 11190 QDEF =QDF*4:FF=4:LL=8 11200 IF BZ(L,D5)>=100 THEN 11210 ELSE 11220 11210 QDEF =QDF*8 :FF=8 :LL=10 11220 IF GOF(L)=l THEN 11230 ELSE 11240 11230 FQ(L)=0:QDEF=0:QI=0:LQ(L)=0 11240 IF GB=0 THEN B1=0 11250 IF FN$=I,PEARI, THEN QFZ=FNTRHG(L/Bl) ELSE

QFZ=FNATRHG(L;B1) 11260 QFZ=QFZ+QP(D5) 11270 MQ=LQ(L)*LL+FRK+PQ 11280 QFF=FQ(L)*(NHF-.167*FF) 11290 WRITE #3/VAL(Dl$)^FZ 11300 WRITE #4/VAL(D1$),01*71/71 + QDEF 11310 WRITE #5/VAL(Dl$),QFF 11320 WRITE #6,VAL(D1$)^Q 11330 IF VAL(D1$)=>VAL(DE$) THEN 11360 11340 IF D5=>J2 THEN 11360 11350 GB=0:GOTO 9930 113 60 CLOSE:RETURN

137

APPENDIX 5

RLSIM Output (No Fan Cycling)

138

Output Summary

Building Total Energy Consumption kWh

Actual 262,879 Simulation 258,355

Simulation Results:

Building Total Refrigeration Load 594,732

Components

Building Heat Transmission Load 77,264 Infiltration Load 63,562 Miscellaneous Load 16,585 Fan load 262,032 Fruit Load 174,771

Zones

1 121,267 2 129,756 3 103,710 4 120,398 5 119,083

139

ZONE #1 Refrigeration Load

FAN MISC DAY BLDG FRUIT INFIL ENVELOPE TRATION

Zone Total (kWh)

13476.47 37586.59 8762.700 59159.45 2282.59 :===== :====

Daily (kWh) ===== 1===== =============

1 142. 2661 0 213.8704 14.01807 0 2 150. 4545 0 220.8114 334. 0927 9.551563 3 152. 5193 0 229.4490 334. 0927 9.551563 4 153. 9979 0 237.9467 334. 0927 9.551563 5 157. 2719 240. 7477 247.4213 317. 7055 61.14516 6 154. 9618 749. 0151 223.3046 317. 7055 61.14516 7 155. 3008 107S (.740 251.3304 317. 7055 106.3710 8 151. 3234 189: .498 196.9503 317. 7055 106.3710 9 145. 0691 913. 8566 182.7897 317. 7055 61.14516

10 139. 4768 849. 2593 168.7912 317. 7055 61.14516 11 135. 3180 905. 5806 171.8497 317. 7055 61.14516 12 138. 8023 605. 9689 197.6828 334. 0927 9.551563 13 143. 6924 123. 7792 221.1152 334. 0927 9.551563 14 144. 4057 123. 7792 220.5509 334. 0927 9.551563 15 151. 7796 123. 7792 246.1630 334. 0927 9.551563 16 150. 8092 123. 7792 230.0190 334. 0927 9.551563 17 146. 3259 123. 7792 194.4375 334. 0927 9.551563 18 140 8764 123. 7792 178.7466 334 0927 9.551563 19 136 8580 123. 7792 181.0562 334 0927 9.551563 20 139 0619 123 7792 185.4484 334 0927 9.551563 21 137 .3537 123 7792 182.4209 334 .0927 9.551563 22 155 .4708 123 7792 143.5881 334 .0927 9.551563 23 158 .4112 123 .7792 155.6583 334 .0927 9.551563 24 161 .4162 123 .7792 187.7198 334 .0927 9.551563 25 163 .3451 123 .7792 181.8035 334 .0927 9.551563 26 157 .4656 123 .7792 167.9746 334 .0927 9.551563 27 154 .2909 123 .7792 142.0005 334 .0927 9.551563 28 146 .3976 123 .7792 132.7233 334 .0927 9.551563 29 145 .7124 123 .7792 135.6959 334 .0927 9.551563 30 142 .6677 123 .7792 130.4485 334 .0927 9.551563 31 140 .7203 123 .7792 130.5619 334 .0927 9.551563 32 141 .4059 123 .7792 132.7233 334 .0927 9.551563 33 141 .2362 123 .7792 141.8458 334 .0927 9.551563 34 141 .1739 123 .7792 146.7383 334 .0927 9.551563 35 138 .1457 123 .7792 131.7742 334 .0927 9.551563 36 139 .1466 102 .8716 140.7956 317 .7055 151.5969

140

37 133.2748 82.51950 125.7792 334.0927 9.551563 38 130.5362 82.51950 113.6068 334.0927 9.551563 39 133.3698 82.51950 130.1081 334.0927 9.551563 40 139.8864 82.51950 136.4225 334.0927 9.551563 41 137.5540 258.4486 156.2049 327.0696 35.34836 42 146.4112 607.0455 173.6465 317.7055 61.14516 43 139.0501 1151.900 146.7304 317.7055 106.3710 44 132.8140 783.3846 136.7287 334.0927 9.551563 45 134.7574 450.9948 156.6782 327.0696 55.70001 46 135.2538 848.8365 8.095334 317.7055 90.45177 47 132.9802 970.8065 1.011916 334.0927 0 48 134.9641 171.2280 1.011916 334.0927 0 49 133.1412 171.2280 1.011916 334.0927 0 50 121.8751 171.2280 1.011916 334.0927 0 51 120.2135 171.2280 1.011916 334.0927 0 52 103.3558 171.2280 1.011916 334.0927 0 53 114.9062 171.2280 1.011916 334.0927 0 54 122.4085 171.2280 1.011916 334.0927 0 55 114.5129 171.2280 1.011916 334.0927 0 56 117.1280 171.2280 1.011916 334.0927 0 57 113.8723 171.2280 1.011916 334.0927 0 58 107.1606 171.2280 1.011916 334.0927 0 59 99.96473 171.2280 1.011916 334.0927 0 60 89.59220 171.2280 1.011916 334.0927 0 61 92.92128 171.2280 1.011916 334.0927 0 62 95.32795 171.2280 1.011916 334.0927 0 63 97.62897 171.2280 1.011916 334.0927 0 64 95.74431 171.2280 1.011916 334.0927 0 65 100.7234 171.2280 1.011916 334.0927 0 66 113.2502 171.2280 1.011916 334.0927 0 67 113.2318 171.2280 1.011916 334.0927 0 68 106.2772 171.2280 1.011916 334.0927 0 69 102.1338 171.2280 1.011916 334.0927 0 70 97.40876 171.2280 1.011916 334.0927 0 71 98.65556 171.2280 1.011916 334.0927 0 72 97.98455 171.2280 1.011916 334.0927 0 73 92.63117 171.2280 1.011916 334.0927 0 74 96.14336 171.2280 1.011916 334.0927 0 75 101.2049 171.2280 1.011916 334.0927 0 76 104.2717 171.2280 1.011916 334.0927 0 77 93.88907 171.2280 1.011916 334.0927 0 78 98.20965 171.2280 1.011916 334.0927 0 79 96.15631 171.2280 1.011916 334.0927 0 80 86.10319 171.2280 1.011916 334.0927 0 81 83.85751 171.2280 1.011916 334.0927 0 82 83.71356 171.2280 1.011916 334.0927 0 83 88.17308 171.2280 1.011916 334.0927 0

141

84 95.26813 171.2280 1.011916 334.0927 0 85 99.26004 171.2280 1.011916 334.0927 0 86 95.22107 171.2280 1.011916 334.0927 0 87 86.20916 171.2280 1.011916 334.0927 0 88 90.82486 171.2280 1.011916 334.0927 0 89 89.36217 171.2280 1.011916 334.0927 0 90 80.64353 171.2280 1.011916 334.0927 0 91 73.17241 171.2280 1.011916 334.0927 0 92 64.93208 171.2280 1.011916 334.0927 0 93 57.74774 171.2280 1.011916 334.0927 0 94 49.30101 171.2280 1.011916 334.0927 0 95 43.98974 171.2280 1.011916 334.0927 0 96 39.80536 171.2280 1.011916 334.0927 0 97 42.51857 171.2280 1.011916 334.0927 0 98 47.40446 171.2280 1.011916 334.0927 0 99 48.65832 171.2280 1.011916 334.0927 0

100 48.53171 171.2280 1.011916 334.0927 0 101 43.36666 171.2280 1.011916 334.0927 0 102 37.37035 171.2280 1.011916 334.0927 0 103 31.50738 171.2280 1.011916 334.0927 0 104 26.10741 171.2280 1.011916 334.0927 0 105 16.88695 171.2280 1.011916 334.0927 0 106 7.636209 171.2280 1.011916 334.0927 0 107 14.41717 171.2280 1.011916 334.0927 0 108 36.11023 171.2280 1.011916 334.0927 0 109 30.56524 171.2280 1.011916 334.0927 0 110 16.81217 171.2280 1.011916 334.0927 0 111 13.05372 171.2280 1.011916 334.0927 0 112 14.58734 171.2280 1.011916 334.0927 0 113 9.961717 171.2280 1.011916 334.0927 0 114 5.001243 171.2280 1.011916 334.0927 0 115 17.34028 171.2280 1.011916 334.0927 0 116 29.47195 171.2280 1.011916 334.0927 0 117 28.42075 171.2280 1.011916 334.0927 0 118 29.79831 171.2280 1.011916 334.0927 0 119 29.48633 171.2280 1.011916 334.0927 0 120 28.28570 171.2280 1.011916 334.0927 0 121 24.78282 171.2280 1.011916 334.0927 0 122 23.42549 171.2280 1.011916 334.0927 0 123 17.31456 171.2280 1.011916 334.0927 0 124 17.10597 171.2280 1.011916 334.0927 0 125 14.78567 171.2280 1.011916 334.0927 0 126 15.91357 171.2280 1.011916 334.0927 0 127 20.96423 171.2280 1.011916 334.0927 0 128 18.07517 171.2280 1.011916 334.0927 0 129 14.93183 171.2280 1.011916 334.0927 0 130 12.58225 171.2280 1.011916 334.0927 0

142

131 13. 56878 171. 2280 1.011916 334. 0927 0 132 13. 45060 171. 2280 1.011916 334. 0927 0 133 12. 70649 171. 2280 1.011916 334. 0927 0 134 12. 30869 171. 2280 1.011916 334. 0927 0 135 12. 34637 171. 2280 1.011916 334. 0927 0 136 12. 10010 171. 2280 1.011916 334. 0927 0 137 12. 19388 171. 2280 1.011916 334. 0927 0 138 10. 75515 171. 2280 1.011916 334. 0927 0 139 10. ,75256 171. 2280 1.011916 334. 0927 0 140 10. ,73568 171. 2280 1.011916 334. 0927 0 141 10. ,94211 171. 2280 1.011916 334. ,0927 0 142 11. ,75525 171. ,2280 1.011916 334. ,0927 0 143 11. ,64608 171. ,2280 1.011916 334. ,0927 0 144 18. ,43227 171. ,2280 10.23329 334. .0927 9. 551563 145 20. ,38814 171. ,2280 5.655253 334. ,0927 9. ,551563 146 22. .78787 171. ,2280 15.69167 334. .0927 9. ,551563 147 20. .36955 171. ■ 2280 5.025876 334. .0927 9. ,551563 148 17, .57780 171. .2280 7.189015 334, .0927 9. ,551563 149 30, .22495 171. .2280 39.75310 334, .0927 9. ,551563 150 25, .64594 171. .2280 10.38091 334, .0927 9. ,551563 151 21, .19918 171. .2280 11.86166 334, .0927 9. ,551563 152 23, .02915 171. .2280 15.61612 334, .0927 9. ,551563 153 23, .49690 171, .2280 18.39051 334, .0927 9. ,551563 154 23 .86856 171, .2280 13.91289 334, .0927 9. .551563 155 21, .63259 171, .2280 12.78522 334, .0927 9. .551563 156 22 .92007 171, .2280 11.86166 334 .0927 9. .551563 157 20, .40943 171, .2280 8.198244 334, .0927 9. .551563 158 19 .61929 171, .2280 8.426918 334 .0927 9. .551563 159 21 .01524 171, .2280 18.13215 334 .0927 9, .551563 160 30 .90091 171, .2280 36.92178 334 .0927 9. ,551563 161 26 .02758 171, .2280 23.91205 334 .0927 9, .551563 162 29 .64149 171, .2280 38.10191 334 .0927 9. .551563 163 29 .34669 171, .2280 27.55867 334 .0927 9. .551563 164 24 .42981 171, .2280 16.64605 334 .0927 9. .551563 165 22 .55731 171, .2280 10.81144 334 .0927 9. .551563 166 23 .83187 171, .2280 22.47153 334 .0927 9, .551563 167 26 .46967 171, .2280 17.57977 334 .0927 9. .551563 168 25 .83861 171, .2280 20.37674 334 .0927 9, .551563 169 26 .74783 171, .2280 19.86368 334 .0927 9, .551563 170 25 .21116 171 .2280 14.64539 334 .0927 9, .551563 171 24 .65820 168 .2279 17.58889 327 .0696 35.34836 172 25 .36199 161 .1090 19.87498 327 .0696 35.34836 173 28 .20990 147 .7477 30.75697 317 .7055 83.75810 174 32 .73650 127 .8447 37.18027 317 .7055 83.75810

175 41.29352 107.2148 57.43763 317.7055 83.75810 176 40.06162 86.58500 45.15403 317.7055 83.75810 177 39.89502 65.95513 42.66321 317.7055 83.75810 178 41.19959 44.59838 42.96225 317.7055 83.75810 179 43.49503 21.78792 40.71334 317.7055 83.75810 180 42.20433 5.524146 0 0 42.96459

143

144

ZONE #2 Refrigeration Load

FRUIT INFIL FAN MISC DAY BLDG ENVELOPE

INFIL TRATION

Zone Total (kWh)

15158.48 42917.02 9472.725 59007.29 3200.820

Daily (kWh)

