Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

29
Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6

Transcript of Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Page 1: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Rectangular FunctionImpulse Function

Continuous Time Systems

2.4 &2.6

Page 2: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

How do you represent a unit rectangular function mathematically?

Page 3: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Fundamental(1)

u(t)

Page 4: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Fundamental(2)

u(t-0.5)

u(-t-0.5)

u(t+0.5)

u(-t+0.5)

Page 5: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Block Function (window)• rect(t/T)

• Can be expressed as u(T/2-t)-u(-T/2-t) – Draw u(t+T/2) first; then reverse it!

• Can be expressed as u(t+T/2)-u(t-T/2)

• Can be expressed as u(t+T/2)u(T/2-t)

-T/2 T/2

1

-T/2 T/2

1

-T/2 T/2

1

-T/2 T/2

Page 6: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Application

• The rectangular pulse can be used to extract part of a signal

Page 7: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

c03f10A Simple Cell Phone Charger Circuit

(R1 is necessary)

Another Application:Signal strength indicator

Page 8: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Mathematical Modeling

Modify the unit rectangular pulse:1. Shift to the right by To/42. The period is To/2

V1(t) V1(t-To) V1(t-2To)

Page 9: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Application of Impulse Function

The unit impulse function is used to model sampling operation, i.e. the selection of a value of function at a particular time instant using analog to digital converter.

Page 10: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Generation of an Impulse Function

Ramp function

epsilon approaches 0

Page 11: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Shifted Impulse Function

0

0 to

d(t)

d(t-to)

Page 12: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

The Impulse Function

We use a vertical arrow to represent 1/ε because g(t) Increases dramatically as ε approaches 0.

Page 13: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Another Definition of the Impulse Function

Page 14: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Mathematica Connection

Page 15: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

f[t]

f[t-2]

Page 16: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

Page 17: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

Shifted Unit Step Function

Slope is sharp at t=2

Page 18: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

Page 19: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

g(at), a>1, e.g. 2

area: 1/ ε ε /2=1/21/ ε 2ε=2

to/2 to/2+ ε/2

1/ ε

g(2t),

11/2

δ(t)

Page 20: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

g(at), a<1, e.g. 1/2

area: 1/ ε 2ε=2

2to 2to+ 2ε

1/ ε

g(2t),

1

δ(t) 2

2to

Page 21: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Property

d(t)

Page 22: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Example

Page 23: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

• A system is an operation for which cause-and-effect relationship exists– Can be described by block diagrams – Denoted using transformation T[.]

• System behavior described by mathematical model

Continuous-Time Systems

T [.]X(t) y(t)

(meat grinder)

Page 24: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Inverting Amplifier

Vout=-(R1/R2)

Page 25: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Inverting Summer Example

Vout=-RF(V1/R1+V2/R2)If RF/R1=1, RF/R2=1Vout=-(V1+V2)

Page 26: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Multiplier

Page 27: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Parallel Connection

Page 28: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Cascade Connection

Page 29: Rectangular Function Impulse Function Continuous Time Systems 2.4 &2.6.

Feedback