Reactor Vessel Cladding

download Reactor Vessel Cladding

of 23

Transcript of Reactor Vessel Cladding

  • 7/26/2019 Reactor Vessel Cladding

    1/23

    Nuclea r Eng inee r ing and Des ign 98 (1987) 171-193 171

    No r t h - Ho l l a n d , Am s t e r d a m

    R E A C T O R V E S S E L C L A D D I N G S E P A R A T E E F F E C T S S T U D I E S

    W . R . C O R W I N

    Me tals and Ce ramic s D ivi sion Oak R idge Nat ional Laboratory Oak R idge TN 37831 USA

    Received 21 Apri l 1986

    The exis tence of a layer of to ugh weld overlay c ladding on the in ter ior of a l ight-water reactor pressure vessel could mit igate

    dam age caused d urin g cer ta in overcooling t ransients . The poten t ia l benefi t of the c ladding is that i t could keep a short surface

    f law, wh ich wou ld o therwise become long , f rom g row ing e i the r by imped ing c rack in i t i a t ion o r b y a r re s t ing a runn ing c rack.

    Tw o aspects cr i t ical to c ladding behavior wil l be reported: i r radia t ion effects on c ladding toughn ess and the respon se of

    mec hanical ly loaded, f lawed s t ructures in the presence of c ladding.

    A two-phase i r r ad ia t ion expe r imen t is be ing conduc ted . In the f i rs t phase , Cha rpy impac t a nd t ens i le spec imens f rom a

    single wire , subm erged-arc s ta inless s teel weld overlay were i r radia ted to 2 1 23 n e u t r o n s / m2 ( > 1 MeV) a t 288 C. Typ ica l ,

    good qu al i ty pressure vessel c ladd ing exhibi ted very l i t t le ir radia t io n-indu ced degrad at ion. How ever , duct i le- to-b r i t t le

    t ransi t io n behavior , caused b y tem peratur e-dep enden t fa i lure of the res idual 8-ferr i te , was observed. In co ntrast , specim ens

    f rom a h igh ly d ilu t ed , poor qua l i ty we ldm en t were m arked ly embr i t fl ed . In the second phase o f i r r ad ia t ions , now in p rog ress, a

    comm erc ia lly p roduced th ree -wi re se ri es a rc we ldm en t wi l l be eva lua ted und e r iden t i ca l i r r ad ia t ion and t e s t ing cond i t ions a s

    the f i rs t ser ies . In addi t ion, 0 .5T compact specimens of both weldments and higher f luences wil l be examined.

    A two-phase p rog ram i s a lso be ing conduc ted u t i l i z ing r e l a t ive ly l a rge ben d spec imens tha t have been c l ad and f lawed on

    the tens ion surface. T he tes t ing ra t iona le is that i f a surface f law is p inn ed by the c lad ding and can not grow longer , i t wi l l a lso

    not grow beyond a cer ta in depth, thereby arrest ing the ent i re f law in a s t ress f ie ld in which i t would otherwise propagate

    through the specimen. The resul ts of phase one showed that s ingle wire c ladding with low-to-moderate toughness appeared to

    have a l imited abi l i ty to mit igate crack propa gat ion. F or the second phase, three-wire c lad ding has been deposi ted on a base

    p la t e wi th a ve ry h igh duc t i l e - to -b r i tt l e t rans i t ion t empera tu re a l lowing t e s ting to a sce r t a in the c rack inh ib i t ing capab i l i ty o f

    tough u ppe r she l f c l add ing .

    1 . I n t r o d u c t i o n

    I t h a s b e e n p r o p o s e d t h a t t h e e x i s t e n c e o f a l a y e r o f

    t o u g h w e l d o v e r l a y c l a d d i n g o n t h e i n t e r i o r o f a l i g h t -

    w a t e r r e a c to r ( L W R ) p r e s su r e v e s se l co u l d m i t ig a t e

    d a m a g e c a u s e d d u r i n g c e r t a i n o v e r c o o l i n g t r a n s i e n t s .

    T h e p o t e n t i a l b e n e f i t o f t h e c l a d d i n g i s t h a t i t c o u l d

    k e e p a s h o r t s u r f a c e f l a w , w h i c h w o u l d o t h e r w i s e b e -

    c o m e l o n g , f r o m g r o w i n g e i t h e r b y i m p e d i n g c r a c k

    i n i t i a t i o n o r b y a r r e s t i n g a r u n n i n g cr a c k . I f th i s c a n

    i n d e e d b e p r o v e n , t h e i m p l i c a t i o n s f o r e x i s t i n g L W R s ,

    p a r t i c u l a r l y t h o s e w i t h s u b s t a n t i a l r e a c t o r p r e s s u r e v e s -

    s el ( R P V ) e m b r i t t l e m e n t , w o u l d b e s i g n if i ca n t . I t w o u l d

    * Resea rch sponso red by the Of f i ce o f Nuc lea r Regu la to ry

    Resea rch , U.S . Nuc lea r R egu la to ry Com miss ion , unde r In -

    teragency Agreements DOE 40-551-75 and 40-552-75 with

    the U.S . Depa r tmen t o f Ene rgy unde r con t rac t DE-AC05-

    840R21400 wi th M ar t in M ar ie t t a Ene rgy Sys tems , Inc .

    c o n t r i b u t e t o u s e a b l e v e s s e l l i f e t i m e s b e y o n d t h e c u r r e n t

    s c r e e n i n g c r i t e r i a i f u s e d i n a p l a n t s p e c if i c a n a l y s is .

    M o r e o v e r , i f c o n s i d e r a t i o n o f c l a d d i n g b e n e f i t r e s u l te d

    i n r e d u c i n g t h e f l a w s i z e o r d e n s i t y d i s t r i b u t i o n s c u r -

    r e n t l y b e i n g a s s u m e d , a r e d u c t i o n w o u l d r e s u lt i n t h e

    c u m u l a t i v e f a i l u r e p r o b a b i l i t y c a l c u l a t e d u s i n g p r o b -

    a b i l i s t ic r is k a s s e s s m e n t m e t h o d o l o g i e s .

    T o a s s e s s t h e p o t e n t i a l b e n e f i t s o f c l a d d i n g , a t l e a s t

    t w o a r e a s m u s t b e a d d r e s s e d , ( 1 ) t h e r e s i d u a l t o u g h n e s s

    o f c l a d d i n g f o l l o w i n g i r r a d i a t i o n t y p i c a l o f L W R s e r vi c e ,

    a n d ( 2 ) th e m e c h a n i c a l e f fe c t c l a d d i n g w o u l d h a v e o n a

    s t r u c tu r e w h e n l o a d e d u n d e r c o n d i t i o n s r e le v a n t t o a

    p o s t u l a t e d a c c i d e n t . T h e H e a v y S e c t i o n S t e e l T e c h n o l -

    o g y ( H S S T ) p r o g r a m h a s e s t a b li s h e d t w o - p h a s e r e s e ar c h

    e f f o r t s i n b o t h o f t h e s e a r e a s. T h e f i r s t p h a s e i n b o t h

    a r e a s h a s b e e n c o m p l e t e d . A l a b o r a t o r y s u b m e r g e d a r c

    o v e r l a y w e l d m e n t h a s b e e n e x a m i n e d f o r b o t h i t s ra d i a -

    t i o n r e s p o n s e a n d i t s s t r u c t u r a l e f f e c t s o n a l a b o r a t o r y

    e n g i n e e r i n g s tr u c t u r e , a c l a d p l a t e l o a d e d i n b e n d i n g .

    0 0 2 9 - 5 4 9 3 / 8 7 / 0 3 . 5 0 E l s e v i e r S c i e n c e P u b l i s h e r s B .V .