1 186. 3310 0 213. 8704 14.01807 0 2 190. 9092 0 220. 8114 334. ,0927 9.551563 3 192. 8299 0 229. 4490 334. ,0927 9.551563 4 194. ,0457 0 237. ,9467 334. ,0927 9.551563 5 196. 0141 0 240. ,3379 334, ,0927 9.551563 6 195. ,0410 312. 9399 223. ,3046 317. ,7055 61.14516 7 195. ,8819 467. 4317 244. ,2469 334. ,0927 9.551563 8 191. ,3828 615. 7223 196. ,9503 317. .7055 83.75810 9 188. ,8938 101S (.639 182. ,7897 317, .7055 83.75810

10 184. ,4596 1820.480 168. ,7912 317. .7055 151.5969 11 180. ,8265 225S (.392 171. ,8497 317. .7055 151.5969 12 183. ,6739 1260.590 197. ,6828 334. .0927 9.551563 13 185. ,5986 489. 3908 228. ,1986 317. .7055 61.14516 14 184. ,5959 856. 1117 227. ,6344 317. .7055 61.14516 15 191. ,1153 539. ,3917 246. ,1630 334. .0927 9.551563 16 190. ,7035 165. ,0390 230. .0190 334, .0927 9.551563 17 186. ,7108 165. ,0390 194. ,4375 334. .0927 9.551563 18 184. .5736 165. ,0390 178. .7466 334, .0927 9.551563 19 181. ,7955 165. ,0390 181. .0562 334. .0927 9.551563 20 182. ,0909 165. ,0390 185. .4484 334, .0927 9.551563 21 180. ,7350 165. ,0390 182. ,4209 334, .0927 9.551563 22 159. .4948 165. ,0390 143. .5881 334. .0927 9.551563 23 164. ,6959 165. ,0390 155. ,6583 334. .0927 9.551563 24 166, ,6205 165. ,0390 187. .7198 334, .0927 9.551563 25 166, .3417 165. ,0390 181, .8035 334, .0927 9.551563 26 161, .9780 165. ,0390 167. .9746 334, .0927 9.551563 27 160, .6515 165. ,0390 142, .0005 334, .0927 9.551563 28 154, .8683 165. ,0390 132, .7233 334, .0927 9.551563 29 152, .8617 165. ,0390 135, .6959 334, .0927 9.551563 30 150, .4307 165. ,0390 130, .4485 334, .0927 9.551563 31 148, .5086 165. .0390 130, .5619 334 .0927 9.551563 32 149 .1088 165, .0390 132, .7233 334 .0927 9.551563 33 147 .9950 165, .0390 141, .8458 334 .0927 9.551563 34 147 .5556 165, .0390 146 .7383 334 .0927 9.551563 35 145 .3430 145, .5851 138 .8576 317 .7055 151.5969 36 146 .6795 117, .2946 140 .7956 317 .7055 61.14516

145

37 142.7340 95.11845 132.8626 317.7055 106.3710 38 139.6835 70.51938 120.6903 317.7055 106.3710 39 143.4187 49.49751 137.1915 317.7055 61.14516 40 147.0767 21.87069 143.5059 317.7055 151.1446 41 144.6560 0.137532 153.1691 334.0927 9.551563 42 149.4334 0.137532 166.5630 334.0927 9.551563 43 145.0737 326.7996 146.7304 317.7055 106.3710 44 139.6800 1524.043 143.8121 317.7055 106.3710 45 140.4452 1112.746 160.7259 317.7055 106.3710 46 140.5694 1548.475 155.3053 317.7055 106.3710 47 139.0611 762.8924 146.0366 334.0927 9.551563 48 140.6966 608.0797 156.6753 317.7055 106.3710 49 139.6834 1082.508 123.8045 317.7055 61.14516 50 133.0163 525.7759 88.73848 334.0927 9.551563 51 131.5863 483.4675 8.095334 317.7055 65.12527 52 105.1441 641.1927 1.011916 334.0927 0 53 113.6409 171.2280 1.011916 334.0927 0 54 119.9097 171.2280 1.011916 334.0927 0 55 116.2589 171.2280 1.011916 334.0927 0 56 117.6107 171.2280 1.011916 334.0927 0 57 114.0340 171.2280 1.011916 334.0927 0 58 110.7176 171.2280 1.011916 334.0927 0 59 106.7039 171.2280 1.011916 334.0927 0 60 99.22271 171.2280 1.011916 334.0927 0 61 98.90406 171.2280 1.011916 334.0927 0 62 99.43912 171.2280 1.011916 334.0927 0 63 102.0304 171.2280 1.011916 334.0927 0 64 101.4773 171.2280 1.011916 334.0927 0 65 103.6281 171.2280 1.011916 334.0927 0 66 112.2437 171.2280 1.011916 334.0927 0 67 112.4994 171.2280 1.011916 334.0927 0 68 109.2146 171.2280 1.011916 334.0927 0 69 106.1065 171.2280 1.011916 334.0927 0 70 101.4258 171.2280 1.011916 334.0927 0 71 102.5707 171.2280 1.011916 334.0927 0 72 102.3615 171.2280 1.011916 334.0927 0 73 98.98932 171.2280 1.011916 334.0927 0 74 101.3461 171.2280 1.011916 334.0927 0 75 104.2997 171.2280 1.011916 334.0927 0 76 107.0518 171.2280 1.011916 334.0927 0 77 100.2665 171.2280 1.011916 334.0927 0 78 102.9906 171.2280 1.011916 334.0927 0 79 100.3458 171.2280 1.011916 334.0927 0 80 94.43350 171.2280 1.011916 334.0927 0 81 91.25940 171.2280 1.011916 334.0927 0 82 90.47763 171.2280 1.011916 334.0927 0 83 76.82255 171.2280 1.011916 334.0927 0

146

84 87.58643 171.2280 1.011916 334.0927 0 85 91.85990 171.2280 1.011916 334.0927 0 86 89.98206 171.2280 1.011916 334.0927 0 87 85.29061 171.2280 1.011916 334.0927 0 88 87.37163 171.2280 1.011916 334.0927 0 89 85.88271 171.2280 1.011916 334.0927 0 90 80.57446 171.2280 1.011916 334.0927 0 91 75.26678 171.2280 1.011916 334.0927 0 92 68.83318 171.2280 1.011916 334.0927 0 93 63.24078 171.2280 1.011916 334.0927 0 94 56.54506 171.2280 1.011916 334.0927 0 95 51.08238 171.2280 1.011916 334.0927 0 96 47.05711 171.2280 1.011916 334.0927 0 97 47.10683 171.2280 1.011916 334.0927 0 98 49.32620 171.2280 1.011916 334.0927 0 99 48.86776 171.2280 1.011916 334.0927 0

100 49.19309 171.2280 1.011916 334.0927 0 101 45.67978 171.2280 1.011916 334.0927 0 102 41.99358 171.2280 1.011916 334.0927 0 103 38.34008 171.2280 1.011916 334.0927 0 104 34.99627 171.2280 1.011916 334.0927 0 105 29.27098 171.2280 1.011916 334.0927 0 106 23.77999 171.2280 1.011916 334.0927 0 107 27.94983 171.2280 1.011916 334.0927 0 108 41.07995 171.2280 1.011916 334.0927 0 109 35.65068 171.2280 1.011916 334.0927 0 110 27.74313 171.2280 1.011916 334.0927 0 111 25.82341 171.2280 1.011916 334.0927 0 112 26.49415 171.2280 1.011916 334.0927 0 113 22.74188 171.2280 1.011916 334.0927 0 114 19.13679 171.2280 1.011916 334.0927 0 115 26.68040 171.2280 1.011916 334.0927 0 116 32.03457 171.2280 1.011916 334.0927 0 117 31.07676 171.2280 1.011916 334.0927 0 118 31.91268 171.2280 1.011916 334.0927 0 119 31.65736 171.2280 1.011916 334.0927 0 120 30.99774 171.2280 1.011916 334.0927 0 121 28.73268 171.2280 1.011916 334.0927 0 122 28.46586 171.2280 1.011916 334.0927 0 123 24.51766 171.2280 1.011916 334.0927 0 124 25.86704 171.2280 1.011916 334.0927 0 125 24.45507 171.2280 1.011916 334.0927 0 126 25.28029 171.2280 1.011916 334.0927 0 127 28.33834 171.2280 1.011916 334.0927 0 128 24.30329 171.2280 1.011916 334.0927 0 129 22.08511 171.2280 1.011916 334.0927 0 130 20.67797 171.2280 1.011916 334.0927 0

147

131 21. 42969 171. 2280 1.011916 334. 0927 0 132 21. 03921 171. 2280 1.011916 334. 0927 0 133 20. 57733 171. 2280 1.011916 334. 0927 0 134 20. 25910 171. 2280 1.011916 334. 0927 0 135 20. 16781 171. 2280 1.011916 334. 0927 0 136 19. 97059 171. 2280 1.011916 334. 0927 0 137 19. 88202 171. 2280 1.011916 334. 0927 0 138 18. 91610 171. 2280 1.011916 334. 0927 0 139 18. 88501 171. 2280 1.011916 334. 0927 0 140 18. 71598 171. 2280 1.011916 334. 0927 0 141 18. 83670 171. 2280 1.011916 334. 0927 0 142 19. 13291 171. 2280 1.011916 334. 0927 0 143 19. 08087 171. 2280 1.011916 334. 0927 0 144 28. 09164 171. 2280 10.23329 334. 0927 9. 551563 145 25. 76837 171. 2280 5.655253 334. 0927 9. 551563 146 27. 29584 171. 2280 15.69167 334. 0927 9. 551563 147 25. 07077 171. 2280 5.025876 334. 0927 9. 551563 148 23. 94200 171. 2280 7.189015 334. 0927 9. 551563 149 31. 84662 171. 2280 39.75310 334. 0927 9. 551563 150 27. 80760 171. 2280 10.38091 334. 0927 9. 551563 151 25 59536 171. 2280 11.86166 334. 0927 9. 551563 152 26 68739 171. 2280 15.61612 334 0927 9. 551563 153 26 87429 171. 2280 18.39051 334. 0927 9. 551563 154 26 87151 171. 2280 13.91289 334. 0927 9. 551563 155 25 72975 171 2280 12.78522 334 0927 9. 551563 156 26 .37608 171 2280 11.86166 334 .0927 9. 551563 157 24 87846 171 2280 8.198244 334 0927 9 551563 158 24 .55574 171 2280 8.426918 334 .0927 9 551563 159 25 .66269 171 .2280 18.13215 334 .0927 9 551563 160 31 .12071 171 .2280 36.92178 334 .0927 9 551563 161 27 .33754 171 .2280 23.91205 334 .0927 9 .551563 162 29 .57397 171 .2280 38.10191 334 .0927 9 .551563 163 29 .32869 171 .2280 27.55867 334 .0927 9 .551563 164 26 .89170 171 .2280 16.64605 334 .0927 9 .551563 165 25 .99073 171 .2280 10.81144 334 .0927 9 .551563 166 27 .36391 171 .2280 22.47153 334 .0927 9 .551563 167 28 .33845 171 .2280 17.57977 334 .0927 9 .551563 168 28 .71657 171 .2280 20.37674 334 .0927 9 .551563 169 28 .82985 171 .2280 19.86368 334 .0927 9 .551563 170 28 .34461 171 .2280 14.64539 334 .0927 9 .551563 171 28 .60569 158 .1296 21.63656 317 .7055 90.54198 172 29 .30471 139 .0090 23.92265 317 .7055 70.19033 173 31 .10030 122 .5051 30.75697 317 .7055 70.19033 174 34 .46291 108 .3272 37.18027 317 .7055 70.19033

148

175 48.24011 91.24183 57.43763 317.7055 70.19033 176 46.06683 73.57495 45.15403 317.7055 70.19033 177 46.71990 55.32660 42.66321 317.7055 70.19033 178 48.09351 39.98567 42.96225 317.7055 70.19033 179 50.22129 24.06326 40.71334 317.7055 70.19033 180 49.46352 6.977869 0 0 54.27106

149

ZONE #3 Refrigeration Load

DAY ===========

BLDG ENVELOPE

FRUIT INFIL TRATION

FAN MISC

Zone

16221.68 29421.07

Total (kWh)

2740.111 53825. 68 :==:

1501.819

Daily (kWh)

1 194.7782 0 215.0380 14.01807 0 2 202.8694 0 220.8114 334.0927 9.551563 3 204.9428 0 229.4490 334.0927 9.551563 4 206.4922 133.9563 245.0301 317.7055 61.14516 5 209.7820 1021.394 247.4213 317.7055 61.14516 6 207.3628 762.7961 223.3046 317.7055 61.14516 7 207.6596 830.7675 251.3304 317.7055 61.14516 8 203.9913 1127.806 196.9503 317.7055 106.3710 9 198.3138 1555.612 182.7897 317.7055 106.3710

10 191.9762 1617.663 168.7912 317.7055 106.3710 11 188.1644 2132.807 8.095334 317.7055 110.8034 12 191.9238 982.6432 1.011916 334.0927 0 13 196.8654 139.2200 1.011916 334.0927 0 14 197.4587 139.2200 1.011916 334.0927 0 15 204.7914 139.2200 1.011916 334.0927 0 16 203.3318 139.2200 1.011916 334.0927 0 17 198.4946 139.2200 1.011916 334.0927 0 18 193.5892 139.2200 1.011916 334.0927 0 19 189.6211 139.2200 1.011916 334.0927 0 20 191.7848 139.2200 1.011916 334.0927 0 21 190.2865 139.2200 1.011916 334.0927 0 22 169.7644 139.2200 1.011916 334.0927 0 23 175.1835 139.2200 1.011916 334.0927 0 24 178.3092 139.2200 1.011916 334.0927 0 25 180.3729 139.2200 1.011916 334.0927 0 26 174.6915 139.2200 1.011916 334.0927 0 27 171.8362 139.2200 1.011916 334.0927 0 28 163.7977 139.2200 1.011916 334.0927 0 29 163.2704 139.2200 1.011916 334.0927 0 30 159.9944 139.2200 1.011916 334.0927 0 31 157.8746 139.2200 1.011916 334.0927 0 32 158.6748 139.2200 1.011916 334.0927 0 33 158.2737 139.2200 1.011916 334.0927 0 34 158.5192 139.2200 1.011916 334.0927 0 35 155.5765 139.2200 1.011916 334.0927 0 36 156.3867 139.2200 1.011916 334.0927 0

