Recent Progress in the Patterned Media

22
1 Workshop at U. AL Toshiba Kikitsu 1 Recent Progress in the Patterned Media A. Kikitsu , H. Hieda, M. Sakurai, Y. Kamata, and K. Naito Toshiba Corp., Corporate R&D Center OUTLINE: (1) Introduction (2) Fabrication process (3) Flyability / Flattening (4) Magnetic properties (5) Signal properties (6) Summary

Transcript of Recent Progress in the Patterned Media

1 Workshop at U. AL Toshiba Kikitsu1

Recent Progress in the Patterned Media

A. Kikitsu,H. Hieda, M. Sakurai, Y. Kamata, and K. NaitoToshiba Corp., Corporate R&D Center

OUTLINE: (1) Introduction(2) Fabrication process(3) Flyability / Flattening(4) Magnetic properties(5) Signal properties(6) Summary

2 Workshop at U. AL Toshiba Kikitsu2

Introduction: concept of the patterned media

20 x 100 nm

patterned media:no thermal fluctuation

current medium:thermal fluctuation ofsmall magnetic grains

recording head

track

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

NS

NS

NS

NS

SN

SN

SN

data track

recording head

recording medium

magnetic dot;one-bit / dot

<8nm

3 Workshop at U. AL Toshiba Kikitsu3

Challenging Issues:fabricationflyability / flattening

Engineering Issues:magnetic designpositioning / servosignal processing (synchronous writing)head design

R&D issues for the patterned media

R. White: IEEE Trans. Magn., 33 p.990 (1997)Nakatani: Japanese Pat. (1989)

4 Workshop at U. AL Toshiba Kikitsu4

(1)fabrication process

highest barrier for the patterned mediadifficulties compare to the semiconductor process

- size ~ cutting edge technology- throughput ~ orders of faster

highest barrier for the patterned mediadifficulties compare to the semiconductor process

- size ~ cutting edge technology- throughput ~ orders of faster

5 Workshop at U. AL Toshiba Kikitsu5

Fabrication (I) - basic design

substrate patterning☺no film etching process

(conventional process)☺high throughput☹pseudo patterned media

- magnetic layer in a groove☹difficulty for thick (perpendicular) media

substrate patterning☺no film etching process

(conventional process)☺high throughput☹pseudo patterned media

- magnetic layer in a groove☹difficulty for thick (perpendicular) media

magnetic layer patterning☺ideal patterned media☺any layer structure is acceptable☹low throughput & dust

magnetic layer patterning☺ideal patterned media☺any layer structure is acceptable☹low throughput & dust

6 Workshop at U. AL Toshiba Kikitsu6

Fabrication (II) - examples of two designs

substrate pattering(KOMAG: DTM)

wet etching (Al/NiP sub.)

substrate pattering(KOMAG: DTM)

wet etching (Al/NiP sub.)

glass substrateunderlayer

magnetic dots

magnetic layer patterningion milling (CoPtCr layer)

magnetic layer patterningion milling (CoPtCr layer)

D. Wachenschwanz: IEEE magn., 41 p.670 (2005)

Y. Kamata: Intermag 06 GE-09

7 Workshop at U. AL Toshiba Kikitsu7

Fabrication (III) - etching mask formation

- electron beam (EB) direct drawing- ion beam exposure through stencil mask-nano imprint lithography (NIL)

: advantage in mass production

- electron beam (EB) direct drawing- ion beam exposure through stencil mask-nano imprint lithography (NIL)

: advantage in mass production

P. R. Krauss and S. Y. Chou : J. Vac. Sci. Technol., B 13, p.2850 (1995)

8 Workshop at U. AL Toshiba Kikitsu8

Fabrication (IV) - pattern drawing

Electron Beam Drawing: 50nm or less☺ arbitrary shape .. servo☹ time consuming

Self Assembling: ~10nm☺ simultaneous formation in a large area☹ tetragonal lattice☹ defects / domains -> artificial control

9 Workshop at U. AL Toshiba Kikitsu9

nano imprinting

self-assembling

mastering byLBR / EBR

Example of mass production

stamper

etching(ion milling)

10 Workshop at U. AL Toshiba Kikitsu10

Patterned media by a self assembled mask

after AC erase after DC erase

Naito et al.: IEEE Trans. Magn. 38,1949 (2002)

aligned CoCrPt dots; 40 nm

11 Workshop at U. AL Toshiba Kikitsu11

(2)flyablity / flattening

key issue for high-density HDDflying height < 10nm;

no dust, no debris, no protrusionadditional process -> throughput issue

key issue for high-density HDDflying height < 10nm;

no dust, no debris, no protrusionadditional process -> throughput issue

12 Workshop at U. AL Toshiba Kikitsu12

Flyablity / flattening (I) - current results

No flattening (substrate patterning: KOMAG)reduction in flying height but good flyabilty (TMRC 2004)