    ( N o r t h - H o l l a n d P h y s ic s P u b l i s h i n g D i v i s i o n )

  • 7/26/2019 Reactor Vessel Cladding

    2/23

    172

    14/ R Corw tn / Reac tor vesse l c ladding separate e f fec ts s tudies

    T h e s e r e s u l t s h a v e b e e n p r e v i o u s l y r e p o r t e d [ 1,2 ] a n d

    w i l l b e s u m m a r i z e d h e r e . I n t h e s e c o n d p h a s e , w h i c h

    w i l l a l s o b e d e s c r i b e d , s i m i l a r e x p e r i m e n t s a r e b e i n g

    c o n d u c t e d u s i n g a c o m m e r c i a l l y p r o c u r e d t h r e e - w i r e

    s e r i e s a r c w e l d o v e r l a y , t y p i c a l o f c l a d d i n g a p p l i c a t i o n s

    i n t h e p r o d u c t i o n o f e a r l y R P V s .

    2 . T e s t m a t e r i a l s P h a s e o n e

    T h e s p e c i m e n s f o r b o t h p r o g r a m s w e r e t a k e n f r o m

    l a b o r a t o r y w e l d m e n t s f a b r i c a t ed b y t h e a u t o m a t e d

    s i n g le - w i r e o s c i l l a ti n g s u b m e r g e d a r c p r o c e d u r e . T h e

    w e l d m e n t s c o n s i s t e d o f a l o w e r l a y e r o f t y p e 3 0 9 s t a i n -

    l e s s st e e l d e p o s i t e d o n A 5 3 3 g r a d e B c l a ss 1 p l a t e ,

    f o l l o w e d b y o n e o r t w o l a y e r s o f t y p e 3 0 8 s t a i n l e s s s t e e l

    c l a d d i n g [ 1]. T h e w e l d m e n t s w e r e p o s t w e l d h e a t t r e a t e d

    ( P W H T ) a t 6 2 1 C f o r 4 0 h, t yp i c a l o f c o m m e r c i a l

    p r a c t ic e . T h r e e l a y e r s o f c l a d d i n g w e r e r e q u i r e d t o

    p r o v i d e a d e q u a t e t h i c k n e s s f r o m w h i c h t o r e m o v e

    i r r a d i a t i o n t e s t s p e c i m e n s . T h e b e a m s p e c i m e n s r e c e i v e d

    o n l y t w o l a y e r s o f c l a d d i n g . T h e m u l t i l a y e r p r o d u c t i o n

    o f c l a d d i n g c o n t r a s t s w i t h t y p i c a l c o m m e r c i a l U . S . p r a c -

    Tab le 1

    Chemica l compos i t ion o f over lay we ldments

    E lem ent Con ten t ~ (wt )

    F i r s t Second Th i rd

    layer laye r laye r

    C 0.145 0.081 0.065

    Cr 13.46 18.52 20.01

    N i 6.90 8.81 9.36

    M o 0.47 0.27 0.21

    M n 1.47 1.47 1.49

    Si 0.56 0.70 0.76

    Co 0.066 0.092 0.100

    Cu 0.14 0.10 0.09

    V 0.02 0.04 0.04

    A1 0.014 0.010 0.16

    Ti < 0.005 < 0.005 0.006

    P 0.018 0.021 0.022

    S 0.01 0.01 0.01

    a Balance Fe, with Nb , < 0.01; Ta, < 0.01; As, < 0.03: and

    B, < 0.001 for all layers.

    Fig. 1 . The micro structu re of the third lay er of type 308 stainless steel weld overlay is typical of reactor pressu re vessel cladd ing w ith

    8-ferri te in an austenite matrix.

  • 7/26/2019 Reactor Vessel Cladding

    3/23

    W R Corwin / Reactor vessel cladding separate effects studies 173

    r i c e , i n w h i c h a s i ng l e l a ye r o f ove r l a y a pp r ox i m a t e l y 5

    m m t h i c k i s a pp l i e d by e i t he r m u l t i p l e w i r e o r s t r i p -

    c l a d d i n g s u b m e r g e d a r c p r o c e d u r e s . T h e m a t e r i a l c o m -

    pos i t i ons o f e a c h l a ye r o f w e l d m e t a l a r e g i ve n i n t a b l e

    1.

    M e t a l l o g r a p h i c e x a m i n a t i o n o f t h e c l a d d i n g s h o w e d

    t ha t t he t h i r d l a ye r a ppe a r e d t yp i c a l o f LWR s t a i n l e s s

    s t e e l ove r l a y , w he r e a s t he f i r s t l a ye r ha d i nc u r r e d e x -

    c e s s ive d i l u t i on a s a r e s u l t o f ba s e m e t a l m e l t i ng du r i ng

    w e l d i ng . Pho t om i c r og r a phs o f t he t h r e e l a ye r s i l l u s t r a t e

    t he r a d i c a l l y d i f f e r e n t m i c r os t r uc t u r e s i n t he f i n i s he d

    weldment . The th i rd (upper ) pass ( f ig . 1) shows a d i s t r i -

    bu t i on o f 6 - f e r r i t e i n a n a us t e n i t e m a t r i x qu i t e t yp i c a l

    o f m i c r o s t r u c t u r e s s e e n i n g o o d p r a c t i c e c o m m e r c i a l

    w e l d ove r l a y o f r e a c t o r p r e s s u r e ve s s e ls [ 2 ] . The e f f e c t o f

    t he 40 - h PW H T on t he s e m a t e r i a l s is t o pa r t i a l l y

    t r a ns f o r m t he 6 - f e r r i t e t o s i gm a pha s e , a s w e l l a s p r e -

    c i p i t a te s om e c a r b i de s .

    The f i rs t a nd s e c o nd l a ye r s o f c la dd i ng , on t he o t he r

    ha nd , f o r m e d a t yp i c a l m i c r os t r uc t u r e s a s a r e s u l t o f t he

    e xc e s s ive d i l u t i on ( a pp r ox i m a t e l y 50 ) by t he ba s e m e t a l

    a nd f i r s t pa s s w e l dm e n t , r e s pe c t i ve l y . A m oun t s o f d i l u -

    t i on i n good p r a c t i c e c l a dd i ng a r e t yp i c a l l y i n t he r a nge

    o f 10 t o 25 . The s e c ond l a ye r (f ig . 2 ) c on t a i n s 8 - f e r ri t e

    d i s pe r s e d i n a us t e n i t e bu t i n a dd i t i on c on t a i n s l i m i t e d

    r e g i ons i n w h i c h m a r t e ns i t e i s a l s o p r e s e n t . Subs e que n t

    e x a m i n a t i o n o f t h e f r a c t u r e m e c h a n i s m i n d i c a t e d t h a t

    t he m a r t e ns i t e i n t he s e c ond l a ye r d i d no t a pp r e c i a b l y

    a f f e c t it s p r ope r ti e s , s uc h t ha t i t be ha ve d ve r y m u c h l i ke

    t he t h i r d l a ye r . The f i r s t l a ye r ha d s u f f i c i e n t d i l u t i on t o

    m o ve i t e n ti r e l y f r om t he 8 - f e r r i te - f o r m i ng r e g i on o f t he

    Sc ha e f f l e r d i a g r a m [ 3 ] a nd i n t o t he a us t e n i t e - p l us -

    m a r t e ns i t e r e g i on ( t he s e a r e t he dom i na n t pha s e s a nd

    no t a b l y a f f e c t i t s f r a c t u r e p r ope r t i e s ) . Exa m i na t i on o f

    i t s micros t ruc ture ( f ig . 3) , however , shows three d i s t inc t

    r e g i ons . The us e o f t he f e r r o f l u i d m a gne t i c e t c h i ng

    t e c hn i que [ 4 ] a nd s t ud i e s i n t he t r a ns m i s s i on e l e c t r on

    m i c r os c ope ve r i f i e d t he t i gh t e s t r e g i ons t o be a us t e n i t e ,

    t he l igh t g r a y r eg i ons t e m pe r e d m a r t e ns i t e , a nd t he da r k

    r e g i ons 8 - f e r ri t e de c o r a t e d w i t h M23C 6 t ype c a r b i de s .