150

37 150.2266 139.2200 1.011916 334.0927 0 38 147.6632 139.2200 1.011916 334.0927 0 39 150.5586 139.2200 1.011916 334.0927 0 40 156.7282 139.2200 1.011916 334.0927 0 41 154.6317 139.2200 1.011916 334.0927 0 42 163.3263 139.2200 1.011916 334.0927 0 43 155.8385 139.2200 1.011916 334.0927 0 44 149.5932 139.2200 1.011916 334.0927 0 45 151.7498 139.2200 1.011916 334.0927 0 46 152.1582 139.2200 1.011916 334.0927 0 47 149.6039 139.2200 1.011916 334.0927 0 48 151.8743 139.2200 1.011916 334.0927 0 49 150.0762 139.2200 1.011916 334.0927 0 50 138.9422 139.2200 1.011916 334.0927 0 51 137.3012 139.2200 1.011916 334.0927 0 52 116.5416 139.2200 1.011916 334.0927 0 53 129.9840 139.2200 1.011916 334.0927 0 54 137.5189 139.2200 1.011916 334.0927 0 55 129.8226 139.2200 1.011916 334.0927 0 56 132.4263 139.2200 1.011916 334.0927 0 57 129.1465 139.2200 1.011916 334.0927 0 58 122.5887 139.2200 1.011916 334.0927 0 59 115.5213 139.2200 1.011916 334.0927 0 60 105.2264 139.2200 1.011916 334.0927 0 61 108.4809 139.2200 1.011916 334.0927 0 62 110.9427 139.2200 1.011916 334.0927 0 63 113.1722 139.2200 1.011916 334.0927 0 64 111.2797 139.2200 1.011916 334.0927 0 65 115.8506 139.2200 1.011916 334.0927 0 66 128.4182 139.2200 1.011916 334.0927 0 67 128.3699 139.2200 1.011916 334.0927 0 68 121.6632 139.2200 1.011916 334.0927 0 69 117.5822 139.2200 1.011916 334.0927 0 70 112.8293 139.2200 1.011916 334.0927 0 71 114.2083 139.2200 1.011916 334.0927 0 72 113.5424 139.2200 1.011916 334.0927 0 73 108.2459 139.2200 1.011916 334.0927 0 74 111.7152 139.2200 1.011916 334.0927 0 75 116.8527 139.2200 1.011916 334.0927 0 76 119.8305 139.2200 1.011916 334.0927 0 77 109.3259 139.2200 1.011916 334.0927 0 78 113.6906 139.2200 1.011916 334.0927 0 79 111.7010 139.2200 1.011916 334.0927 0 80 101.7654 139.2200 1.011916 334.0927 0 81 99.41549 139.2200 1.011916 334.0927 0 82 99.33614 139.2200 1.011916 334.0927 0 83 92.63738 139.2200 1.011916 334.0927 0

151

84 106.3295 139.2200 1.011916 334.0927 0 85 111.1505 139.2200 1.011916 334.0927 0 86 107.3056 139.2200 1.011916 334.0927 0 87 98.47206 139.2200 1.011916 334.0927 0 88 103.0914 139.2200 1.011916 334.0927 0 89 101.5717 139.2200 1.011916 334.0927 0 90 92.93196 139.2200 1.011916 334.0927 0 91 85.54248 139.2200 1.011916 334.0927 0 92 77.33401 139.2200 1.011916 334.0927 0 93 70.02209 139.2200 1.011916 334.0927 0 94 61.55030 139.2200 1.011916 334.0927 0 95 56.20351 139.2200 1.011916 334.0927 0 96 52.06885 139.2200 1.011916 334.0927 0 97 54.84805 139.2200 1.011916 334.0927 0 98 59.76343 139.2200 1.011916 334.0927 0 99 60.93952 139.2200 1.011916 334.0927 0

100 60.89844 139.2200 1.011916 334.0927 0 101 55.67548 139.2200 1.011916 334.0927 0 102 49.73348 139.2200 1.011916 334.0927 0 103 43.94032 139.2200 1.011916 334.0927 0 104 38.61130 139.2200 1.011916 334.0927 0 105 29.47901 139.2200 1.011916 334.0927 0 106 20.35717 139.2200 1.011916 334.0927 0 107 27.11378 139.2200 1.011916 334.0927 0 108 48.53514 139.2200 1.011916 334.0927 0 109 42.85575 139.2200 1.011916 334.0927 0 110 29.32921 139.2200 1.011916 334.0927 0 111 25.67435 139.2200 1.011916 334.0927 0 112 27.20290 139.2200 1.011916 334.0927 0 113 23.96495 139.2200 1.011916 334.0927 0 114 19.83784 139.2200 1.011916 334.0927 0 115 32.23607 139.2200 1.011916 334.0927 0 116 44.10045 139.2200 1.011916 334.0927 0 117 42.94922 139.2200 1.011916 334.0927 0 118 44.30763 139.2200 1.011916 334.0927 0 119 44.01223 139.2200 1.011916 334.0927 0 120 42.77357 139.2200 1.011916 334.0927 0 121 39.24298 139.2200 1.011916 334.0927 0 122 37.94430 139.2200 1.011916 334.0927 0 123 31.67041 139.2200 1.011916 334.0927 0 124 31.56761 139.2200 1.011916 334.0927 0 125 29.38321 139.2200 1.011916 334.0927 0 126 30.52270 139.2200 1.011916 334.0927 0 127 35.50100 139.2200 1.011916 334.0927 0 128 32.56287 139.2200 1.011916 334.0927 0 129 29.53233 139.2200 1.011916 334.0927 0 130 27.28190 139.2200 1.011916 334.0927 0

152

131 28.28812 139.2200 1.011916 334.0927 0 132 28.15718 139.2200 1.011916 334.0927 0 133 27.42048 139.2200 1.011916 334.0927 0 134 27.02552 139.2200 1.011916 334.0927 0 135 27.05961 139.2200 1.011916 334.0927 0 136 26.81387 139.2200 1.011916 334.0927 0 137 26.90198 139.2200 1.011916 334.0927 0 138 25.47227 139.2200 1.011916 334.0927 0 139 25.47347 134.0384 8.095334 317.7055 45.22588 140 25.45295 128.0377 1.011916 334.0927 0 141 25.64804 123.6561 8.095334 317.7055 45.22588 142 26.44265 116.8553 1.011916 334.0927 0 143 26.34247 112.4738 8.095334 317.7055 45.22588 144 36.44390 99.29129 17.31671 317.7055 61.14516 145 37.11204 94.49074 5.655253 334.0927 9.551563 146 39.28389 89.30906 22.77509 317.7055 61.14516 147 36.81333 83.30842 5.025876 334.0927 9.551563 148 34.13881 77.72668 14.27243 317.7055 61.14516 149 46.78279 72.12606 39.75310 334.0927 9.551563 150 42.03111 69.73526 13.41666 327.0696 35.34836 151 37.64825 66.53490 11.86166 334.0927 9.551563 152 39.51262 62.94394 18.65187 327.0696 35.34836 153 39.97826 60.94374 18.39051 334.0927 9.551563 154 40.33314 56.56216 20.99630 317.7055 61.14516 155 38.11026 49.76138 12.78522 334.0927 9.551563 156 39.34303 44.97978 18.94507 317.7055 61.14516 157 36.87174 38.57906 8.198244 334.0927 9.551563 158 36.13629 33.27642 11.46266 327.0696 55.70001 159 37.53710 27.95584 18.13215 334.0927 9.551563 160 47.38083 25.36500 39.95753 327.0696 35.34836 161 42.44812 19.97386 26.94780 327.0696 35.34836 162 46.01791 14.58271 41.13766 327.0696 35.34836 163 45.65281 8.591504 30.59443 327.0696 35.34836 164 40 77796 2 .800314 0 0 22.61294 165 0 0 0 0 0 166 0 0 0 0 0 167 0 0 0 0 0 168 0 0 0 0 0 169 0 0 0 0 0 170 0 0 0 0 0 171 0 0 0 0 0 172 0 0 0 0 0 173 0 0 0 0 0 174 0 0 0 0 0

175 0 0 0 0 0 176 0 0 0 0 0 177 0 0 0 0 0 178 0 0 0 0 0 179 0 0 0 0 0 180 0 0 0 0 0

153

154

ZONE #4 Refrigeration Load

DAY BLDG FRUIT ENVELOPE

INFIL FAN TRATION

MISC

16102.76

Zone Total (kWh)

33297.56 21278.80 44972 .52 4747.345

Daily (kWh)

1 205.3556 2 214.7800 3 216.9306 4 218.4415 5 221.8886 6 219.1163 7 219.8076 8 214.2173 9 207.6640

10 201.1857 11 196.9581 12 202.0241 13 207.1370 14 207.5028 15 216.6735 16 214.6446 17 208.8232 18 203.1072 19 198.7324 20 201.3396 21 199.4259 22 181.1315 23 185.5339 24 188.5003 25 190.2767 26 184.1214 27 180.8129 28 171.3183 29 170.9013 30 167.7039 31 165.5610 32 166.3802 33 166.0321 34 166.2958 35 162.6999 36 164.2593

1093.906 1119.772 27.95584 109.6213 291.6030 737.2636 1585.708 1481.917 1168.274 1246.509 778.0955 1233.330 2125.516 1732.844 184.5085 592.8359 1772.866 739.7589 223.6467 223.6467 223.6467 216.4648 212.4644 212.4644 212.4644 208.4828 194.9002 185.7181 178.9173 174.9358 162.5533 152.1711 141.3888 129.0063 118.2240

244.3369 256.3735 258.0384 267.5944 273.7328 243.1631 282.7280 221.5749 205.6507 189.9087 193.3480 222.3157 256.7152 256.0807 276.8341 258.6794 226.7148 209.0696 203.6184 208.5576 205.1530 304.0599 337.7521 397.8200 385.2504 355.8702 308.7356 289.0255 295.3412 276.1441 284.4337 289.0255 308.4068 318.8012 287.0092 291.1267

15.34185 347.7079 365.6424 365.6424 357.9561 365.6424 347.7079 347.7079 347.7079 347.7079 347.7079 365.6424 347.7079 347.7079 365.6424 365.6424 347.7079 347.7079 365.6424 365.6424 365.6424 365.6424 347.7079 365.6424 365.6424 365.6424 347.7079 347.7079 347.7079 365.6424 347.7079 347.7079 347.7079 347.7079 347.7079 347.7079

136.9436 14.32734 14.32734 41.71606 14.32734 114.3306 91.71772 114.3306 69.10478 91.71772 14.32734 136.9436 159.5565 14.32734 14.32734 136.9436 69.10478 14.32734 14.32734 14.32734 14.32734 69.10478 14.32734 14.32734 14.32734 69.10478 69.10478 69.10478 14.32734 69.10478 69.10478 69.10478 69.10478 69.10478 69.10478

155

37 157.3131 111.8233 266.2240 365.6424 14.32734 38 154.8854 107.0417 248.4118 347.7079 69.10478 39 157.9204 96.25946 283.4695 347.7079 69.10478 40 164.4000 89.45868 288.8362 365.6424 14.32734 41 161.5249 89.45868 324.4153 365.6424 14.32734 42 171.9047 89.45868 352.8714 365.6424 14.32734 43 162.8675 89.45868 295.6867 365.6424 14.32734 44 156.4355 89.45868 289.4867 365.6424 14.32734 45 159.7670 89.45868 325.4211 365.6424 14.32734 46 160.2357 89.45868 313.9044 365.6424 14.32734 47 157.4481 89.45868 309.2618 365.6424 14.32734 48 160.0524 119.6885 320.2646 357.9561 41.71606 49 157.6429 289.3363 246.9796 365.6424 14.32734 50 144.7117 95.04984 187.5291 365.6424 14.32734 51 143.4070 95.04984 216.7026 365.6424 14.32734 52 124.3375 95.04984 216.6147 365.6424 14.32734 53 138.4667 265.2685 299.5522 347.7079 114.3306 54 146.4917 1106.754 286.0983 347.7079 114.3306 55 136.6416 1064.140 223.2119 365.6424 14.32734 56 140.2885 139.7792 266.2563 365.6424 14.32734 57 136.0788 139.7792 215.2137 365.6424 14.32734 58 128.4702 139.7792 150.0904 365.6424 14.32734 59 120.4850 139.7792 100.6157 365.6424 14.32734 60 108.9896 139.7792 91.58801 365.6424 14.32734 61 113.5052 139.7792 168.5840 365.6424 14.32734 62 116.3311 139.7792 165.0158 365.6424 14.32734 63 118.9386 139.7792 163.3076 365.6424 14.32734 64 116.7265 139.7792 169.0663 365.6424 14.32734 65 122.9243 139.7792 228.0643 365.6424 14.32734 66 137.4376 139.7792 312.7001 365.6424 14.32734 67 136.0218 139.7792 230.0886 365.6424 14.32734 68 127.9697 139.7792 185.5381 365.6424 14.32734 69 123.6838 139.7792 189.0821 365.6424 14.32734 70 118.4525 139.7792 172.1047 365.6424 14.32734 71 120.6127 139.7792 190.2199 365.6424 14.32734 72 119.5853 139.7792 161.9448 365.6424 14.32734 73 113.4122 139.7792 141.2355 365.6424 14.32734 74 118.3090 139.7792 199.1040 365.6424 14.32734 75 124.0080 139.7792 215.4345 365.6424 14.32734 76 126.9680 139.7792 186.5990 365.6424 14.32734 77 114.1954 139.7792 133.4337 365.6424 14.32734 78 120.0640 139.7792 193.0023 365.6424 14.32734 79 116.9400 139.7792 128.7481 365.6424 14.32734 80 105.4454 139.7792 101.9921 365.6424 14.32734 81 103.4363 139.7792 118.3922 365.6424 14.32734 82 103.8149 139.7792 130.7965 365.6424 14.32734 83 99.53624 139.7792 153.1412 365.6424 14.32734

