Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

113
Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier

Transcript of Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Page 1: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Reconstructing gene regulatory networks

with probabilistic models

Marco GrzegorczykDirk Husmeier

Page 2: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 3: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 4: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Regulatory network

Page 5: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Network unknown

High-throughput experiments

Postgenomic

data

Machine learning

Statistics

Page 6: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 7: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 8: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Elementary molecular biological processes

Page 9: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Description with differential equations

Rates

Concentrations

Kinetic parameters q

Page 10: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Given: Gene expression time series

Can we infer the correct gene regulatory network?

Page 11: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Parameters q known: Numerically integrate the differential equations for different hypothetical networks

Page 12: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Model selection for known parameters q

Gene expression time series predicted with different modelsMeasured gene

expression time series

Highest likelihood: best model

Compare

Page 13: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Model selection for unknown parameters q

Gene expression time series predicted with different modelsMeasured gene

expression time series

Highest likelihood: over-fitting

Page 14: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Bayesian model selection

Select the model with the highest posterior probability:

This requires an integration of the whole parameter space:

This integral is usually intractable

Page 15: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 16: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Marginal likelihoods for the alternative pathways

Computational expensive, network reconstruction ab initio unfeasible

Page 17: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 18: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Objective: Reconstruction of regulatory networks ab initio

Higher level of abstraction: Bayesian networks

Page 19: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Bayesian networks

A

CB

D

E F

NODES

EDGES

•Marriage between graph theory and probability theory.

•Directed acyclic graph (DAG) representing conditional independence relations.

•It is possible to score a network in light of the data: P(D|M), D:data, M: network structure.

•We can infer how well a particular network explains the observed data.

),|()|(),|()|()|()(

),,,,,(

DCFPDEPCBDPACPABPAP

FEDCBAP

Page 20: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Bayes net

ODE model

Page 21: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

[A]= w1[P1] + w2[P2] + w3[P3] +

w4[P4] + noise

Linear model

A

P1

P2

P4

P3

w1

w4

w2

w3

Page 22: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Nonlinear discretized model

P1

P2

P1

P2

Activator

Repressor

Activator

Repressor

Activation

Inhibition

Allow for noise: probabilities

Conditional multinomial distribution

Page 23: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Model Parameters q

Integral analytically tractable!

Page 24: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 25: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 26: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Example: 2 genes 16 different network structures

Best network: maximum score

Page 27: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Identify the best network structure

Ideal scenario: Large data sets, low noise

Page 28: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Uncertainty about the best network structure

Limted number of experimental replications, high noise

Page 29: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Sample of high-scoring networks

Page 30: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges

Page 31: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Sample of high-scoring networks

Feature extraction, e.g. marginal posterior probabilities of the edges

High-confident edge

High-confident non-edge

Uncertainty about edges

Page 32: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Can we generalize this scheme to more than 2 genes?

In principle yes.

However …

Page 33: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Number of structures

Number of nodes

Page 34: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Complete enumeration unfeasible Hill climbing

increasesAccept move when

Page 35: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Configuration space of network structures

Local optimum

Page 36: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Configuration space of network structures

MCMC Local change

If accept

If accept with probability

Page 37: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Algorithm converges to

Page 38: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Madigan & York (1995), Guidici & Castello (2003)

Page 39: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Configuration space of network structures

Problem: Local changes small steps slow convergence, difficult to cross valleys.

Page 40: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Configuration space of network structures

Problem: Global changes large steps low acceptance slow convergence.

Page 41: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Configuration space of network structures

Can we make global changes that jump onto other peaks and are likely to be accepted?