    A l t hough t he i nve s t i ga t i on o f h i gh - d i l u t i on c l a dd i ng

    w a s no t t he i n i t i a l a i m o f t he c l a dd i ng s t ud i e s , i t m a y

    w e l l be h i gh l y ge r m a ne t o t he que s t i on o f t he e f f e c t s o f

    c l a dd i ng on R PV i n t e g r i t y . H i gh ba s e m e t a l d i l u t i on o f

    c l a d d i n g , c a u s e d b y i n a d e q u a t e c o n t r o l o f w e l d i n g

    p r oc e dur e s , a nd t he r e s u l t i ng m i c r os t r uc t u r e s ha ve be e n

    Fig. 2. The secon d layer of the overlay (type 308 stainless steel) includes patches o f martensite (light gray) in add ition to the 8-ferrite

    in an austenite matrix.

  • 7/26/2019 Reactor Vessel Cladding

    4/23

    174 W.R. Corwin / Reacto r vesse l c ladding separate e f fec ts s tudies

    i 4 1 ~ ~ 5 x

    Fig. 3. The high base m etal diluti on of the first lowest) layer of cladding, type 309 stainless steel, resulted in a three-phase

    microstructure of austenite lightest region), martensite light gray), and 8-ferrite decorated with additi onal carbides black).

    d o c u m e n t e d [ 5,6 ] i n c o m m e r c i a l R P V s . T y p i c a l l y , t h e

    r e s ul t in g m a t e r i a l h a s p o o r e r m e c h a n i c a l a n d / o r c o r r o-

    s i o n p r o p e r t i e s i n t h e u n i r r a d i a t e d c o n d i t i o n ; n o i n f o r -

    m a t i o n h a s b e e n p r e v i o u s l y a v a i l a b l e o n t h e i r r a d i a t i o n

    d a m a g e o f s u c h m a t e r i a l . I t s i n c l u s i o n h a s p r o v i d e d

    i n s i g h t i n t o t h e b e h a v i o r o f s u b s t a n d a r d w e l d o v e r l a y

    c l a d d i n g p o s s i b l y r e p r e s e n t a t i v e o f i r r a d i a t e d m a t e r i a l

    a c tu a l ly in th e f i e ld .

    3 E f f e c t s o f i rr a d i a t io n

    3 .1 . E x p e r i m e n t a l d e t a i l s P h a s e o n e

    T o e x a m i n e t h e e f f e c ts o f i r r a d i a t i o n o n t h e d i f f e r e n t

    m i c r o s t r u c t u r e s , t w o s e t s o f t e n s il e a n d C h a r p y V - n o t c h

    s p e c i m e n s w e r e c a r e f u l l y f a b r i c a t e d t o b e c o n t a i n e d a s

    f u l l y a s p o s s i b l e w i t h i n e i t h e r t h e u p p e r t w o l a y e r s

    n o m i n a l l y t y p e 3 0 8 s p e c i m e n s ) o r t h e l o w e r l a y e r

    n o m in a l ly ty p e 3 09 s p e c ime n s ) f ig . 4 ) . A l l s p e c ime n s

    w e r e f a b r i c a t e d w i t h t h e s p e c i m e n a x i s p a r a l l e l t o t h e

    w e l d i n g d i r e c t io n . T h e C h a r p y s p e c i m e n s w e r e n o t c h e d

    o n t h e s u r f a c e p a r a l l e l t o a n d n e a r e r t h e b a s e m e t a l i n

    a l l cases .

    T h e n o m i n a l l y t y p e 3 08 s p e c i m e n s c o n s i s t e n t l y h a d

    f e r r i t e n u m b e r s o f 2 t o 6 c o r r e s p o n d i n g r o u g h l y t o

    p e r c e n t a g e s o f f e r r i t e ) , a s d i d t h e p o r t i o n o f n o m i n a l l y

    t y p e 3 0 9 s p e c i m e n s c o m p o s e d o f u p p e r w e l d p a s s l a y e rs .

    T h e n o t c h e d s i d e o f t h e n o m i n a l l y t y p e 3 0 9 s p e c i m e n s

    c l o s es t o t h e b a s e m e t a l i n t e r f a c e e x h i b i t e d f e r r i te n u m -

    b e r s u p to a n d in e x c e s s o f 3 0 o f f sc a l e ) . O p t i c a l

    e x a m i n a t i o n o f t h e m i c r o s t r u c t u r e o f t h e t y p e 30 9 l a y e r

    TYPE

    3 8

    S P E C IM E N -~ T Y P E 3 0 9

    - ~ _ S PE CIM EN

    T Y P E ~ W E L D M E T A L

    T Y P E 3 0 9 W E L D M E T A L

    ~ / / / / / / / / / / / / / / / / / / / / / / ~ / / / / / / ~ . ~ - - A 5 3 3 G r. B C L 1

    B A S E P L A T E

    W E L D I N G D I R E C T I O N

    Fig. 4. Location of the Cha rpy specimens nomi nally called

    types 308 and 309.

  • 7/26/2019 Reactor Vessel Cladding

    5/23

    W . R . C orwi n / R e ac t o r v e s se l c l add i ng s e para t e e f fe c t s s t ud i e s 175

    i n d i c a t e s t h e a m o u n t s o f m a r t e n s i t e a n d f e r r i t e to b e 3 0

    t o 4 5 a n d 1 0 t o 1 5 , r e s p e c t i v e l y .

    i r r a d ia t i o n , w h e n m e a s u r e m e n t s a s lo w a s 2 6 3 C w e r e

    r e c o r d e d .

    3 .2 . I r r a d i a t i o n h i s t o r y P h a s e o n e

    T h e s p e c i m e n s w e r e i r r a d i a t e d i n t h e c o r e o f t h e

    2 - M W p o o l r e a c t o r a t t h e N u c l e a r S c i en c e a n d T e c h n o l -

    o g y F a c i l i t y , B u f f a l o , N e w Y o r k . T w o s e p a r a t e c a p s u l e s

    w e r e u s e d , o n e e a c h f o r t h e t y p e s 3 0 8 a n d 3 0 9 s t a i n l e s s

    s t e e l s p e c i m e n s . T h e c a p s u l e s w e r e i n s t r u m e n t e d w i t h

    t h e r m o c o u p l e s a n d d o s i m e t e r s a n d w e r e r o t a t e d 1 8 0

    o n c e d u r i n g t h e i r r a d i a t i o n f o r f l u e n c e b a l a n c i n g . T h e

    c a p s u l e s c o n t a i n i n g t h e t y p e s 3 0 8 a n d 3 0 9 s p e c i m e n s

    r e a c h e d a v e r a g e f l u e n c e s o f 2 . 0 9 x 1 0 23 n e u t r o n s / m 2