156

84 115.0529 139.7792 170.4752 365.6424 14.32734 85 119.6091 139.7792 174.4020 365.6424 14.32734 86 114.5377 139.7792 99.40621 365.6424 14.32734 87 104.6584 139.7792 85.70174 365.6424 14.32734 88 110.4749 139.7792 131.3008 365.6424 14.32734 89 108.5330 139.7792 96.04800 365.6424 14.32734 90 98.51865 139.7792 48.19098 365.6424 14.32734 91 90.36516 139.7792 30.09629 365.6424 14.32734 92 81.09608 139.7792 9.034765 365.6424 14.32734 93 72.93601 139.7792 1.149790 365.6424 14.32734 94 63.34801 139.7792 1.149790 365.6424 14.32734 95 58.10627 139.7792 1.149790 365.6424 14.32734 96 53.84000 139.7792 1.149790 365.6424 14.32734 97 57.22597 137.3884 11.43368 357.9561 41.71606 98 62.85812 134.1880 38.96468 365.6424 14.32734 99 63.70335 129.0063 40.54952 347.7079 69.10478

100 63.56225 123.0057 30.68186 365.6424 14.32734 101 57.66473 117.0239 18.44892 347.7079 69.10478 102 51.00760 111.8233 1.149790 365.6424 14.32734 103 44.30757 105.0415 9.198323 347.7079 69.10478 104 38.12030 100.6410 1.149790 365.6424 14.32734 105 27.84413 93.45915 9.198323 347.7079 69.10478 106 17.50785 89.45868 1.149790 365.6424 14.32734 107 25.92521 84.67708 9.198323 347.7079 69.10478 108 51.31311 78.27636 19.89321 365.6424 14.32734 109 43.29279 72.69465 9.198323 347.7079 69.10478 110 27.47856 67.09403 1.149790 365.6424 14.32734 111 23.83180 61.91235 9.198323 347.7079 69.10478 112 26.13076 55.91168 1.149790 365.6424 14.32734 113 23.12069 49.52987 9.198323 347.7079 69.10478 114 18.54254 44.72935 1.149790 365.6424 14.32734 115 33.35738 37.94749 8.649294 347.7079 69.10478 116 46.49019 33.54700 2.638447 365.6424 14.32734 117 44.55704 27.16521 10.17559 347.7079 69.10478 118 46.21883 17.18300 11.26182 347.7079 69.10478

460151 365.6424 14.32734 487216 365.6424 14.32734 221291 357.9561 63.87675

0 0 0.452258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

119 45. .97056 11 .18233 2 120 44. .83312 11 .18233 2 121 40. .70215 7. 240621 4 122 39, .22969 0. 004000 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0

157

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

131 0 0 0 0 0 132 0 0 0 0 0 133 0 0 0 0 0 134 0 0 0 0 0 135 0 0 0 0 0 136 0 0 0 0 0 137 0 0 0 0 0 138 0 0 0 0 0 139 0 0 0 140 0 0 0. 141 0 0 0 0 0 142 0 0 0 0 0 143 0 0 0 0 0 144 0 0 0 0 0 145 0 0 0 146 0 0 0 147 0 0 0 148 0 0 0 149 0 0 0 150 0 0 0 151 0 0 0 152 0 0 0 153 0 0 0 0 0 154 0 0 0 0 0 155 0 0 0 0 0 156 0 0 0 0 0 157 0 0 0 0 0 158 0 0 0 0 0 159 0 0 0 0 0 160 0 0 0 0 0 161 0 0 0 162 0 0 0 163 0 0 0 164 0 0 0 0 0 165 0 0 7.270068 0 0 166 0 0 14.55236 0 0 167 0 0 11.49722 0 0 168 0 0 13.24406 0 0 169 0 0 12.92363 0 0 170 0 0 9.664560 0 0 171 42.85810 4.822711 17.65547 0 0 172 43.81178 19.75604 19.08325 0 0 173 47.00207 43.19242 23.35161 0 0 174 52.14396 58.35837 27.36327 0 0

0 0 0 0 0 0

175 66.59179 74.32809 40.01501 347.7079 23.87890 176 62.19194 77.48574 32.34327 347.7079 69.10478 177 62.15426 59.12150 30.78765 347.7079 114.3306 178 63.59774 40.74780 30.97440 347.7079 91.71772 179 66.00063 25.77451 29.56984 347.7079 91.71772 180 64.16916 7.200809 0 0 67.83883

158

159

ZONE #5 Refrigeration Load

DAY BLDG FRUIT INFIL FAN MISC ENVELOPE TRATION

Zone Total (kWh)

16305.29 31549.45 21308.25 45067.32 4853.102

Daily (kWh)

1 206.6704 0 268.6033 15.34185 0 2 214.4493 1312.687 257.2870 347.7079 159.5565 3 216.6899 1343.726 258.1526 365.6424 14.32734 4 218.1333 33.54700 267.7086 365.6424 14.32734 5 220.9699 33.54700 270.3977 365.6424 14.32734 6 218.8404 351.3632 252.1252 347.7079 69.10478 7 219.9773 1114.409 283.6415 347.7079 114.3306 8 213.2956 1378.109 222.4885 347.7079 69.10478 9 208.8832 1646.217 206.5642 347.7079 159.5565

10 202.5582 1846.029 190.8222 347.7079 114.3306 11 198.3309 1166.412 185.4137 365.6424 14.32734 12 203.6619 134.1880 222.4299 365.6424 14.32734 13 207.1899 134.1880 248.7808 365.6424 14.32734 14 206.2535 134.1880 248.1463 365.6424 14.32734 15 215.8410 134.1880 276.9483 365.6424 14.32734 16 213.9705 624.3216 267.6414 347.7079 114.3306 17 207.7871 1683.329 227.6284 347.7079 204.7824 18 203.9713 2535.852 209.9832 347.7079 69.10478 19 200.1016 728.5765 203.7326 365.6424 14.32734 20 201.6092 212.4644 208.6718 365.6424 14.32734 21 199.7599 212.4644 205.2672 365.6424 14.32734 22 179.7344 200.5198 313.0219 347.7079 159.5565 23 188.0290 178.9173 329.8178 365.6424 14.32734 24 190.6000 178.9173 397.9342 365.6424 14.32734 25 190.9138 178.9173 385.3646 365.6424 14.32734 26 185.1439 178.9173 355.9844 365.6424 14.32734 27 182.8695 178.9173 300.8013 365.6424 14.32734 28 173.9853 178.9173 281.0912 365.6424 14.32734 29 172.6391 178.9173 287.4067 365.6424 14.32734 30 169.6117 178.9173 276.2583 365.6424 14.32734 31 167.2842 178.9173 276.4994 365.6424 14.32734 32 168.1993 178.9173 281.0912 365.6424 14.32734 33 167.1865 178.9173 300.4725 365.6424 14.32734 34 167.2409 174.9358 319.7147 347.7079 69.10478 35 163.8395 162.5533 287.9227 347.7079 69.10478 36 165.9077 151.7710 292.0402 347.7079 69.10478

160

37 159.6784 145.3703 266.3382 365.6424 14.32734 38 156.8491 140.5887 249.3253 347.7079 69.10478 39 160.8376 115.0426 284.3831 347.7079 159.5565 40 165.8419 100.6410 288.9504 365.6424 14.32734 41 162.7093 94.25923 333.3773 347.7079 69.10478 42 171.2143 76.69509 361.8334 347.7079 114.3306 43 163.4743 67.09403 295.8009 365.6424 14.32734 44 157.0614 67.09403 289.6009 365.6424 14.32734 45 159.9077 340.2933 334.3831 347.7079 69.10478 46 160.1522 846.7767 322.8667 347.7079 69.10478 47 157.6037 478.0317 309.3759 365.6424 14.32734 48 157.6037 478.0317 309.3759 365.6424 14.32734 49 158.1028 89.45868 247.0938 365.6424 14.32734 50 147.1806 89.45868 187.6433 365.6424 14.32734 51 145.9606 89.45868 216.8168 365.6424 14.32734 52 123.6776 89.45868 216.7289 365.6424 14.32734 53 137.4685 132.0669 300.4657 347.7079 114.3306 54 145.2363 1101.163 287.0119 347.7079 114.3306 55 137.3658 97.45959 232.1740 347.7079 114.3306 56 140.5275 1036.184 266.3704 365.6424 14.32734 57 135.5778 111.8233 215.3279 365.6424 14.32734 58 129.6084 111.8233 150.2046 365.6424 14.32734 59 123.1700 111.8233 100.7299 365.6424 14.32734 60 112.7362 111.8233 91.70220 365.6424 14.32734 61 115.2268 111.8233 168.6982 365.6424 14.32734 62 116.9508 111.8233 165.1300 365.6424 14.32734 63 120.0187 111.8233 163.4218 365.6424 14.32734 64 118.5855 111.8233 169.1805 365.6424 14.32734 65 123.4219 111.8233 228.1785 365.6424 14.32734 66 136.5861 111.8233 312.8143 365.6424 14.32734 67 135.0615 111.8233 230.2028 365.6424 14.32734 68 128.8214 111.8233 185.6522 365.6424 14.32734 69 124.9189 111.8233 189.1962 365.6424 14.32734 70 119.1873 111.8233 172.2189 365.6424 14.32734 71 121.4923 111.8233 190.3341 365.6424 14.32734 72 120.6416 111.8233 162.0590 365.6424 14.32734 73 115.2914 111.8233 141.3496 365.6424 14.32734 74 119.9479 111.8233 199.2182 365.6424 14.32734 75 124.6955 111.8233 215.5487 365.6424 14.32734 76 127.6737 111.8233 186.7132 365.6424 14.32734 77 116.1245 111.8233 133.5479 365.6424 14.32734 78 121.5635 111.8233 193.1165 365.6424 14.32734 79 117.6655 111.8233 128.8623 365.6424 14.32734 80 108.0380 111.8233 102.1063 365.6424 14.32734 81 105.2276 111.8233 118.5064 365.6424 14.32734 82 105.2489 111.8233 130.9107 365.6424 14.32734 83 99.94291 111.8233 153.2554 365.6424 14.32734

161

84 115 .5002 111.8233 170.5894 365. 6424 14. 32734 85 120 .0577 111.8233 174.5162 365. 6424 14. 32734 86 115 .8267 111.8233 99.52040 365. 6424 14. 32734 87 108 .0750 111.8233 85.81593 365. 6424 14. 32734 88 112 .7374 111.8233 131.4150 365. 6424 14. ,32734 89 110 1.5517 111.8233 96.16219 365. 6424 14. ,32734 90 101 ..9714 111.8233 48.30517 365. 6424 14. ,32734 91 94. 62534 111.8233 30.21048 365. 6424 14. ,32734 92 85. 80626 111.8233 9.148957 365. 6424 14. ,32734 93 78. 09593 111.8233 1.263982 365. 6424 14. ,32734 94 68. 92813 111.8233 1.263982 365. 6424 14. ,32734 95 63. 19274 111.8233 1.263982 365. 6424 14. ,32734 96 58. 73723 111.8233 1.263982 365. 6424 14. ,32734 97 60. 65712 111.8233 8.098502 365. 6424 14. ,32734 98 65. 06537 111.8233 39.07887 365. 6424 14. ,32734 99 64. 77186 111.8233 32.61516 365. 6424 14. ,32734

100 64. 95849 111.8233 30.79605 365. 6424 14. ,32734 101 59. 62994 111.8233 10.51458 365. 6424 14. .32734 102 53. 94722 105.8416 10.11185 347. ,7079 69. .10478 103 48. 13948 100.6410 1.263982 365. ,6424 14, ,32734 104 42. 79242 93.85917 10.11185 347. ,7079 69. .10478 105 33. 99276 89.45868 1.263982 365. ,6424 14, .32734 106 25. 29851 89.45868 1.263982 365. .6424 14, .32734 107 32. 74159 89.45868 1.263982 365, .6424 14, .32734 108 54. 68145 84.67708 28.85527 347, .7079 69, .10478 109 45. 87821 78.27636 1.263982 365, .6424 14 .32734 110 32. 64412 72.69465 10.11185 347, .7079 69 .10478 111 29. ,96307 67.09403 1.263982 365 .6424 14 .32734 112 31. ,91833 61.91235 10.11185 347, .7079 69 .10478 113 31. ,10578 55.91168 1.263982 365 .6424 14 .32734 114 25. ,35100 49.52987 10.11185 347 .7079 69 .10478 115 38. ,17959 44.72935 0.714953 365 .6424 14 .32734 116 47. .80823 37.94749 11.60051 347 .7079 69 .10478 117 45. .77005 33.54700 2.241257 365 .6424 14 .32734 118 47. .22006 27.16521 12.17535 347 .7079 69 .10478 119 46, .99399 17.18300 11.42222 347 .7079 69 .10478 120 46, .15746 7.240621 6.393355 357 .9561 63 .87675 121 42, .47798 0.111823 0.886111 365 .6424 14 .32734 122 41, .64892 0.004000 0 0 0. 452258 123 0 0 0 0 0 124 0 0 0 0 0 125 0 0 0 0 0 126 0 0 0 0 0 127 0 0 0 0 0 128 0 0 0 0 0 129 0 0 0 0 0 130 0 0 0 0 0