No flattening (substrate patterning: KOMAG)reduction in flying height but good flyabilty (TMRC 2004)

Filling & flattening:bias-sputtered SiO2 + etching back (TDK)

surface roughness: <0.4nmall-dry process - good productivity

Filling & flattening:bias-sputtered SiO2 + etching back (TDK)

surface roughness: <0.4nmall-dry process - good productivity

Hattori et al: IEEE Trans Magn.40 p.2510 (2004)

flying height fluctuation

continuous DTM

13 Workshop at U. AL Toshiba Kikitsu13

Flyablity / flattening (II) - Toshiba

substrate / underlayer

SOG

CoCrPtC over coat

Y. Kamata: Intermag06 GE-09

SOG filling + etching backa few nm of protrusion

SOG filling + etching backa few nm of protrusion

SOG

14 Workshop at U. AL Toshiba Kikitsu14

vibrating

lubricant adhesion

flat media (before etching)patterned media (SOG + etching)

Result of Flyablity test - Toshiba◆Ring head◆Nominal flying height : 19.5nm◆Rotation speed : 4200rpm

AE signal

no collision to dustsvibration by lubricant adhesion

15 Workshop at U. AL Toshiba Kikitsu15

(3)magnetic properties

granular -> isolated uniform dotsstrong de-mag fieldmagnetization rotation

granular -> isolated uniform dotsstrong de-mag fieldmagnetization rotation

16 Workshop at U. AL Toshiba Kikitsu16

Magnetic properties (I) - new feature

enhanced write margin ~ a half of the dot size- nucleation and almost coherent reversal

enhanced write margin ~ a half of the dot size- nucleation and almost coherent reversal

M. Albrecht: APL 81 p.2875(2002)

head

no reversal:< first half

reversal: > first half

no need ofwriting field

17 Workshop at U. AL Toshiba Kikitsu17

Magnetic properties (II) - Hc distribution (Toshiba)

large switching field distribution in the patterned dotspossible origin:

uniformity (magnetic characteristics, crystal orientation)process damage, atomic distribution

-> common issue for nano-dot devices

Hc distribution of aligned CoCrPt dots(40nm )

dot-by-dot MFM analysis

0 – 0.50.5 – 1.01.0 – 1.51.5 – 2.02.0 – 2.52.5 – 3.03.0 – 3.53.5 – 4.04.0 – 4.54.5 – 5.05.0 – 5.55.5 – 6.06.0 – 6.5> 6.5

Hc0 – 0.5

0.5 – 1.01.0 – 1.51.5 – 2.02.0 – 2.52.5 – 3.03.0 – 3.53.5 – 4.04.0 – 4.54.5 – 5.05.0 – 5.55.5 – 6.06.0 – 6.5> 6.5

Hc

Y. Kamata: Intermag 06 GE-09

18 Workshop at U. AL Toshiba Kikitsu18

(4)signal properties

19 Workshop at U. AL Toshiba Kikitsu19

signal properties (I) - sharp magnetic transition

Ideal transition can be realized in the patterned media.Ideal transition can be realized in the patterned media.

-20 -10 0 10 20-1

-0.5

0

0.5

1

Distance (nm)

Nor

mal

ized

Am

plitu

de

Circle dot pattern (BL=20nm)Perpendicular (a=0)

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

Density (MFCI)N

orm

aliz

ed O

utpu

t

Read Gs=30nm, spacing=10nm

Patterned (Dd/Dp=0.5)Step M Perp.(a=0) Perp. (a=5nm)

1T

2T

3T8T

normalized transitionbetter than ideal one (a=0)

roll-off curveresolution (=1T/8T) enhancement > 20%

numerical estimation: read circle dot (40nm) by 30nm-gap

20 Workshop at U. AL Toshiba Kikitsu20

result of RW test (Toshiba)

MWW:850 nmMRW:600 nm

Trajectory of ring head

on-track off-track

0.5MHz (2kfci)

21 Workshop at U. AL Toshiba Kikitsu21

progress of the patterned media- ☺fabrication

- substrate / mag. etching- nano-imprinting lithography- EB drawing / self assembling .. ~10nm

- ☺ flyablity / flattening .. proven by experiments- no flattening- bias sputtered SiO2 / SOG filling

- ☺ magnetic properties- benefit: wide write margin- distribution in the magnetic properties

- ☺ signal properties- ideal transition is expected

Summary and Conclusion (I)

22 Workshop at U. AL Toshiba Kikitsu22

1990 1995 2000 2005 2010 2015

dens

ity (G

b/in

ch2 )

0.1

1.0

10

100

1000

60% AGR

30% AGR

thin film media 100% AGR

30% AGR

MR head

GMR head

Advanced long. media

Perp. media

DTM /BPM

Summary and Conclusion (II)