    ( > 1 M e V ) + 1 0 d u r i n g 6 7 9 h o f i r r a d i a t i o n a n d 2 . 0 2

    1 0 23 n e u t r o n s / m 2 ( > 1 M E V ) + 5 i n 5 0 8 h , r e sp e c

    t i v e l y . T h e f l u e n c e s a r e f o r a c a l c u l a t e d s p e c t r u m b a s e d

    o n F e , N i , a n d C o d o s i m e t r y w i r e s . T e m p e r a t u r e s w e r e

    m a i n t a i n e d a t 2 8 8 _+ 1 4 C e x c e p t f o r t h e i n i t i a l w e e k o f

    3 . 3. R e s u l t s a n d d i s c u s s i o n s P h a s e o n e

    T e n s i l e t es t i n g w a s c o n d u c t e d a t r o o m t e m p e r a t u r e ,

    1 4 9 C , a n d 2 8 8 C . I r r a d i a t i o n in c r e a s ed t h e y ie l d

    s t r e n g t h o f t h e t y p e 3 0 9 s p e c i m e n s b y 3 0 t o 4 0 ,

    w h e r e a s t h e i n c r e a s e o f t h e t y p e 3 0 8 s p e c i m e n s w a s o n l y

    5 t o 2 5 . S u r p r i s in g l y , t h e to t a l e l o n g a t i o n a n d r e d u c -

    t i o n o f a r e a o f b o t h m a t e r i a l s i n c r e a s e d d u r i n g i r r a d i a -

    t i o n ( t a b l e 2 ) .

    T h e e f f e c t o f i rr a d i a t i o n o n t h e C h a r p y i m p a c t p r o p -

    e r t i e s o f t h e t y p e 3 0 8 w e l d m e t a l r e p r e s e n t a t i v e o f

    t y p i c a l w e l d o v e r l a y c l a d d i n g w a s r e l a t i v e l y s m a l l ( f i g .

    5 ). O n l y a v e r y s l i g h t u p w a r d s h i f t i n t r a n s i t i o n t e m p e r -

    a t u r e ( 1 5 C ) a n d d r o p i n u p p e r s h e l f ( < 10 ) w er e

    o b s e r v e d . B o t h t h e c o n t r o l a n d i r r a d i a t e d C h a r p y s p e c i -

    m e n s e x h i b i t e d c u r v e s m o r e t y p i c a l o f f e r r i t i c m a t e r i a l s

    t h a n o f a u s t e n i t i c s t a i n l es s s t ee l w i t h r e s p e c t t o t h e

    T a b l e 2

    Te ns i l e pro pe r t i e s o f s t a in le s s s t e e l c la ddin g be fore a nd a f t e r i r r a d ia t ion a t 288 +_ 14 C

    S p e c i m e n M a t e r i a l F l u e n c e , T e s t S t r e n g t h ( M P a )

    t y p e a > 1 M e V t e m p e r a t u r e Y i e l d U l t i m a t e

    ( n e u t r o n s / m 2 ) ( C)

    T o t a l

    e l o n g a t i o n b

    ( )

    R e d u c t i o n

    o f a r e a

    ( )

    CPL -80 309 0 27 299 593

    CPL-83 309 0 27 273 586

    CPC -72 308 0 27 268 589

    CPC-73 308 0 27 276 568

    CPL -81 309 2.0 )< 1023 29 388 606

    CPL-85 309 2 .0 29 364 624

    CPC -70 308 2 .1 29 289 605

    CPC-75 308 2 .1 29 300 589

    CPL -86 309 0 149 213 448

    CPL -89 309 0 149 236 450

    CPC -77 308 0 149 221 445

    CPC -78 308 0 149 213 444

    CP L-82 309 2.0 149 297 508

    CP L-87 309 2.0 149 345 526

    CPC -71 308 2.1 149 290 501

    CP C-7 6 308 2.1 149 262 485

    CPL -90 309 0 288 195 429

    CPL -91 309 0 288 207 423

    CPC -79 308 0 288 205 393

    CPC -80 308 0 288 205 402

    CPL -84 309 2 .0 288 277 475

    CPL -88 309 2 .0 288 290 501

    CPC -74 308 2 .1 288 198 422

    CPC-81 308 2 .1 288 232 427

    28.4

    49.5

    40.0

    42.4

    39.4

    45.4

    51.5

    60.1

    31.9

    30.4

    31.3

    32.4

    57.2

    48.6

    56.3

    53.8

    31.7

    32.4

    28.5

    27.6

    52.9

    56.3

    51.9

    49.5

    30.6

    55.5

    55.0

    58.0

    48.0

    58.0

    62.3

    67.1

    55.5

    63.4

    44.0

    52.0

    57.9

    60.4

    59.3

    58.1

    51.5

    52.2

    51.4

    53.3

    56.6

    59.3

    55.0

    59.8

    a Type 309 c ons i s t s pr im a r i ly of the f i r s t m e ta l pa s s , type 308 pr im a r i ly the th i rd ( l a s t pa s s ) .

    b G a g e l e n g t h / d i a m e t e r = 7 .

  • 7/26/2019 Reactor Vessel Cladding

    6/23

    1 7 6

    V~R Cor wm / Reac tor resse l c ladding separate

  • 7/26/2019 Reactor Vessel Cladding

    7/23

    W R Corwin / Reactor vessel cladding separate effects studies 177

    100

    90 B

    80 --

    70 --

    30

    20

    6O

    >-

    ~= o

    U

    Z

    ku

    4O

    10

    -150

    w

    I:

    / L

    i

    H ~

    l

    / H

    H HIGH-ENERGY

    / / POPULATION --

    ~ J

    H ~ H j

    i L i

    1O0 -5 0 0 50 100 150 200 250

    TEMPERATURE (C)

    300

    Fig. 6. Charpy impact energy of the unirradiated nominally type 309 stainless steel cladding divided into low-and high-energy

    populations based on the fraction of type 308 weld metal in the specimen ligament.

    8 0

    70

    6 0

    50

    >-

    (3 40

    n,-

    t.u

    Z

    LLI

    3O

    20

    1 0

    o

    --200 --150

    H . . . . . . . .

    H H I G H E N E R G Y P O P U L A T I O N

    L . . .

    L L O W E N E R G Y P O P U L A T I O N

    H

    . .H . . . . . ' ' ' '

    . H

    L

    L~

    7

    H

    H Lj

    L L

    L

    I I I I I I I 1

    100 -- 50 0 50 1O0 150 200 250 300

    TEMPERATURE (C)

    Fig. 7. Charpy impact energy of the irradiated nominally type 309 stainless steel cladding divided into low- and high-energy

    populations based on the fraction of type 308 weld metal in the specimen ligament.

  • 7/26/2019 Reactor Vessel Cladding

    8/23

    178 14/. R . C o r w t n / R e a c t o r t ~ es s el c l a d d i n g s e p a r a t e e f J e c t s st u dl e .~

    1 o o , , , I I ' I

    L O W - E N E R G Y H I G H -- E N E R G Y

    P O P U L A T I O N P O P U L A T I O N

    9 0 U N I R R A D I A T E D - -

    . . . . . . . . . . . . I R R A D I A T E D / * ' ' ~ '=

    8 0 - -

    70

    / . . . . / . . .. . .. . .. . .

    40 ~ / . / ~ ~ ~ , . ~ ...m

    / . / . . - - _

    I /

    ~o / / /

    10 ~

    0 . I . . I 1 l 1 1 l . I I

    - 2 0 0 - 1 5 0 - 1 0 0 - 5 0 0 5 0 1 00 1 50 2 0 0 25 0 3 0 0

    T E M P E R A T U R E ( C )

    F i g . 8 . E f f e ct o f i r r a d i a ti o n o n t h e C h a r p y i m p a c t e n e r g y o f h i g h a n d l o w e n e r gy p o p u l a t i o n s o f t h e s p e c i m e n s o f n o m i n a l l y t y p e 3 09

    c la dding .