162

131 0 0 0 0 0 132 0 0 0 0 0 133 0 0 0 0 0 134 0 0 0 0 0 135 0 0 0 0 0 136 0 0 0 0 0 137 0 0 0 0 0 138 0 0 0 0 0 139 0 0 0 0 0 140 0 0 0 0 0 141 0 0 0 0 0 142 0 0 0 0 0 143 0 0 0 0 0 144 0 0 0 0 0 145 0 0 0 0 0 146 0 0 0 0 0 147 0 0 0 0 0 148 0 0 0 0 0 149 0 0 0 0 0 150 0 0 0 0 0 151 0 0 0 0 0 152 0 0 0 0 0 153 0 0 0 0 0 154 0 0 0 0 o 155 0 0 0 0 0 156 0 0 0 0 0 157 0 0 0 0 0 158 0 0 0 0 0 159 0 0 0 0 0 160 0 0 0 0 0 161 0 0 0 0 0 162 0 0 0 0 0 163 0 0 0 0 0 164 0 0 0 0 0 165 0 0 7.: 384260 0 0 166 0 0 14 .66655 0 0 167 0 0 11 .61141 0 0 168 0 0 13 .35825 0 0 169 0 0 13 .03783 0 0 170 0 0 9.' 778752 0 0 171 43. .13292 9.' 645423 18 .56901 0 0 172 44. ,17444 30 .93838 19 .99679 0 0 173 46. .92544 64 .02019 24 .26515 0 0 174 51. .70318 83 .63492 28 .27680 0 0

163

175 63.75242 99.10410 40.92855 347.7079 23.87890 176 60.73093 105.4415 33.25680 347.7079 69.10478 177 61.51792 93.85917 31.70119 347.7079 69.10478 178 63.13848 70.31331 31.88794 347.7079 159.5565 179 65.65357 40.36669 30.48337 347.7079 159.5565 180 64.03225 9.601075 0 0 90.45177

164

APPENDIX 6

RLSIM Output (with fan cycling)

165

Output Summary

Building Total Energy Consumption kWh

Actual 262,879 Simulation 200,458

Simulation Results:

Building Total Refrigeration Load 461,053

Components

Building Heat Transmission Load Infiltration Load Miscellaneous Load Fan load Fruit Load

Zones

1 2 3 4 5

77, 264 63, ,562 16, 585

128, ,870 174, ,771

91, ,325 99, r813 76, r456 97, r386 96, f070

166

ZONE #1 Refrigeration Load

DAY BLDG FRUIT INFIL FAN MISC ENVELOPE TRATION

Zone Total (kWh)

13476.47 37586.59 8762.700 29216.86 2282.591

Daily (kWh)

1 142.2661 0 213.8704 14.01807 0 2 150.4545 0 220.8114 165.8758 9.551563 3 152.5193 0 229.4490 165.8758 9.551563 4 153.9979 0 237.9467 165.8758 9.551563 5 157.2719 240.7477 247.4213 149.4887 61.14516 6 154.9618 749.0151 223.3046 149.4887 61.14516 7 155.3008 1079.740 251.3304 149.4887 106.3710 8 151.3234 1893.498 196.9503 149.4887 106.3710 9 145.0691 913.8566 182.7897 149.4887 61.14516

10 139.4768 849.2593 168.7912 149.4887 61.14516 11 135.3180 905.5806 171.8497 149.4887 61.14516 12 138.8023 605.9689 197.6828 165.8758 9.551563 13 143.6924 123.7792 221.1152 165.8758 9.551563 14 144.4057 123.7792 220.5509 165.8758 9.551563 15 151.7796 123.7792 246.1630 165.8758 9.551563 16 150.8092 123.7792 230.0190 165.8758 9.551563 17 146.3259 123.7792 194.4375 165.8758 9.551563 18 140.8764 123.7792 178.7466 165.8758 9.551563 19 136.8580 123.7792 181.0562 165.8758 9.551563 20 139.0619 123.7792 185.4484 165.8758 9.551563 21 137.3537 123.7792 182.4209 165.8758 9.551563 22 155.4708 123.7792 143.5881 165.8758 9.551563 23 158.4112 123.7792 155.6583 165.8758 9.551563 24 161.4162 123.7792 187.7198 165.8758 9.551563 25 163.3451 123.7792 181.8035 165.8758 9.551563 26 157.4656 123.7792 167.9746 165.8758 9.551563 27 154.2909 123.7792 142.0005 165.8758 9.551563 28 146.3976 123.7792 132.7233 165.8758 9.551563 29 145.7124 123.7792 135.6959 165.8758 9.551563 30 142.6677 123.7792 130.4485 165.8758 9.551563 31 140.7203 123.7792 130.5619 165.8758 9.551563 32 141.4059 123.7792 132.7233 165.8758 9.551563 33 141.2362 123.7792 141.8458 165.8758 9.551563 34 141.1739 123.7792 146.7383 165.8758 9.551563 35 138.1457 123.7792 131.7742 165.8758 9.551563 36 139.1466 102.8716 140.7956 149.4887 151.5969

167

37 133.2748 82.51950 125.7792 165.8758 9.551563 38 130.5362 82.51950 113.6068 165.8758 9.551563 39 133.3698 82.51950 130.1081 165.8758 9.551563 40 139.8864 82.51950 136.4225 165.8758 9.551563 41 137.5540 258.4486 156.2049 158.8528 35.34836 42 146.4112 607.0455 173.6465 149.4887 61.14516 43 139.0501 1151.900 146.7304 149.4887 106.3710 44 132.8140 783.3846 136.7287 165.8758 9.551563 45 134.7574 450.9948 156.6782 158.8528 55.70001 46 135.2538 848.8365 8.095334 149.4887 90.45177 47 132.9802 970.8065 1.011916 165.8758 0 48 134.9641 171.2280 1.011916 165.8758 0 49 133.1412 171.2280 1.011916 165.8758 0 50 121.8751 171.2280 1.011916 165.8758 0 51 120.2135 171.2280 1.011916 165.8758 0 52 103.3558 171.2280 1.011916 165.8758 0 53 114.9062 171.2280 1.011916 165.8758 0 54 122.4085 171.2280 1.011916 165.8758 0 55 114.5129 171.2280 1.011916 165.8758 0 56 117.1280 171.2280 1.011916 165.8758 0 57 113.8723 171.2280 1.011916 165.8758 0 58 107.1606 171.2280 1.011916 165.8758 0 59 99.96473 171.2280 1.011916 165.8758 0 60 89.59220 171.2280 1.011916 165.8758 0 61 92.92128 171.2280 1.011916 165.8758 0 62 95.32795 171.2280 1.011916 165.8758 0 63 97.62897 171.2280 1.011916 165.8758 0 64 95.74431 171.2280 1.011916 165.8758 0 65 100.7234 171.2280 1.011916 165.8758 0 66 113.2502 171.2280 1.011916 165.8758 0 67 113.2318 171.2280 1.011916 165.8758 0 68 106.2772 171.2280 1.011916 165.8758 0 69 102.1338 171.2280 1.011916 165.8758 0 70 97.40876 171.2280 1.011916 165.8758 0 71 98.65556 171.2280 1.011916 165.8758 0 72 97.98455 171.2280 1.011916 165.8758 0 73 92.63117 171.2280 1.011916 165.8758 0 74 96.14336 171.2280 1.011916 165.8758 0 75 101.2049 171.2280 1.011916 165.8758 0 76 104.2717 171.2280 1.011916 165.8758 0 77 93.88907 171.2280 1.011916 165.8758 0 78 98.20965 171.2280 1.011916 165.8758 0 79 96.15631 171.2280 1.011916 165.8758 0 80 86.10319 171.2280 1.011916 165.8758 0 81 83.85751 171.2280 1.011916 165.8758 0 82 83.71356 171.2280 1.011916 165.8758 0 83 88.17308 171.2280 1.011916 165.8758 0

168

84 95.26813 171.2280 1.011916 165.8758 0 85 99.26004 171.2280 1.011916 165.8758 0 86 95.22107 171.2280 1.011916 165.8758 0 87 86.20916 171.2280 1.011916 165.8758 0 88 90.82486 171.2280 1.011916 165.8758 0 89 89.36217 171.2280 1.011916 165.8758 0 90 80.64353 171.2280 1.011916 165.8758 0 91 73.17241 171.2280 1.011916 165.8758 0 92 64.93208 171.2280 1.011916 165.8758 0 93 57.74774 171.2280 1.011916 165.8758 0 94 49.30101 171.2280 1.011916 165.8758 0 95 43.98974 171.2280 1.011916 165.8758 0 96 39.80536 171.2280 1.011916 165.8758 0 97 42.51857 171.2280 1.011916 165.8758 0 98 47.40446 171.2280 1.011916 165.8758 0 99 48.65832 171.2280 1.011916 165.8758 0

100 48.53171 171.2280 1.011916 165.8758 0 101 43.36666 171.2280 1.011916 165.8758 0 102 37.37035 171.2280 1.011916 165.8758 0 103 31.50738 171.2280 1.011916 165.8758 0 104 26.10741 171.2280 1.011916 165.8758 0 105 16.88695 171.2280 1.011916 165.8758 0 106 7.636209 171.2280 1.011916 165.8758 0 107 14.41717 171.2280 1.011916 165.8758 0 108 36.11023 171.2280 1.011916 165.8758 0 109 30.56524 171.2280 1.011916 165.8758 0 110 16.81217 171.2280 1.011916 165.8758 0 111 13.05372 171.2280 1.011916 165.8758 0 112 14.58734 171.2280 1.011916 165.8758 0 113 9.961717 171.2280 1.011916 165.8758 0 114 5.001243 171.2280 1.011916 165.8758 0 115 17.34028 171.2280 1.011916 165.8758 0 116 29.47195 171.2280 1.011916 165.8758 0 117 28.42075 171.2280 1.011916 165.8758 0 118 29.79831 171.2280 1.011916 165.8758 0 119 29.48633 171.2280 1.011916 165.8758 0 120 28.28570 171.2280 1.011916 165.8758 0 121 24.78282 171.2280 1.011916 165.8758 0 122 23.42549 171.2280 1.011916 165.8758 0 123 17.31456 171.2280 1.011916 165.8758 0 124 17.10597 171.2280 1.011916 165.8758 0 125 14.78567 171.2280 1.011916 165.8758 0 126 15.91357 171.2280 1.011916 165.8758 0 127 20.96423 171.2280 1.011916 165.8758 0 128 18.07517 171.2280 1.011916 165.8758 0 129 14.93183 171.2280 1.011916 165.8758 0 130 12.58225 171.2280 1.011916 165.8758 0

169

131 13.56878 171.2280 1.011916 165.8758 0 132 13.45060 171.2280 1.011916 165.8758 0 133 12.70649 171.2280 1.011916 165.8758 0 134 12.30869 171.2280 1.011916 165.8758 0 135 12.34637 171.2280 1.011916 165.8758 0 136 12.10010 171.2280 1.011916 165.8758 0 137 12.19388 171.2280 1.011916 165.8758 0 138 10.75515 171.2280 1.011916 165.8758 0 139 10.75256 171.2280 1.011916 165.8758 0 140 10.73568 171.2280 1.011916 165.8758 0 141 10.94211 171.2280 1.011916 165.8758 0 142 11.75525 171.2280 1.011916 165.8758 0 143 11.64608 171.2280 1.011916 165.8758 0 144 18.43227 171.2280 10.23329 165.8758 9.551563 145 20.38814 171.2280 5.655253 165.8758 9.551563 146 22.78787 171.2280 15.69167 165.8758 9.551563 147 20.36955 171.2280 5.025876 165.8758 9.551563 148 17.57780 171.2280 7.189015 165.8758 9.551563 149 30.22495 171.2280 39.75310 165.8758 9.551563 150 25.64594 171.2280 10.38091 165.8758 9.551563 151 21.19918 171.2280 11.86166 165.8758 9.551563 152 23.02915 171.2280 15.61612 165.8758 9.551563 153 23.49690 171.2280 18.39051 165.8758 9.551563 154 23.86856 171.2280 13.91289 165.8758 9.551563 155 21.63259 171.2280 12.78522 165.8758 9.551563 156 22.92007 171.2280 11.86166 165.8758 9.551563 157 20.40943 171.2280 8.198244 165.8758 9.551563 158 19.61929 171.2280 8.426918 165.8758 9.551563 159 21.01524 171.2280 18.13215 165.8758 9.551563 160 30.90091 171.2280 36.92178 165.8758 9.551563 161 26.02758 171.2280 23.91205 165.8758 9.551563 162 29.64149 171.2280 38.10191 165.8758 9.551563 163 29.34669 171.2280 27.55867 165.8758 9.551563 164 24.42981 171.2280 16.64605 165.8758 9.551563 165 22.55731 171.2280 10.81144 165.8758 9.551563 166 23.83187 171.2280 22.47153 165.8758 9.551563 167 26.46967 171.2280 17.57977 165.8758 9.551563 168 25.83861 171.2280 20.37674 165.8758 9.551563 169 26.74783 171.2280 19.86368 165.8758 9.551563 170 25.21116 171.2280 14.64539 165.8758 9.551563 171 24.65820 168.2279 17.58889 158.8528 35.34836 172 25.36199 161.1090 19.87498 158.8528 35.34836 173 28.20990 147.7477 30.75697 149.4887 83.75810 174 32.73650 127.8447 37.18027 149.4887 83.75810

175 41.29352 107.2148 57.43763 149.4887 83.75810 176 40.06162 86.58500 45.15403 149.4887 83.75810 177 39.89502 65.95513 42.66321 149.4887 83.75810 178 41.19959 44.59838 42.96225 149.4887 83.75810 179 43.49503 21.78792 40.71334 149.4887 83.75810 180 42.20433 5.524146 0 0 42.96459

170

171

ZONE #2 Refrigeration Load

FRUIT INFIL FAN DAY BLDG ENVELOPE

INFIL TRATION

MISC

Zone Total (kWh)

15158.48 42917.02 9472.725 29064.69 3200.820 :====

Daily (kWh) :====

1 186. 3310 0 213.8704 14.01807 0 2 190. 9092 0 220.8114 165. 8758 9.551563 3 192. 8299 0 229.4490 165. 8758 9.551563 4 194. 0457 0 237.9467 165. 8758 9.551563 5 196. 0141 0 240.3379 165. ,8758 9.551563 6 195. ,0410 312. 9399 223.3046 149. 4887 61.14516 7 195. ,8819 467. 4317 244.2469 165. ,8758 9.551563 8 191. ,3828 615. 7223 196.9503 149. ,4887 83.75810 9 188. ,8938 101S 1.639 182.7897 149. ,4887 83.75810