Page 42: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 43: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Conventional scheme New scheme

MCMC trace plots

Plot of against iteration number

Page 44: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 45: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 46: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 47: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Cell membran

nucleus

Example: Protein signalling pathway

TF

TF

phosphorylation

-> cell response

Page 48: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Evaluation on the Raf signalling pathway

From Sachs et al Science 2005

Cell membrane

Receptor molecules

Inhibition

Activation

Interaction in signalling pathway

Phosphorylated protein

Page 49: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Flow cytometry data

• Intracellular multicolour flow cytometry experiments: concentrations of 11 proteins

• 5400 cells have been measured under 9 different cellular conditions (cues)

• Downsampling to 100 instances (5 separate subsets): indicative of microarray experiments

Page 50: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Simulated data or “gold standard” from the literature

Page 51: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Simulated data or “gold standard” from the literature

Page 52: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Simulated data or “gold standard” from the literature

Page 53: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

From Perry Sprawls

Page 54: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

ROC curve

5 FP counts

BN

GGM

RN

Page 55: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

ROC curveFP

TP

Four different evaluation criteria

DGE UGE

TP for fixed FP

Area under the curve (AUC)

Page 56: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Synthetic data, observations

Relevance networksBayesian

networksGraphical Gaussian models

Page 57: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Synthetic data, interventions

Page 58: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Cytometry data, interventions

Page 59: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 60: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 61: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Can we complement microarray data with prior knowledge from public data bases like KEGG?

KEGG pathwayMicroarray data

Page 62: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

How do we extract prior knowledge from a collection of KEGG pathways?

Page 63: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Total number of times the gene pair [i,j ] is included in the extracted pathways

Total number of edges i j that appear in the extracted pathways

=

Example: Extract 20 pathways, 10 contain [i,j ], 8 contain i j

B = 8/10 = 0.8i,j

Relative frequency of edge occurrence

Page 64: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Prior knowledge from KEGG

Raf network

0.25

00.5

0

0.5

0.87

0

1

0.5

0 0

0.5

0

10.71

0

0

Page 65: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Prior distribution over networks

Deviation between the network M and the prior knowledge B:

Prior knowledge ε [0,1]

Graph ε {0,1}

Hyperparameter

Page 66: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Hyperparameter β trades off data versus prior knowledge

KEGG pathwayMicroarray data

β

Page 67: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Hyperparameter β trades off data versus prior knowledge

KEGG pathwayMicroarray data

β small

Page 68: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Hyperparameter β trades off data versus prior knowledge

KEGG pathwayMicroarray data

β large

Page 69: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Sample networks and hyperparameters from the posterior distribution

Page 70: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Revision

Prior distribution

Marginal likelihood

Integral analytically tractable for Bayesian networks

Page 71: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Application to the Raf pathway:

Flow cytometry data and KEGG

Page 72: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

ROC curveFP

TP

Four different evaluation criteria

DGE UGE

TP for fixed FP

Area under the curve (AUC)

Page 73: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

β

Page 74: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 75: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 76: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Example: 4 genes, 10 time points

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Page 77: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Standard dynamic Bayesian network: homogeneous model

Page 78: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Our new model: heterogeneous dynamic Bayesian network. Here: 2 components

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Page 79: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Our new model: heterogeneous dynamic Bayesian network. Here: 3 components

Page 80: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

We have to learn from the data:

• Number of different components

• Allocation of time points

Page 81: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Two MCMC strategies

q

k

h

Number of components (here: 3)

Allocation vector

Page 82: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 83: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Synthetic study: posterior probability of the number of components

Page 84: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Circadian clock in Arabidopsis thaliana Collaboration with the Institute of Molecular Plant

Sciences (Andrew Millar)

• Focus on 9 circadian genes.•2 time series T20 and T28 of microarray gene expression data from Arabidopsis thaliana.• Plants entrained with different light:dark cycles10h:10h (T20) and 14h:14h (T28)

Page 85: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

macrophage

cytomegalovirus

Interferon gamma

Macrophage

Cytomegalovirus (CMV)

Interferon gamma IFNγ

InfectionTreatment

Collaboration with DPM

Page 86: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

macrophage

IFNγ12 hour time course measuring total RNA

0 1 2 3 4 5 6 7 8 9 10 11 12

72 Agilent Arrays

Time series statistical analysis (using EDGE)

Clustering Analysis

30 min sampling

24 samples per group:

• Infection with CMV

• Pre-treatment with IFNγ

• IFNγ + CMV

CMV

Page 87: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Posterior probability of the number of components