    IOOOX

    Fig. 9 . The low te m pe ra ture f r a c ture pa th in type 309 c la dding sho wn fo l lowing pa tc he s of f e r r i te .

  • 7/26/2019 Reactor Vessel Cladding

    9/23

    W R Corwin / Reactor vessel cladding separate effects studies 179

    z O p m

    OOOX

    Fig. 10 . The low te m p e ra ture f r a c ture pa t h of type 308 c la dd ing show n fo l lowing 8- fe r r i t e i s l a nds .

    t 2 0 p m I O 0 0 X

    Fig . 11 . The prof i l e of the f r a c ture pa th of type 309 s ta in le s s s t e e l shows tha t the f r a c ture doe s not pre fe re nt i a l ly fo l low the f e r r i t e

    g r a y p a t ch e s ) , a s o p p o s e d t o t h e m a t r i x o f t h e a u s t e n i t e a t h i g h e r t e m p e r a t u r e s .

  • 7/26/2019 Reactor Vessel Cladding

    10/23

    180 W.R. ( orwin / Reactor vessel cladding separate ef/e( ts studie~

    i

    i . . ~ . I .

    2 ~ m j IO X

    Fig. 12. The profile of the fracture path of type 308 stainless steel shows that the fracture does not preferentially follow the 8-ferrite

    gray patches) at higher temperature.

    stainless steel weldments since the ferritic phases con-

    trolling the fracture are i nherentl y rate, as well as tem-

    perature, sensitive. If the cladding on the interior of a

    reactor pressure vessel is to be considered structural in

    nature, then the potent ial for its rate sensitivity should

    also be considered.

    3 .4 . C o n c l u si o n s f r o m P h a s e o n e a n d p l a n s f o r P h a s e t w o

    Based on a single irradiation experiment, very little

    degradation of the notch-impact toughness of good

    quality cladding would be expected. In fact, both the

    tensile strength a nd the fracture ductilit y were improved

    slightly by irradiation. It mus t be stressed, however, that

    this is only a single case and that no conclusions,

    positive or negative, can be drawn regarding welding

    procedures or c ompositions leading to material different

    from that studied here.

    Results from the highly diluted type 309 weld metal

    show appreciable radiation-induced degradation of

    notch-impact toughness, even though both the tensile

    strength and the tensile fracture ductilit y were improved

    slightly by irradiation. In the few documented cases

    where welding has produced abnormal cladding with

    excessive dilution in ope rating reactors, the radiation

    effects on notch-impact toughness may be cause for

    concern.

    By and large, the results obtained in phase one were

    more encouraging than some of the indications of

    irradiat ion-indu ced degradation reported in a recent

    litera ture review [11]. Therefore, to c orrobora te the re-

    suits of phase one and to obtain additional data for

    materials and irradiation conditions specifically of in-

    terest in LWRs phase two was initiated.

    The irradiations for phase two are currently in pro-

    gress and should be completed early in 1986. Two

    capsules containing tensile, impact, and 0.5T compact

    specimens will be irradiated to 2 x 1023 ne ut ro ns /m2

    > 1 MeV) with an additional capsule of tensile and

    impact specimens reaching 5 10 23 neu tr on s/ m2 > 1

    MeV). The material being examined is primarily taken

    from a commercially produced overlay weldment fabri-

    cated using the three-wire series arc procedure. The

    commercial weldment is also composed of three layers

    but with extreme care taken to assure the metallurgical,

    chemical, and mechanical properties of all layers are

  • 7/26/2019 Reactor Vessel Cladding

    11/23

    W.R. Corwin / Reactor vessel cladding separate effects studies

    181

    s i m i l a r . P r e l i m i n a r y r e s u l t s h a v e s h o w n t h a t t h e u n -

    i r r a d i a t e d p r o p e r t i e s o f t h e t h r e e - w i r e s e r i e s a r c c l a d - .

    d i n g a n d t h e g o o d q u a l i t y t y p e 3 0 8 c l a d d i n g f r o m t h e

    f i r s t s e r i e s e x h i b i t v e r y s i m i l a r u n i r r a d i a t e d f r a c t u r e

    b e h a v i o r .

    I n a d d i t i o n , t w o s e t s o f c o m p a c t s p e c i m e n s f r o m t h e

    m a t e r i a l u s e d i n p h a s e o n e h a v e b e e n i n c l u d e d . T h e

    s p e c i m e n s w e r e f a b r i c a t e d s u c h t h a t t h e t i p o f t h e

    p re c ra c k i s i n th e ty p e 3 0 8 s t a in l e s s fo r o n e s e t a n d in

    th e ty p e 3 0 9 fo r t h e o th e r . T h e s e s p e c im e n s w i l l b e u s e d

    t o c o n f i r m t h e b e h a v i o r a l t r e n d s s h o w n b y t h e i m p a c t

    s p e c i m e n s i n p h a s e o n e .

    4 . S t ru c tu ra l e f f e c t s of c l dding

    4.1. Testing scheme Phase one

    T o e x a m i n e t h e s t r u c t u r a l e f f e c t s o f w e l d o v e r l a y

    c l a d d i n g i n a s t r e s s st a t e r e l e v a n t t o a n o v e r c o o l i n g

    t r a n s i e n t , a s t u d y w a s u n d e r t a k e n i n w h i c h r e l a t i v e l y

    l a rg e p l a t e s 9 1 4 4 0 6 5 1 m m ) w e re c l a d o n o n e s id e

    a n d t e s t ed i s o t h e r m a l l y i n f o u r - p o i n t b e n d i n g . T h e c l a d

    s u r f a c e w h i c h w a s p l a c e d i n t e n s i o n b y b e n d i n g c o n -

    t a i n e d a s u r f a c e f l a w . T h e f l a w w a s a n e l e c t r o n b e a m

    w e l d , w h i c h w a s d e s i g n e d t o f r a c t u r e u n d e r s t a t i c l o a d -

    i n g w h e n h y d r o g e n c h a r g e d . T h i s w a s t o e n a b l e u s t o

    i n i t i a t e f a s t r u n n i n g f r a c t u r e i n t h e s u r f a c e f l a w o n t h e

    p l a t e u n d e r a r b i t r a r y i n i t i a l l o a d i n g c o n d i t i o n s .

    I t w a s a n t i c i p a t e d t h a t a s m a l l s e m i e l l i p t i ca l f l a w

    c o u l d b e s i z e d a n d t h e t e m p e r a t u r e a n d s t r e s s s t a t e s

    c h o s e n s o t h a t t h e t e s t w o u l d r e s u l t i n t h e f r a n g i b l e

    f a i l u r e o f a n u n c l a d s p e c i m e n , b u t w o u l d p o p - i n a n d

    a r r e s t i n a c l a d s p e c i m e n . T h i s w a s e x p e c t e d b e c a u s e o f

    t h e p o s t u l a t e d i n t e r a c t i o n b e t w e e n t h e c l a d d i n g a n d t h e

    r u n n i n g c r a c k .