10 184. ,4596 182C 1.480 168.7912 149. ,4887 151.5969 11 180. ,8265 225S 1.392 171.8497 149. ,4887 151.5969 12 183. ,6739 126C 1.590 197.6828 165. ,8758 9.551563 13 185. .5986 489. 3908 228.1986 149. ,4887 61.14516 14 184. .5959 856. 1117 227.6344 149. ,4887 61.14516 15 191. .1153 539. 3917 246.1630 165. .8758 9.551563 16 190. ,7035 165. 0390 230.0190 165. ,8758 9.551563 17 186. .7108 165. 0390 194.4375 165. .8758 9.551563 18 184, .5736 165. 0390 178.7466 165. .8758 9.551563 19 181. .7955 165. 0390 181.0562 165. .8758 9.551563 20 182. .0909 165. 0390 185.4484 165. .8758 9.551563 21 180, .7350 165. 0390 182.4209 165. ,8758 9.551563 22 159, .4948 165. 0390 143.5881 165. .8758 9.551563 23 164, .6959 165. 0390 155.6583 165. .8758 9.551563 24 166, .6205 165. 0390 187.7198 165. .8758 9.551563 25 166, .3417 165. ,0390 181.8035 165, .8758 9.551563 26 161, .9780 165. ,0390 167.9746 165, .8758 9.551563 27 160, .6515 165. ,0390 142.0005 165, .8758 9.551563 28 154, .8683 165. ,0390 132.7233 165, .8758 9.551563 29 152, .8617 165. ,0390 135.6959 165, .8758 9.551563 30 150 .4307 165. ,0390 130.4485 165, .8758 9.551563 31 148 .5086 165. ,0390 130.5619 165 .8758 9.551563 32 149 .1088 165. ,0390 132.7233 165 .8758 9.551563 33 147 .9950 165. .0390 141.8458 165 .8758 9.551563 34 147 .5556 165. .0390 146.7383 165 .8758 9.551563 35 145 .3430 145, .5851 138.8576 149 .4887 151.5969 36 146 .6795 117, .2946 140.7956 149 .4887 61.14516

172

37 142.7340 95.11845 132.8626 149.4887 106.3710 38 139.6835 70.51938 120.6903 149.4887 106.3710 39 143.4187 49.49751 137.1915 149.4887 61.14516 40 147.0767 21.87069 143.5059 149.4887 151.1446 41 144.6560 0.137532 153.1691 165.8758 9.551563 42 149.4334 0.137532 166.5630 165.8758 9.551563 43 145.0737 326.7996 146.7304 149.4887 106.3710 44 139.6800 1524.043 143.8121 149.4887 106.3710 45 140.4452 1112.746 160.7259 149.4887 106.3710 46 140.5694 1548.475 155.3053 149.4887 106.3710 47 139.0611 762.8924 146.0366 165.8758 9.551563 48 140.6966 608.0797 156.6753 149.4887 106.3710 49 139.6834 1082.508 123.8045 149.4887 61.14516 50 133.0163 525.7759 88.73848 165.8758 9.551563 51 131.5863 483.4675 8.095334 149.4887 65.12527 52 105.1441 641.1927 1.011916 165.8758 0 53 113.6409 171.2280 1.011916 165.8758 0 54 119.9097 171.2280 1.011916 165.8758 0 55 116.2589 171.2280 1.011916 165.8758 0 56 117.6107 171.2280 1.011916 165.8758 0 57 114.0340 171.2280 1.011916 165.8758 0 58 110.7176 171.2280 1.011916 165.8758 0 59 106.7039 171.2280 1.011916 165.8758 0 60 99.22271 171.2280 1.011916 165.8758 0 61 98.90406 171.2280 1.011916 165.8758 0 62 99.43912 171.2280 1.011916 165.8758 0 63 102.0304 171.2280 1.011916 165.8758 0 64 101.4773 171.2280 1.011916 165.8758 0 65 103.6281 171.2280 1.011916 165.8758 0 66 112.2437 171.2280 1.011916 165.8758 0 67 112.4994 171.2280 1.011916 165.8758 0 68 109.2146 171.2280 1.011916 165.8758 0 69 106.1065 171.2280 1.011916 165.8758 0 70 101.4258 171.2280 1.011916 165.8758 0 71 102.5707 171.2280 1.011916 165.8758 0 72 102.3615 171.2280 1.011916 165.8758 0 73 98.98932 171.2280 1.011916 165.8758 0 74 101.3461 171.2280 1.011916 165.8758 0 75 104.2997 171.2280 1.011916 165.8758 0 76 107.0518 171.2280 1.011916 165.8758 0 77 100.2665 171.2280 1.011916 165.8758 0 78 102.9906 171.2280 1.011916 165.8758 0 79 100.3458 171.2280 1.011916 165.8758 0 80 94.43350 171.2280 1.011916 165.8758 0 81 91.25940 171.2280 1.011916 165.8758 0 82 90.47763 171.2280 1.011916 165.8758 0 83 76.82255 171.2280 1.011916 165.8758 0

173

84 87.58643 171.2280 1.011916 165.8758 0 85 91.85990 171.2280 1.011916 165.8758 0 86 89.98206 171.2280 1.011916 165.8758 0 87 85.29061 171.2280 1.011916 165.8758 0 88 87.37163 171.2280 1.011916 165.8758 0 89 85.88271 171.2280 1.011916 165.8758 0 90 80.57446 171.2280 1.011916 165.8758 0 91 75.26678 171.2280 1.011916 165.8758 0 92 68.83318 171.2280 1.011916 165.8758 0 93 63.24078 171.2280 1.011916 165.8758 0 94 56.54506 171.2280 1.011916 165.8758 0 95 51.08238 171.2280 1.011916 165.8758 0 96 47.05711 171.2280 1.011916 165.8758 0 97 47.10683 171.2280 1.011916 165.8758 0 98 49.32620 171.2280 1.011916 165.8758 0 99 48.86776 171.2280 1.011916 165.8758 0

100 49.19309 171.2280 1.011916 165.8758 0 101 45.67978 171.2280 1.011916 165.8758 0 102 41.99358 171.2280 1.011916 165.8758 0 103 38.34008 171.2280 1.011916 165.8758 0 104 34.99627 171.2280 1.011916 165.8758 0 105 29.27098 171.2280 1.011916 165.8758 0 106 23.77999 171.2280 1.011916 165.8758 0 107 27.94983 171.2280 1.011916 165.8758 0 108 41.07995 171.2280 1.011916 165.8758 0 109 35.65068 171.2280 1.011916 165.8758 0 110 27.74313 171.2280 1.011916 165.8758 0 111 25.82341 171.2280 1.011916 165.8758 0 112 26.49415 171.2280 1.011916 165.8758 0 113 22.74188 171.2280 1.011916 165.8758 0 114 19.13679 171.2280 1.011916 165.8758 0 115 26.68040 171.2280 1.011916 165.8758 0 116 32.03457 171.2280 1.011916 165.8758 0 117 31.07676 171.2280 1.011916 165.8758 0 118 31.91268 171.2280 1.011916 165.8758 0 119 31.65736 171.2280 1.011916 165.8758 0 120 30.99774 171.2280 1.011916 165.8758 0 121 28.73268 171.2280 1.011916 165.8758 0 122 28.46586 171.2280 1.011916 165.8758 0 123 24.51766 171.2280 1.011916 165.8758 0 124 25.86704 171.2280 1.011916 165.8758 0 125 24.45507 171.2280 1.011916 165.8758 0 126 25.28029 171.2280 1.011916 165.8758 0 127 28.33834 171.2280 1.011916 165.8758 0 128 24.30329 171.2280 1.011916 165.8758 0 129 22.08511 171.2280 1.011916 165.8758 0 130 20.67797 171.2280 1.011916 165.8758 0

174

131 21.42969 171.2280 1.011916 165.8758 0 132 21.03921 171.2280 1.011916 165.8758 0 133 20.57733 171.2280 1.011916 165.8758 0 134 20.25910 171.2280 1.011916 165.8758 0 135 20.16781 171.2280 1.011916 165.8758 0 136 19.97059 171.2280 1.011916 165.8758 0 137 19.88202 171.2280 1.011916 165.8758 0 138 18.91610 171.2280 1.011916 165.8758 0 139 18.88501 171.2280 1.011916 165.8758 0 140 18.71598 171.2280 1.011916 165.8758 0 141 18.83670 171.2280 1.011916 165.8758 0 142 19.13291 171.2280 1.011916 165.8758 0 143 19.08087 171.2280 1.011916 165.8758 0 144 28.09164 171.2280 10.23329 165.8758 9.551563 145 25.76837 171.2280 5.655253 165.8758 9.551563 146 27.29584 171.2280 15.69167 165.8758 9.551563 147 25.07077 171.2280 5.025876 165.8758 9.551563 148 23.94200 171.2280 7.189015 165.8758 9.551563 149 31.84662 171.2280 39.75310 165.8758 9.551563 150 27.80760 171.2280 10.38091 165.8758 9.551563 151 25.59536 171.2280 11.86166 165.8758 9.551563 152 26.68739 171.2280 15.61612 165.8758 9.551563 153 26.87429 171.2280 18.39051 165.8758 9.551563 154 26.87151 171.2280 13.91289 165.8758 9.551563 155 25.72975 171.2280 12.78522 165.8758 9.551563 156 26.37608 171.2280 11.86166 165.8758 9.551563 157 24.87846 171.2280 8.198244 165.8758 9.551563 158 24.55574 171.2280 8.426918 165.8758 9.551563 159 25.66269 171.2280 18.13215 165.8758 9.551563 160 31.12071 171.2280 36.92178 165.8758 9.551563 161 27.33754 171.2280 23.91205 165.8758 9.551563 162 29.57397 171.2280 38.10191 165.8758 9.551563 163 29.32869 171.2280 27.55867 165.8758 9.551563 164 26.89170 171.2280 16.64605 165.8758 9.551563 165 25.99073 171.2280 10.81144 165.8758 9.551563 166 27.36391 171.2280 22.47153 165.8758 9.551563 167 28.33845 171.2280 17.57977 165.8758 9.551563 168 28.71657 171.2280 20.37674 165.8758 9.551563 169 28.82985 171.2280 19.86368 165.8758 9.551563 170 28.34461 171.2280 14.64539 165.8758 9.551563 171 28.60569 158.1296 21.63656 149.4887 90.54198 172 29.30471 139.0090 23.92265 149.4887 70.19033 173 31.10030 122.5051 30.75697 149.4887 70.19033 174 34.46291 108.3272 37.18027 149.4887 70.19033

175 48.24011 91.24183 57.43763 149.4887 70.19033 176 46.06683 73.57495 45.15403 149.4887 70.19033 177 46.7199 55.32660 42.66321 149.4887 70.19033 178 48.09351 39.98567 42.96225 149.4887 70.19033 179 50.22129 24.06326 40.71334 149.4887 70.19033 180 49.46352 6.977869 0 0 54.27106

175

176

ZONE #3 Refrigeration Load

DAY BLDG FRUIT INFIL FAN MISC ENVELOPE TRATION

Zone Total (kWh)

16221.68 29421.07 2740.111 26574.55 1501.819

Daily (kWh)

1 194.7782 0 215.0380 14.01807 0 2 202.8694 0 220.8114 165.8758 9.551563 3 204.9428 0 229.4490 165.8758 9.551563 4 206.4922 133.9563 245.0301 149.4887 61.14516 5 209.7820 1021.394 247.4213 149.4887 61.14516 6 207.3628 762.7961 223.3046 149.4887 61.14516 7 207.6596 830.7675 251.3304 149.4887 61.14516 8 203.9913 1127.806 196.9503 149.4887 106.3710 9 198.3138 1555.612 182.7897 149.4887 106.3710

10 191.9762 1617.663 168.7912 149.4887 106.3710 11 188.1644 2132.807 8.095334 149.4887 110.8034 12 191.9238 982.6432 1.011916 165.8758 0 13 196.8654 139.2200 1.011916 165.8758 0 14 197.4587 139.2200 1.011916 165.8758 0 15 204.7914 139.2200 1.011916 165.8758 0 16 203.3318 139.2200 1.011916 165.8758 0 17 198.4946 139.2200 1.011916 165.8758 0 18 193.5892 139.2200 1.011916 165.8758 0 19 189.6211 139.2200 1.011916 165.8758 0 20 191.7848 139.2200 1.011916 165.8758 0 21 190.2865 139.2200 1.011916 165.8758 0 22 169.7644 139.2200 1.011916 165.8758 0 23 175.1835 139.2200 1.011916 165.8758 0 24 178.3092 139.2200 1.011916 165.8758 0 25 180.3729 139.2200 1.011916 165.8758 0 26 174.6915 139.2200 1.011916 165.8758 0 27 171.8362 139.2200 1.011916 165.8758 0 28 163.7977 139.2200 1.011916 165.8758 0 29 163.2704 139.2200 1.011916 165.8758 0 30 159.9944 139.2200 1.011916 165.8758 0 31 157.8746 139.2200 1.011916 165.8758 0 32 158.6748 139.2200 1.011916 165.8758 0 33 158.2737 139.2200 1.011916 165.8758 0 34 158.5192^139.2200 1.011916 165.8758 0 35 155.5765 139.2200 1.011916 165.8758 0 36 156.3867 139.2200 1.011916 165.8758 0