Page 88: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

IRF1

IRF2

IRF3

Literature “Known” interactions between three cytokines: IRF1, IRF2 and IRF3

Evaluation: Average marginal posterior probabilities of

the edges versus non-edges

Page 89: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Sample of high-scoring networks

Page 90: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

IRF1

IRF2

IRF3

Gold standard known Posterior probabilities of true interactions

Page 91: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

AUROC scores

New modelBGeBDe

Page 92: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Collaboration with the Institute of Molecular Plant

Sciences at Edinburgh University

2 time series T20 and T28 of microarray gene expression data from Arabidopsis thaliana.

- Focus on: 9 circadian genes: LHY, CCA1, TOC1, ELF4,

ELF3, GI, PRR9, PRR5, and PRR3

- Both time series measured under constant light condition

at 13 time points: 0h, 2h,…, 24h, 26h

- Plants entrained with different light:dark cycles

10h:10h (T20) and 14h:14h (T28)

Circadian rhythms in Arabidopsis thaliana

Page 93: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Gene expression time series plots (Arabidopsis data T20 and T28)

T28 T20

Page 94: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Posterior probability of the number of components

Page 95: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Predicted network

Blue – activation

Red – inhibition

Black – mixture

three different line widths - thin = PP>0.5- medium = PP>0.75- fat = PP>0.9

Page 96: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Overview

• Introduction

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 97: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Standard dynamic Bayesian network: homogeneous model

Page 98: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Heterogeneous dynamic Bayesian network

Page 99: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Heterogenous dynamic Bayesian network with node-specific breakpoints

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

X(1) X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X1,10

X(2) X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 X2,10

X(3) X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8 X3,9 X3,10

X(4) X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8 X4,9 X4,10

Page 100: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Evaluation on synthetic data

X

Y(1) Y(2) Y(3)

f: three phase-shifted sinusoids

BGe

Heterogeneous BNet without/with nodespecific

breakpoints

AUROC

Page 101: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Four time series for A. thaliana under different experimental conditions (KAY,KDE,T20,T28)

Blue – activation

Red – inhibition

Black – mixture

three different line widths - thin = PP>0.5- medium = PP>0.75- fat = PP>0.9

Network obtained for merged data

Page 102: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

KAY_LL KDE_LL T20 T28

Page 103: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

datadata data datadata data

Monolithic Separate

Propose a compromise between the two

Page 104: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 105: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.
Page 106: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

M1 M221

D1 D2

M*

MII

DI

. . .

Compromise between the two previous ways of combining the data

Page 107: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Original work with Adriano:

Poor convergence and mixing due too strong coupling effects.

Marco’s current work:

Improve convergence and mixing by weakening the coupling.

Page 108: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Mean absolute deviation of edge posterior probabilities (independent BN inference)

KAY KDE T20 T28

KAY --- 0.14 0.15 0.14

KDE 0.14 --- 0.19 0.15

T20 0.15 0.19 --- 0.10

T28 0.14 0.15 0.10 ---

Page 109: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Mean absolute deviation of edge posterior probabilities (coupled BN inference)

KAY KDE T20 T28

KAY --- 0.11 0.12 0.11

KDE 0.11 --- 0.13 0.11

T20 0.12 0.13 --- 0.06

T28 0.11 0.11 0.06 ---

Page 110: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Mean absolute deviation of edge posterior (independent BN - coupled BN)

KAY KDE T20 T28

KAY --- 0.03 0.03 0.03

KDE 0.03 --- 0.05 0.03

T20 0.03 0.05 --- 0.04

T28 0.03 0.03 0.04 ---

Page 111: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Summary

• Differential equation models

• Bayesian networks

• Comparative evaluation

• Integration of biological prior knowledge

• A non-homogeneous Bayesian network for non-stationary processes

• Current work

Page 112: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Adriano Werhli

Marco Grzegorzcyk

Page 113: Reconstructing gene regulatory networks with probabilistic models Marco Grzegorczyk Dirk Husmeier.

Thank you!

Any questions?