    4.2. Exper iment al rationale Phase one

    T h e r a t i o n a l e f o r t h e e x p e r i m e n t c a n b e u n d e r s t o o d

    b y c o n s i d e r i n g t h e v a r i a t i o n o f t h e s t r e ss i n t e n s i t y f a c t o r

    S I F ) a t m a x i m u m d e p t h a n d a t t h e s u r f a c e o f a g r o w -

    i n g s e m i e l l i p t i c a l p a r t - t h r o u g h f l a w i n a n u n c l a d p l a t e

    v s . t h e s a m e v a lu e s fo r a f l a w th a t h a s b e e n a r r e s t e d a t

    th e s u r fa c e ; t h a t i s , i n th i s s e r i e s o f t e s t s , b y th e c o n t r i -

    b u t io n o f t h e s t a in l e s s s t e e l c l a d d in g . F ig . 1 3 s h o w s a

    p lo t o f t h e S I F a s c a l c u la t e d b y th e Me rk le [1 2, 13 ]

    m e t h o d f o r c o n s t a n t l e n g t h 5 7 - a n d 7 6 - m m - l o n g p a r t -

    t h r o u g h f l a w s as a f u n c t i o n o f a /w u n d e r p u r e m o m e n t

    l o a d i n g , w i t h t h e s u r f a c e s t r es s a p p r o a c h i n g t h e m a t e r i a l

    y i e ld s s t r e s s . F ro m f ig . 1 3 , n o te th a t a t a v a lu e o f a / w

    o f - 0 . 2 4 t h e S I F s a t t h e m a x i m u m d e p t h a n d a t t he

    s u r fa c e 0 = 0 a n d ~ r /2 , r e s p e c t iv e ly ) a re e q u a l fo r t h e

    5 1 - m m - l o n g f l a w . A s i m i l a r s i t u a t io n e x i s t s f o r t h e

    s o m e w h a t l a r g e r 7 6 - r a m f l a w a t a n

    a / w

    va lu e o f - 0 .3 .

    F ig . 1 4 s h o w s a p lo t o f S IF v a lu e s fo r tw o f l a w s i z e s in

    a n u n c l a d 5 1 - m m - t h i c k s p e c i m e n u n d e r p u r e b e n d i n g .

    F o r a p p r o p r i a t e l y s e l e c t ed t e m p e r a t u r e c o n d i t i o n s s u c h

    th a t K ic ~< 5 7 MP a v rm , th e p lo t i n d ic a t e s th a t w i th o u t

    c l a d d i n g , a f l a w , o n c e i n i t i a t e d , g r o w s b o t h l o n g e r a n d

    d e e p e r . F ig . 1 5 , p lo t t e d f ro m th e v a lu e s g iv e n in f ig . 1 3

    s h o w s t h a t f o r a f i x e d f la w l e n g t h o f 76 m m , t h e S I F a t

    t h e m a x i m u m d e p t h 0 = 0 ) i n c re a se s a n d t h en d e -

    c r e a s e s w i t h d e p t h , w h i l e i t c o n t i n u o u s l y i n c r e a s e s a t

    t h e s u r f a c e 0 = ~ r/ 2 ) f o r a d e e p e n i n g f l a w w h e n s u b -

    j e c t e d t o p u r e b e n d i n g , w i t h t h e s u r f a c e s t re s s a p p r o a c h -

    i n g t h e b a s e m a t e r i a l y i e l d . T h e s e c o n d i t i o n s i m p l y t h a t

    fo r K ic - 4 0 MP aV rm in th e b a s e m e ta l , a s e m ie l l ip t i c a l

    1 3 - m m - d e e p f l a w , i n i t i a t e d b y t h e h y d r o g e n - c h a r g i n g

    p o p - i n p r o c e d u r e , w o u l d g r o w in d e p t h a n d l e n g t h u n t i l

    r e a c h in g th e s t a in l e s s c l a d d in g . A t th i s p o in t , i f t h e

    c l a d d i n g h a s a n e f f e ct i v e t o u g h n e s s ~< 1 25 M P a f m , t h e

    f l a w w o u l d b e s t o p p e d f r o m f u r t h e r i n c r e a s e s i n l e n g t h

    o r d e p t h .

    4.3. Test specimens and materials Phase one

    S p e c i m e n s w e r e d e s i g n e d a s r e c t a n g u l a r p l a t e s w i t h

    f o u r - p o i n t l o a d i n g t o a c h i e v e a c o n s t a n t - m o m e n t l o a d -

    i n g i n t h e c e n t r a l z o n e o f t h e s p e c i m e n w i t h i n w h i c h a n

    E B - w e ld f l a w w a s p l a c e d f ig . 1 6 ). T h e s t a in l e s s s te e l

    c l a d d i n g w a s a p p l i e d o v e r t h e c e n t r a l a r e a o f t h e s p e c i -

    m e n , a n d a n a r r o w s l o t w i n d o w w a s t h e n m a c h i n e d

    t h r o u g h t h e s t a in l e s s c l a d d i n g d o w n t o t h e b a s e m e t a l

    p r i o r t o a p p l i c a t i o n o f t h e E B - w e l d f l a w .

    T h r e e t y p e s o f s p e c i m e n s w e r e f a b r i c a t e d , u n c l a d

    s p e c i m e n s a n d s p e c i m e n s c l a d w i t h e i t h e r a m o d e r a t e

    t o u g h n e s s o r a l o w t o u g h n e s s c l a d d i n g . T h e u n c l a d

    s p e c i m e n s w e r e t o d e m o n s t r a t e t h e l a c k o f c l a d d i n g

    i n d u c e d a r r e s t a n d c o n s e q u e n t c o m p l e t e f a i l u r e o f t h e

    p l a t e u n d e r t h e s a m e c o n d i t i o n s u n d e r w h i c h a c l a d

    b e a m w o u l d a f f e c t a r r e s t . T h e s p e c i m e n s c l a d w i t h a

    m o d e r a t e t o u g h n e s s o v e r l a y , t h e t y p e s 3 0 9 / 3 0 8 w i t h

    P W H T d i s c u s se d p r e v i o u s ly , w e r e d e s i g n e d t o s i m u l a t e

    c l a d d i n g p r o p e r t i e s t y p i c a l o f b e g i n n i n g o f l i f e i n a n

    R P V . T h e l o w t o u g h n e s s c l a d d i n g , a s ig m a p h a s e e m -

    b r i t t l e d t y p e 3 1 2 , w a s d e s i g n e d t o s i m u l a t e d p o t e n t i a l

    e n d o f l i f e p r o p e r t i e s . B o t h t y p e s o f c l a d d i n g w e r e l e s s

    t o u g h t h a n d e s i r e d , t h e t y p e s 3 0 9 / 3 0 8 f o r t h e r e a s o n s

    d i s c u s s e d p r e v i o u s l y . T h e b e a m s c l a d w i t h t y p e 3 1 2

    c l a d d i n g w e r e s o b r i t t l e l i t t l e u s e f u l i n f o r m a t i o n w a s

    g a i n e d f r o m t h e m a n d t h e i r r e s u l t s a r e n o t r e p o r t e d

    h e re .

    C h a r p y V - n o t c h i m p a c t , t e n s i l e , a n d f r a c t u r e t o u g h -

  • 7/26/2019 Reactor Vessel Cladding

    12/23

    ] 82 W.B. Corw i n / R e ac t o r e s~e l c / add m g s e para t e e f j e c t s s t ud i e s

    _

    1 20 - - / - -

    110 ~ /

    0

    100 ~ 2b = 51 cm ---~

    90 ~ y

    o

    ~ 2b = 7.6

    c m

    Q.

    6 o w

    50

    O

    I ~.~ ~k

    SOLID POINTS: K (~'/2)

    4 0 - -

    / / / ~ X

    OPEN POINTS: KI 101

    30 ~ 2b= 5 lcm-J ~O ~K/ /b=5 1cm / AT0:0

    1

    K

    A T

    0 ~/2

    o

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    a/w

    Fig. 13. KI variations with crack depth for a part-through surface crack of constant surface length in a 51-mm-thick plate under pure

    bending.

    ness testing was performed on both the cladding and

    the base metal. The Charpy impact data of the nominal

    type 309 low and high energy populations described

    earlier are the most germane to the plates as they

    represent composite fracture data of the first and sec-

    ond layers of cladding. They are plotted for comparison

    with the Charpy da ta for the base plate A 533 grade B

    class 1 i n both the LT and LS orientations repre-

    S T R E S S

    D I S T R I B U T I O N

    ( M P a )

    K I = 5 7 M P a v - m 8 1 4 1 3 . 7

    4 1 3 . 7

    Fig. 14. Predicted stress intensity for semielliptical flaws in 51-mm-thick unclad plate under pure bending.