177

37 150.2266 139.2200 1.011916 165.8758 0 38 147.6632 139.2200 1.011916 165.8758 0 39 150.5586 139.2200 1.011916 165.8758 0 40 156.7282 139.2200 1.011916 165.8758 0 41 154.6317 139.2200 1.011916 165.8758 0 42 163.3263 139.2200 1.011916 165.8758 0 43 155.8385 139.2200 1.011916 165.8758 0 44 149.5932 139.2200 1.011916 165.8758 0 45 151.7498 139.2200 1.011916 165.8758 0 46 152.1582 139.2200 1.011916 165.8758 0 47 149.6039 139.2200 1.011916 165.8758 0 48 151.8743 139.2200 1.011916 165.8758 0 49 150.0762 139.2200 1.011916 165.8758 0 50 138.9422 139.2200 1.011916 165.8758 0 51 137.3012 139.2200 1.011916 165.8758 0 52 116.5416 139.2200 1.011916 165.8758 0 53 129.9840 139.2200 1.011916 165.8758 0 54 137.5189 139.2200 1.011916 165.8758 0 55 129.8226 139.2200 1.011916 165.8758 0 56 132.4263 139.2200 1.011916 165.8758 0 57 129.1465 139.2200 1.011916 165.8758 0 58 122.5887 139.2200 1.011916 165.8758 0 59 115.5213 139.2200 1.011916 165.8758 0 60 105.2264 139.2200 1.011916 165.8758 0 61 108.4809 139.2200 1.011916 165.8758 0 62 110.9427 139.2200 1.011916 165.8758 0 63 113.1722 139.2200 1.011916 165.8758 0 64 111.2797 139.2200 1.011916 165.8758 0 65 115.8506 139.2200 1.011916 165.8758 0 66 128.4182 139.2200 1.011916 165.8758 0 67 128.3699 139.2200 1.011916 165.8758 0 68 121.6632 139.2200 1.011916 165.8758 0 69 117.5822 139.2200 1.011916 165.8758 0 70 112.8293 139.2200 1.011916 165.8758 0 71 114.2083 139.2200 1.011916 165.8758 0 72 113.5424 139.2200 1.011916 165.8758 0 73 108.2459 139.2200 1.011916 165.8758 0 74 111.7152 139.2200 1.011916 165.8758 0 75 116.8527 139.2200 1.011916 165.8758 0 76 119.8305 139.2200 1.011916 165.8758 0 77 109.3259 139.2200 1.011916 165.8758 0 78 113.6906 139.2200 1.011916 165.8758 0 79 111.7010 139.2200 1.011916 165.8758 0 80 101.7654 139.2200 1.011916 165.8758 0 81 99.41549 139.2200 1.011916 165.8758 0 82 99.33614 139.2200 1.011916 165.8758 0 83 92.63738 139.2200 1.011916 165.8758 0

178

84 106.3295 139.2200 1.011916 165.8758 0 85 111.1505 139.2200 1.011916 165.8758 0 86 107.3056 139.2200 1.011916 165.8758 0 87 98.47206 139.2200 1.011916 165.8758 0 88 103.0914 139.2200 1.011916 165.8758 0 89 101.5717 139.2200 1.011916 165.8758 0 90 92.93196 139.2200 1.011916 165.8758 0 91 85.54248 139.2200 1.011916 165.8758 0 92 77.33401 139.2200 1.011916 165.8758 0 93 70.02209 139.2200 1.011916 165.8758 0 94 61.55030 139.2200 1.011916 165.8758 0 95 56.20351 139.2200 1.011916 165.8758 0 96 52.06885 139.2200 1.011916 165.8758 0 97 54.84805 139.2200 1.011916 165.8758 0 98 59.76343 139.2200 1.011916 165.8758 0 99 60.93952 139.2200 1.011916 165.8758 0

100 60.89844 139.2200 1.011916 165.8758 0 101 55.67548 139.2200 1.011916 165.8758 0 102 49.73348 139.2200 1.011916 165.8758 0 103 43.94032 139.2200 1.011916 165.8758 0 104 38.61130 139.2200 1.011916 165.8758 0 105 29.47901 139.2200 1.011916 165.8758 0 106 20.35717 139.2200 1.011916 165.8758 0 107 27.11378 139.2200 1.011916 165.8758 0 108 48.53514 139.2200 1.011916 165.8758 0 109 42.85575 139.2200 1.011916 165.8758 0 110 29.32921 139.2200 1.011916 165.8758 0 111 25.67435 139.2200 1.011916 165.8758 0 112 27.20290 139.2200 1.011916 165.8758 0 113 23.96495 139.2200 1.011916 165.8758 0 114 19.83784 139.2200 1.011916 165.8758 0 115 32.23607 139.2200 1.011916 165.8758 0 116 44.10045 139.2200 1.011916 165.8758 0 117 42.94922 139.2200 1.011916 165.8758 0 118 44.30763 139.2200 1.011916 165.8758 0 119 44.01223 139.2200 1.011916 165.8758 0 120 42.77357 139.2200 1.011916 165.8758 0 121 39.24298 139.2200 1.011916 165.8758 0 122 37.94430 139.2200 1.011916 165.8758 0 123 31.67041 139.2200 1.011916 165.8758 0 124 31.56761 139.2200 1.011916 165.8758 0 125 29.38321 139.2200 1.011916 165.8758 0 126 30.52270 139.2200 1.011916 165.8758 0 127 35.50100 139.2200 1.011916 165.8758 0 128 32.56287 139.2200 1.011916 165.8758 0 129 29.53233 139.2200 1.011916 165.8758 0 130 27.28190 139.2200 1.011916 165.8758 0

179

131 28.28812 139.2200 1.011916 165.8758 0 132 28.15718 139.2200 1.011916 165.8758 0 133 27.42048 139.2200 1.011916 165.8758 0 134 27.02552 139.2200 1.011916 165.8758 0 135 27.05961 139.2200 1.011916 165.8758 0 136 26.81387 139.2200 1.011916 165.8758 0 137 26.90198 139.2200 1.011916 165.8758 0 138 25.47227 139.2200 1.011916 165.8758 0 139 25.47347 134.0384 8.095334 149.4887 45.22588 140 25.45295 128.0377 1.011916 165.8758 0 141 25.64804 123.6561 8.095334 149.4887 45.22588 142 26.44265 116.8553 1.011916 165.8758 0 143 26.34247 112.4738 8.095334 149.4887 45.22588 144 36.44390 99.29129 17.31671 149.4887 61.14516 145 37.11204 94.49074 5.655253 165.8758 9.551563 146 39.28389 89.30906 22.77509 149.4887 61.14516 147 36.81333 83.30842 5.025876 165.8758 9.551563 148 34.13881 77.72668 14.27243 149.4887 61.14516 149 46.78279 72.12606 39.75310 165.8758 9.551563 150 42.03111 69.73526 13.41666 158.8528 35.34836 151 37.64825 66.53490 11.86166 165.8758 9.551563 152 39.51262 62.94394 18.65187 158.8528 35.34836 153 39.97826 60.94374 18.39051 165.8758 9.551563 154 40.33314 56.56216 20.99630 149.4887 61.14516 155 38.11026 49.76138 12.78522 165.8758 9.551563 156 39.34303 44.97978 18.94507 149.4887 61.14516 157 36.87174 38.57906 8.198244 165.8758 9.551563 158 36.13629 33.27642 11.46266 158.8528 55.70001 159 37.53710 27.95584 18.13215 165.8758 9.551563 160 47.38083 25.36500 39.95753 158.8528 35.34836 161 42.44812 19.97386 26.94780 158.8528 35.34836 162 46.01791 14.58271 41.13766 158.8528 35.34836 163 45.65281 8.591504 30.59443 158.8528 35.34836 164 40, ,77796 2, .800314 0 0 22.61294 165 0 0 0 0 0 166 0 0 0 0 0 167 0 0 0 0 0 168 0 0 0 0 0 169 0 0 0 0 0 170 0 0 0 0 0 171 0 0 0 0 0 172 0 0 0 0 0 173 0 0 0 0 0 174 0 0 0 0 0

175 0 0 0 0 0 176 0 0 0 0 0 177 0 0 0 0 0 178 0 0 0 0 0 179 0 0 0 0 0 180 0 0 0 0 0

180

181

ZONE #4 Refrigeration Load

DAY BLDG FRUIT INFIL FAN MISC ENVELOPE TRATION

Zone Total (kWh)

16102.76 33297.56 21278.80 21959.73 4747.345

Daily (kWh)

1 205.3556 0 244.3369 15.34185 0 2 214.7800 1093.906 256.3735 163.6055 136.9436 3 216.9306 1119.772 258.0384 181.5402 14.32734 4 218.4415 27.95584 267.5944 181.5402 14.32734 5 221.8886 109.6213 273.7328 173.8539 41.71606 6 219.1163 291.6030 243.1631 181.5402 14.32734 7 219.8076 737.2636 282.7280 163.6055 114.3306 8 214.2173 1585.708 221.5749 163.6055 91.71772 9 207.6640 1481.917 205.6507 163.6055 114.3306

10 201.1857 1168.274 189.9087 163.6055 69.10478 11 196.9581 1246.509 193.3480 163.6055 91.71772 12 202.0241 778.0955 222.3157 181.5402 14.32734 13 207.1370 1233.330 256.7152 163.6055 136.9436 14 207.5028 2125.516 256.0807 163.6055 159.5565 15 216.6735 1732.844 276.8341 181.5402 14.32734 16 214.6446 184.5085 258.6794 181.5402 14.32734 17 208.8232 592.8359 226.7148 163.6055 136.9436 18 203.1072 1772.866 209.0696 163.6055 69.10478 19 198.7324 739.7589 203.6184 181.5402 14.32734 20 201.3396 223.6467 208.5576 181.5402 14.32734 21 199.4259 223.6467 205.1530 181.5402 14.32734 22 181.1315 223.6467 304.0599 181.5402 14.32734 23 185.5339 216.4648 337.7521 163.6055 69.10478 24 188.5003 212.4644 397.8200 181.5402 14.32734 25 190.2767 212.4644 385.2504 181.5402 14.32734 26 184.1214 212.4644 355.8702 181.5402 14.32734 27 180.8129 208.4828 308.7356 163.6055 69.10478 28 171.3183 194.9002 289.0255 163.6055 69.10478 29 170.9013 185.7181 295.3412 163.6055 69.10478 30 167.7039 178.9173 276.1441 181.5402 14.32734 31 165.5610 174.9358 284.4337 163.6055 69.10478 32 166.3802 162.5533 289.0255 163.6055 69.10478 33 166.0321 152.1711 308.4068 163.6055 69.10478 34 166.2958 141.3888 318.8012 163.6055 69.10478 35 162.6999 129.0063 287.0092 163.6055 69.10478 36 164.2593 118.2240 291.1267 163.6055 69.10478

182

37 157. 3131 111.8233 266. 2240 181. 5402 14. 32734 38 154. 8854 107.0417 248. 4118 163. 6055 69. 10478 39 157. 9204 96.25946 283. 4695 163. 6055 69. 10478 40 164. 4000 89.45868 288. 8362 181. 5402 14. 32734 41 161. 5249 89.45868 324. 4153 181. 5402 14. 32734 42 171. 9047 89.45868 352. 8714 181. 5402 14. 32734 43 162. 8675 89.45868 295. 6867 181. 5402 14. 32734 44 156. 4355 89.45868 289. 4867 181. 5402 14. 32734 45 159. 7670 89.45868 325. 4211 181. 5402 14. 32734 46 160. 2357 89.45868 313. 9044 181. 5402 14. 32734 47 157. 4481 89.45868 309. 2618 181. 5402 14. 32734 48 160. 0524 119.6885 320. 2646 173. 8539 41. 71606 49 157. 6429 289.3363 246. ,9796 181. 5402 14. 32734 50 144. 7117 95.04984 187. ,5291 181. 5402 14. 32734 51 143. ,4070 95.04984 216. ,7026 181. 5402 14. ,32734 52 124. ,3375 95.04984 216. ,6147 181. 5402 14. ,32734 53 138. ,4667 265.2685 299. ,5522 163. ,6055 114.3306 54 146. ,4917 1106.754 286. ,0983 163. ,6055 114.3306 55 136. .6416 1064.140 223. .2119 181. ,5402 14. .32734 56 140. .2885 139.7792 266. .2563 181. ,5402 14. .32734 57 136, .0788 139.7792 215, .2137 181. ,5402 14. .32734 58 128, .4702 139.7792 150, .0904 181. ,5402 14. .32734 59 120, .4850 139.7792 100, .6157 181. .5402 14, .32734 60 108, .9896 139.7792 91.58801 181. .5402 14, .32734 61 113, .5052 139.7792 168 .5840 181, .5402 14, .32734 62 116, .3311 139.7792 165 .0158 181, .5402 14, .32734 63 118 .9386 139.7792 163 .3076 181, .5402 14, .32734 64 116 .7265 139.7792 169 .0663 181, .5402 14, .32734 65 122 .9243 139.7792 228 .0643 181, .5402 14 .32734 66 137 .4376 139.7792 312 .7001 181, .5402 14 .32734 67 136 .0218 139.7792 230 .0886 181, .5402 14 .32734 68 127 .9697 139.7792 185 .5381 181, .5402 14 .32734 69 123 .6838 139.7792 189 .0821 181 .5402 14 .32734 70 118 .4525 139.7792 172 .1047 181 .5402 14 .32734 71 120 .6127 139.7792 190 .2199 181 .5402 14 .32734 72 119 .5853 139.7792 161 .9448 181 .5402 14 .32734 73 113 .4122 139.7792 141 .2355 181 .5402 14 .32734 74 118 .3090 139.7792 199 .1040 181 .5402 14 .32734 75 124 .0080 139.7792 215 .4345 181 .5402 14 .32734 76 126 .9680 139.7792 186 .5990 181 .5402 14 .32734 77 114 .1954 139.7792 133 .4337 181 .5402 14 .32734 78 120 .0640 139.7792 193 .0023 181 .5402 14 .32734 79 116 .9400 139.7792 128 .7481 181 .5402 14 .32734 80 105 .4454 139.7792 101 .9921 181 .5402 14 .32734 81 103 .4363 139.7792 118 .3922 181 .5402 14 .32734 82 103 .8149 139.7792 130 .7965 181 .5402 14 .32734 83 99.1 53624 139.7792 153 .1412 181 .5402 14 .32734