  • 7/26/2019 Reactor Vessel Cladding

    13/23

    W R Corwin / Reactor vessel cladding separate effects studies 183

    5

    m m

    J - 7 6 m m

    I

    / / / / / / / / / / / / / / / / / / / A 2 2 I I / /

    t

    K AT 0 = 0 ~ J

    ( M P a

    _1

    r

    2 2 V / / / / / / / / / / / / / / / / / / Z

    K t A T 0 = 7r /2

    S T R E S S

    D I S T R I B U T I O N

    ( MPa)

    / j 4 1 3 . 7

    4 1 3 . 7

    Fig. 15. Predicted stress intensity for 76-mm-long flaws in 51-mm-thick clad plate under pure bending.

    senting crack propagation across and into the plates,

    respectively fig. 17). For ana lysis purposes, all CVN

    energy vs. temperature data were fitted with a hyper-

    bolic tangent function. Even though the impact data of

    the high and low popul ations diverge at higher tempera-

    tures, the impact energy of both sets of cla dding was 12

    to 13 J at the plate test tempe rature, only shghtly higher

    than that of the base plate, 7 to 10 J. In contrast the

    quasi-static initiation toughness of cladding, Kj, was

    almost three times that of the base plate table 3).

    Whether this is due to rate effects related to the failure

    of the 8-ferrite in the cladding or other causes was not

    determined. The - 40 C test temperat ure was chosen

    to assure a frangible failure in the base plate which had

    a drop weight NDT of -18C. Results of tensile test-

    ing at -4 0 C are shown in table 4.

    To provide baseline values on the material used as

    the base plate, crack-arrest testing was also performed.

    Crack-arrest specimens were fabricated from broken

    halves of the clad-plate specimens in the LT orientation.

    P/2

    MBASE

    E T A L

    STAINLESS

    C L A D D I N G

    P/2

    FL

    DIMENSIONS IN CENTIMETERS

    Fig. 16. Specimen dimensions and load locations.

  • 7/26/2019 Reactor Vessel Cladding

    14/23

    184 W . R . C orwi n R e ac t o r t ;e s se l c l add i ng s e para t e e ff e c ts s t ud i e s

    2 0 0

    1 7 5

    1 5 0

    1 2 5

    i 1 0 0

    z s

    |

    0 . . . . . . . 0

    O - - - - C ]

    V - - - - I F

    I I I

    B A S E P L A T E ( LS ) . . . . . . ~ . . . . .

    B A S E P L A T E ( L T ) . ~ ' ~ - O - - -

    C L A D D I N G o ~

    ( H I G H E N E R G Y . ~

    P O P U L A T I O N ) ) /

    C L A D D I N G

    ( L O W E N E R G Y /

    P O P U L A T I O N ) ) .

    I ' ' '

    s

    5 T S T T M PERATURE

    3 1 ~ 1 ~ / _ - - - B A S E P L A T E

    O T

    - 2 0 0 - 1 0 0 0 1 0 0 2 0 0 3 0 0

    T E M P E R A T U R E ( C )

    Fig. 17 . The im p a c t tou ghne ss of the c la dd ing s l igh t ly e xc e e ds tha t of the ba se p la te a t the t e s t t e m p e ra ture of the c la d p la te s .

    T h i s o r i e n t a t i o n c o r r e s p o n d e d t o t h e e x t en s i o n o f t h e

    f l a w i n t h e c l a d - p l a t e e x p e r i m e n t s a c r o s s t h e w i d t h o f

    t h e p l a te . T h e s p e c i m e n s w e r e o f t h e w e l d - e m b r i t t l e d ,

    t r a n s v e rs e - l o a d ed , s p - p i n t y p e r e c o m m e n d e d b y t h e

    l a te s t d r a f t o f th e p r o p o s e d A S T M s t a n d a r d o n c r a ck -

    a r r e s t t e st i n g . T h e y w e r e 2 5 . 4 m m t h i c k w i t h p l a n a r

    d i m e n s i o n s o f 1 5 2 . 4 m m a n d 1 4 8 . 2 m m . T h e s e d a t a

    a l lo w a d i r e ct c o m p a r i s o n t o b e m a d e b e t w e e n t h e

    v a l u e s o f c r a c k a r r e s t c a l c u l a t e d f o r t h e c l a d p l a t e s a n d

    T a b l e 3

    Fra c ture toughne ss of m a te r ia l s use d in the c la d p la te t e s t s

    Ma te r ia l Spe ci - Te m pe ra - Or ie n ta - j a

    m e n t u re t i on ( M p a f m )

    N o ( C )

    A-533 gra de B CPA 100 b - -40 LT 56 .8

    c l a ss 1 C P A 1 0 1 b - 4 0 L T 8 0 .4

    Ave ra ge 68 .6

    308 /30 9 SS CP218 ~ - 40 a 191 .0

    w e l d m e t a l C P 2 1 9

    c

    40 d 193.0

    Ave ra ge 192.0

    a C a l c u l a t e d f r o m J a t m a x i m u m l o a d u s i n g K f = E J .

    b 1T-CT spe c im e n.

    c P r e c r a ck e d C h a r p y V - n o t c h s l o w - b e n d s p e ci m e n .

    a A s sho wn in f ig . 4 .

    t h o s e o f t h e b a s e p l a t e i t s e lf t o d e t e r m i n e i f t h e c l a d d i n g

    d i d i n d e e d e n h a n c e t h e s t r u c t u r a l r e s i s t a n c e o f t h e c l a d

    s t r u c t u r e .

    4 . 4. T e s t i n g e q u i p m e n t a n d s e q u e n c e - P h a s e o n e

    A n e x i st i n g 1 - M N s e r v o -h y d r a u l ic t e s t in g m a c h i n e

    w a s m o d i f i e d t o i m p o s e f o u r - p o i n t b e n d i n g o n t h e

    s p e c i m e n s ( fi g . 1 8 ). I n a d d i t i o n t o a p p l y i n g t h e c o n -

    t r o l l e d l o a d i n g , t h e f i x t u r e w a s a l s o d e s i g n e d t o e l i m i n a t e

    i n - p l a n e l o a d i n g a s a r e s u lt o f b e a r i n g c o n s t r a i n t c a u s e d

    b y t e m p e r a t u r e c h a n g e s d u r i n g t h e l o a d i n g p r o c e s s .

    T a b l e 4

    Te ns i l e prope r t i e s of m a te r ia l s use d in the c la d-p la te t e s ts

    Ma te r ia l Te m p e ra - S t r e ngth Duc t i l i ty

    ture (MPa ) (%)

    ( C ) Y i e ld U h i - E l o n g a - R e d u c t i o n

    m a t e t i o n b o f a r e a

    A-533 gra de B

    c la s s1 -4 0 490.8 685.4 20 .7 61 .7

    3 0 8 / 3 0 9 S S

    we ld m e ta l -4 0 324.7 874.7 43 .7 47 .0

    a Ave ra ge of two spe c im e ns , 4 .52 m m in d ia m e te r .

    b Ga g e l e ngth - to-d ia m e te r r a t io = 7 .