183

84 115 .0529 139.7792 170.4752 181. 5402 14. 32734 85 119 .6091 139.7792 174.4020 181. 5402 14. 32734 86 114 .5377 139.7792 99.40621 181. 5402 14. 32734 87 104 .6584 139.7792 85.70174 181. 5402 14. 32734 88 110 1.4749 139.7792 131.3008 181. 5402 14. 32734 89 108 .5330 139.7792 96.04800 181. 5402 14. 32734 90 98. 51865 139.7792 48.19098 181. 5402 14. 32734 91 90. 36516 139.7792 30.09629 181. 5402 14. 32734 92 81. 09608 139.7792 9.034765 181. 5402 14. 32734 93 72. 93601 139.7792 1.149790 181. 5402 14. 32734 94 63. 34801 139.7792 1.149790 181. 5402 14. ,32734 95 58. 10627 139.7792 1.149790 181. 5402 14. ,32734 96 53. 84000 139.7792 1.149790 181. 5402 14. ,32734 97 57. 22597 137.3884 11.43368 173. 8539 41. ,71606 98 62. 85812 134.1880 38.96468 181. 5402 14. ,32734 99 63. 70335 129.0063 40.54952 163. ,6055 69. ,10478

100 63. 56225 123.0057 30.68186 181. ,5402 14. ,32734 101 57. 66473 117.0239 18.44892 163. ,6055 69. .10478 102 51. 00760 111.8233 1.149790 181. ,5402 14. ,32734 103 44. 30757 105.0415 9.198323 163. .6055 69. .10478 104 38. 12030 100.6410 1.149790 181. ,5402 14. .32734 105 27. ,84413 93.45915 9.198323 163. .6055 69, .10478 106 17. ,50785 89.45868 1.149790 181. .5402 14, .32734 107 25. ,92521 84.67708 9.198323 163, .6055 69, .10478 108 51. ,31311 78.27636 19.89321 181, .5402 14, .32734 109 43. ,29279 72.69465 9.198323 163, .6055 69 .10478 110 27. .47856 67.09403 1.149790 181, .5402 14 .32734 111 23. .83180 61.91235 9.198323 163 .6055 69 .10478 112 26. .13076 55.91168 1.149790 181 .5402 14 .32734 113 23. .12069 49.52987 9.198323 163 .6055 69 .10478 114 18, .54254 44.72935 1.149790 181 .5402 14 .32734 115 33, .35738 37.94749 8.649294 163 .6055 69 .10478 116 46, .49019 33.54700 2.638447 181 .5402 14 .32734 117 44, .55704 27.16521 10.17559 163 .6055 69 .10478 118 46, .21883 17.18300 11.26182 163 .6055 69 .10478 119 45, .97056 11.18233 2.460151 181 .5402 14 .32734 120 44, .83312 11.18233 2.487216 181 .5402 14 .32734 121 40, .70215 7.240621 4.221291 173 .8539 63 .87675 122 39, .22969 0.004000 0 0 o.. 452258 123 0 0 0 0 0 124 0 0 0 0 0 125 0 0 0 0 0 126 0 0 0 0 0 127 0 0 0 0 0 128 0 0 0 0 0 129 0 0 0 0 0 130 0 0 0 0 0

00

oooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooo c

ovo

cvjv

om

or-in

Hr-

vo

nc

go

vo

vo

^rjv

otM

o

ojr

-i'n

inin

nH

M

oin

cn

^rg

^-m

co

inu

) t^

m^

tNO

vo

vo

on

co

OJ . . . . vo • • • •

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

H^

J'r

Mt

>» H o

•* n

r^ vo rg oo CM in at in

eg t^ H co

GO

• •

• • o> n

oo ■>* H ■*

in

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OC

Ot^

UJ

•H r^ o

at co rH

CM en

in H o

■>* CO CO O

H

HM

ro"tfm

vo

r^c

oo

>O

rHc

MM

-*mv

oi^

co

a>

OH

cjO

'<a

«m

u>

i^ro

o>

oH

c>

an

-<i'in

vo

r^c

oo

>

r>

(on

nn

nc

on

n-<

i<"s

i''<*'*

-*'^

''^,'

*M'-*in

inin

inin

inin

inin

inw

)vD

vo

vo

vo

vD

vo

vo

vo

«)

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

H

M ro t- CM

■* •^

"sj 1 in

o H oi n

•* r- r- r^ r^ t^ H H

H H

H

185

175 66.59179 74.32809 40.01501 163.6055 23.87890 176 62.19194 77.48574 32.34327 163.6055 69.10478 177 62.15426 59.12150 30.78765 163.6055 114.3306 178 63.59774 40.74780 30.97440 163.6055 91.71772 179 66.00063 25.77451 29.56984 163.6055 91.71772 180 64.16916 7.200809 0 0 67.83883

186

ZONE #5 Refrigeration Load

DAY BLDG FRUIT INFIL FAN MISC ENVELOPE TRATION

Zone Total (kWh)

16305.29 31549.45 21308.25 22054.53 4853.102

Daily (kWh)

1 206.6704 0 268.6033 15.34185 0 2 214.4493 1312.687 257.2870 163.6055 159.5565 3 216.6899 1343.726 258.1526 181.5402 14.32734 4 218.1333 33.54700 267.7086 181.5402 14.32734 5 220.9699 33.54700 270.3977 181.5402 14.32734 6 218.8404 351.3632 252.1252 163.6055 69.10478 7 219.9773 1114.409 283.6415 163.6055 114.3306 8 213.2956 1378.109 222.4885 163.6055 69.10478 9 208.8832 1646.217 206.5642 163.6055 159.5565

10 202.5582 1846.029 190.8222 163.6055 114.3306 11 198.3309 1166.412 185.4137 181.5402 14.32734 12 203.6619 134.1880 222.4299 181.5402 14.32734 13 207.1899 134.1880 248.7808 181.5402 14.32734 14 206.2535 134.1880 248.1463 181.5402 14.32734 15 215.8410 134.1880 276.9483 181.5402 14.32734 16 213.9705 624.3216 267.6414 163.6055 114.3306 17 207.7871 1683.329 227.6284 163.6055 204.7824 18 203.9713 2535.852 209.9832 163.6055 69.10478 19 200.1016 728.5765 203.7326 181.5402 14.32734 20 201.6092 212.4644 208.6718 181.5402 14.32734 21 199.7599 212.4644 205.2672 181.5402 14.32734 22 179.7344 200.5198 313.0219 163.6055 159.5565 23 188.0290 178.9173 329.8178 181.5402 14.32734 24 190.6000 178.9173 397.9342 181.5402 14.32734 25 190.9138 178.9173 385.3646 181.5402 14.32734 26 185.1439 178.9173 355.9844 181.5402 14.32734 27 182.8695 178.9173 300.8013 181.5402 14.32734 28 173.9853 178.9173 281.0912 181.5402 14.32734 29 172.6391 178.9173 287.4067 181.5402 14.32734 30 169.6117 178.9173 276.2583 181.5402 14.32734 31 167.2842 178.9173 276.4994 181.5402 14.32734 32 168.1993 178.9173 281.0912 181.5402 14.32734 33 167.1865 178.9173 300.4725 181.5402 14.32734 34 167.2409 174.9358 319.7147 163.6055 69.10478 35 163.8395 162.5533 287.9227 163.6055 69.10478 36 165.9077 151.7710 292.0402 163.6055 69.10478

187

37 159.6784 145.3703 266.3382 181.5402 14.32734 38 156.8491 140.5887 249.3253 163.6055 69.10478 39 160.8376 115.0426 284.3831 163.6055 159.5565 40 165.8419 100.6410 288.9504 181.5402 14.32734 41 162.7093 94.25923 333.3773 163.6055 69.10478 42 171.2143 76.69509 361.8334 163.6055 114.3306 43 163.4743 67.09403 295.8009 181.5402 14.32734 44 157.0614 67.09403 289.6009 181.5402 14.32734 45 159.9077 340.2933 334.3831 163.6055 69.10478 46 160.1522 846.7767 322.8667 163.6055 69.10478 47 157.6037 478.0317 309.3759 181.5402 14.32734 48 160.2290 89.45868 316.9293 181.5402 14.32734 49 158.1028 89.45868 247.0938 181.5402 14.32734 50 147.1806 89.45868 187.6433 181.5402 14.32734 51 145.9606 89.45868 216.8168 181.5402 14.32734 52 123.6776 89.45868 216.7289 181.5402 14.32734 53 137.4685 132.0669 300.4657 163.6055 114.3306 54 145.2363 1101.163 287.0119 163.6055 114.3306 55 137.3658 97.45959 232.1740 163.6055 114.3306 56 140.5275 1036.184 266.3704 181.5402 14.32734 57 135.5778 111.8233 215.3279 181.5402 14.32734 58 129.6084 111.8233 150.2046 181.5402 14.32734 59 123.1700 111.8233 100.7299 181.5402 14.32734 60 112.7362 111.8233 91.70220 181.5402 14.32734 61 115.2268 111.8233 168.6982 181.5402 14.32734 62 116.9508 111.8233 165.1300 181.5402 14.32734 63 120.0187 111.8233 163.4218 181.5402 14.32734 64 118.5855 111.8233 169.1805 181.5402 14.32734 65 123.4219 111.8233 228.1785 181.5402 14.32734 66 136.5861 111.8233 312.8143 181.5402 14.32734 67 135.0615 111.8233 230.2028 181.5402 14.32734 68 128.8214 111.8233 185.6522 181.5402 14.32734 69 124.9189 111.8233 189.1962 181.5402 14.32734 70 119.1873 111.8233 172.2189 181.5402 14.32734 71 121.4923 111.8233 190.3341 181.5402 14.32734 72 120.6416 111.8233 162.0590 181.5402 14.32734 73 115.2914 111.8233 141.3496 181.5402 14.32734 74 119.9479 111.8233 199.2182 181.5402 14.32734 75 124.6955 111.8233 215.5487 181.5402 14.32734 76 127.6737 111.8233 186.7132 181.5402 14.32734 77 116.1245 111.8233 133.5479 181.5402 14.32734 78 121.5635 111.8233 193.1165 181.5402 14.32734 79 117.6655 111.8233 128.8623 181.5402 14.32734 80 108.0380 111.8233 102.1063 181.5402 14.32734 81 105.2276 111.8233 118.5064 181.5402 14.32734 82 105.2489 111.8233 130.9107 181.5402 14.32734 83 99.94291 111.8233 153.2554 181.5402 14.32734

188

84 115.5002 111.8233 170.5894 181.5402 14.32734 85 120.0577 111.8233 174.5162 181.5402 14.32734 86 115.8267 111.8233 99.52040 181.5402 14.32734 87 108.0750 111.8233 85.81593 181.5402 14.32734 88 112.7374 111.8233 131.4150 181.5402 14.32734 89 110.5517 111.8233 96.16219 181.5402 14.32734 90 101.9714 111.8233 48.30517 181.5402 14.32734 91 94.62534 111.8233 30.21048 181.5402 14.32734 92 85.80626 111.8233 9.148957 181.5402 14.32734 93 78.09593 111.8233 1.263982 181.5402 14.32734 94 68.92813 111.8233 1.263982 181.5402 14.32734 95 63.19274 111.8233 1.263982 181.5402 14.32734 96 58.73723 111.8233 1.263982 181.5402 14.32734 97 60.65712 111.8233 8.098502 181.5402 14.32734 98 65.06537 111.8233 39.07887 181.5402 14.32734 99 64.77186 111.8233 32.61516 181.5402 14.32734

100 64.95849 111.8233 30.79605 181.5402 14.32734 101 59.62994 111.8233 10.51458 181.5402 14.32734 102 53.94722 105.8416 10.11185 163.6055 69.10478 103 48.13948 100.6410 1.263982 181.5402 14.32734 104 42.79242 93.85917 10.11185 163.6055 69.10478 105 33.99276 89.45868 1.263982 181.5402 14.32734 106 25.29851 89.45868 1.263982 181.5402 14.32734 107 32.74159 89.45868 1.263982 181.5402 14.32734 108 54.68145 84.67708 28.85527 163.6055 69.10478 109 45.87821 78.27636 1.263982 181.5402 14.32734 110 32.64412 72.69465 10.11185 163.6055 69.10478 111 29.96307 67.09403 1.263982 181.5402 14.32734 112 31.91833 61.91235 10.11185 163.6055 69.10478 113 31.10578 55.91168 1.263982 181.5402 14.32734 114 25.35100 49.52987 10.11185 163.6055 69.10478 115 38.17959 44.72935 0.714953 181.5402 14.32734 116 47.80823 37.94749 11.60051 163.6055 69.10478 117 45.77005 33.54700 2.241257 181.5402 14.32734 118 47.22006 27.16521 12.17535 163.6055 69.10478 119 46.99399 17.18300 11.42222 163.6055 69.10478 120 46.15746 7.240621 6.393355 173.8539 63.87675 121 42.47798 0.111823 0.886111 181.5402 14.32734 122 41.64892 0.004000 0 0 0.452258

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

123 0 124 0 125 0 126 0 127 0 128 0 129 0 130 0

189

131 0 0 0 132 0 0 0 133 0 0 0 134 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

135 0 0 0 0 0 136 0 0 0 0 0 137 0 0 0 0 0 138 0 0 0 139 0 0 0 140 0 0 0 141 0 0 0 0 0 142 0 0 0 0 0 143 0 0 0 0 0 144 0 0 0 0 0 145 0 0 0 146 0 0 0 147 0 0 0 148 0 0 0 149 0 0 0 150 0 0 0 0 0 151 0 0 0 0 0 152 0 0 0 153 0 0 0 154 0 0 0 155 0 0 0 6 0 156 0 0 0 0 0 157 0 0 0 0 0 158 0 0 0 0 0 159 0 0 0 160 0 0 0 161 0 0 0 162 0 0 0 163 0 0 0 164 0 0 0 165 0 0 7.384260 0 0 166 0 0 14.66655 0 0 167 0 0 11.61141 0 0 168 0 0 13.35825 169 0 0 13.03783 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 170 0 0 9.778752 171 43.13292 9.645423 18.56901 0 0 172 44.17444 30.93838 19.99679 0 0 173 46.92544 64.02019 24.26515 0 0 174 51.70318 83.63492 28.27680 0 0

190

175 63.75242 99.10410 40.92855 163.6055 23.87890 176 60.73093 105.4415 33.25680 163.6055 69.10478 177 61.51792 93.85917 31.70119 163.6055 69.10478 178 63.13848 70.31331 31.88794 163.6055 159.5565 179 65.65357 40.36669 30.48337 163.6055 159.5565 180 64.03225 9.601075 0 0 90.45177