  • 7/26/2019 Reactor Vessel Cladding

    15/23

    W R Corwin / Reactor vessel cladding separate effects studies 8

    R E A C T I O N

    B E A R I N G- . - -

    I N s T R o N 2 0 0 - k i p

    T E S T I N G M A C H I N E

    J C K B O L T S

    i

    r , q E M

    ~ ~CROSSHEAD

    R E A C T IO N ~ ~ P-- ,l

    R E A C T I O N A N C H O R

    I I I L ~ - - S H I E L D

    JO

    E ~

    L(3 ~D

    C E . L

    i

    L J

    I t A s E

    Fig. 18. Section elevation of clad plate task test setup.

    O t he r f e a t u r e s i nc o r po r a t e d w i t h t he m od i f i c a t i on i n -

    c l ude d a l i qu i d - n i t r oge n c oo l i ng s ys t e m f o r t he t e s t

    s p e c im e n , a s y s t e m f o r h y d r o g e n c h a r g i n g o f t h e E B

    w e l d t o i n d u c e c r a c k p r o p a g a t i o n u n d e r l o a d , a n d a

    p l a s t i c s h i e l d t o p r o t e c t ope r a t i ng pe r s onne l f r om i n j u r y

    c a us e d by pos s i b l e m i s s i l e s a nd s p l a s h i ng l i qu i d n i t r o -

    ge n o r s u l f u r i c a c i d .

    The t e s t p r oc e dur e de ve l ope d f o r t he s pe c i m e ns i n -

    c l ude d t he fo l l ow i ng s t e ps : 1 ) i n s t r um e n t a t i on o f s pe d -

    m e n ; 2 ) i n s e r t i on a nd a l i gnm e n t o f s pe c i m e n in the t e x t

    f i x t u re ; 3 ) a t t a c h m e n t o f s e ns o r s t o r e c o r de r s a nd da t a

    a c qu i s i t i on s ys t e m s ; 4 ) c oo l i ng o f t he s pe c i m e n t o t he

    p r e s e l e c t e d t e st t e m pe r a t u r e d ; 5 ) l oa d i ng o f t he s pe c i -

    m e n t o a t a r ge t l oa d , t yp i c a l l y c o r r e s p ond i ng t o i nc i p i-

    e n t y i e l d i ng a t t he su r f a c e s o f the p l a t e ; 6 ) m a i n t e na n c e

    o f t he l oa d w i t h t he t e s t i ng m a c h i ne i n d i s p l a c e m e n t

    c o n t r o l ; 7 ) h y d r o g e n c h a r g i n g o f th e E B - w e l d f l aw ;

    a n d 8 ) c o n t i n u o u s a n d / o r p e r i o d ic m o n i t o r in g o f

    s pe c i m e n l oa d , s t r a i n , f l a w c r a c k - ope n i ng d i s p l a c e m e n t

    C O D ) , a n d t e m pe r a t u r e un t i l e i the r f a i lu r e o f the s pe c i -

    m e n o r p o p - i n a n d a r r es t o f t h e f la w o c c u r re d . I f p o p - i n

    a n d a r r e s t o c c u r r e d , t h e s p e c i m e n w a s r e m o v e d f r o m

    t h e m a c h i n e , h e a t - t i n t e d , a n d s u b s e q u e n t l y b r o k e n

    f r a ng i b l y t o pe r m i t a v i e w o f t he a r r e s t e d f l a w p r o f i l e .

    A dd i t i ona l de t a i l s on t e s t m a t e r i a l s , s pe c i m e ns a nd

    pr oc e dur e s c a n be ob t a i ne d e l s e w he r e [ 2 ] .

  • 7/26/2019 Reactor Vessel Cladding

    16/23

    186 w. R . Corw i n / R e ac t o r ue r se l c l add i ng s e para t e ~ fJ e ct s ~ 't udi es

    4 . 5. T e s t re s u l ts a n d d i s c u s s i o n - P h a s e o n e

    Efforts were made to use the test procedures de-

    scribed above; however, departures occurred during the

    experiments. A brief description of each test is given

    below with the results.

    One unclad plate, CP-1A, was tested. This test pro-

    vided a demonstration of the hypothesis that at the

    loading conditions chosen, an unclad specimen should

    fail. The test procedure was carried out as pl anned, with

    the fully instrumented specimen reaching and sustaining

    a load of 622.8 kN at - 4 0 C, corresponding to incipi-

    ent yielding of the surface fibers. Hydroge n charging

    was initiated, and the specimen fractured frangibly into

    two halves. The inst rume ntat ion of the plate, which is

    typical for all other tests as well, is shown in fig. 19.

    Foil-type strain gages, weldable COD gages, and tack-

    welded thermocouples were included. On examination

    of the fracture surface, the crack appeared to have

    initiated in the brittle EB weld and rapidly propagated

    through the entire plate.

    Four plates with 308/309 cladding CP-3, CP-5,

    CP-8, and CP-9) were tested. These tests were intended

    to demonstrate and define the contri butio n that the

    stainless steel cladding would make to the composite

    structural resistance of the specimen to dynamic failure.

    Specimen CP-3 was cooled to -4 0 C, and loading

    toward the target incipient yielding load of 594.2 kN

    was begun. At a load of 327.8 kN, a pop-in occurred.

    Although calculations from the COD gage results indi-

    cated a pop-in from a flaw of EB-weld size, the extent

    of the event was uncertain, and loading was continued

    to the target load. The specimen than was hydrogen-

    charged for about 35 h, at which point it was concluded

    that no further events would occur. The specimen was

    unloaded and heat-tinted. The cladding on the specimen

    was then sawed across the specimen) coplanar with the

    pop-in down to the bottom of the groove surrounding

    the EB weld to facilitate final fracture of the specimen.

    The specimen was cooled to about -1 00 C and re-

    loaded monoton ically until failure occurred at 364.6

    kN.

    The pop-in at 327.8 kN fig. 20) appears to have

    propagated through the entire EB weld and into the

    base metal in the depth direction, but not along the

    surface of the cladding where it seems to have been

    pinned at the intersection of the EB weld and cladding.

    Upon final fracture, which was frangible, the crack did

    Fig. 19. Unclad plate CP-1A shown after all instrumentation has been applied.

  • 7/26/2019 Reactor Vessel Cladding

    17/23

    W R Corwin / Reactor vessel cladding separate effects studies 187

    Fig. 20. Detail of pop-in area of types 309/308 stainless s teel c lad plate CP-3. Note that crack ran through the EB weld dark smooth

    area) into the base metal dark rough area) in the depth direction but n ot along the surface where it was pinned by cladding.

    r u n t h r o u g h b o t h t h e f e r r i ti c b a s e m e t a l a n d t h e r e m a i n -

    i n g a u s t e n i t i c c l a d d i n g .

    S p e c i m e n C P -5 w a s c o o l e d to - 4 0 C a n d l o a d e d t o

    i n c i p i e n t y i e l d i n g a t t he b a s e - p l a t e / w e l d - m e t a l i n t e r -

    f a c e ) a t 66 7 .2 k N , a n d h y d r o g e n c h a r g i n g w a s b e g u n .

    T h e s p e c i m e n f a i l e d f r a n g i b l y i n a b o u t 3 h . T h e f r a c t u r e

    s u r f a c e e x h i b i t e d f l a t f r a c t u r e , w h i c h a p p e a r s t o h a v e

    o r i g i n a t e d i n t h e E B w e l d a n d r u n t h r o u g h o u t t h e p l a te .

    S p e c i m e n C P - 8 w a s c o o le d to - 4 0 C a n d , si m i l a r t o

    C P - 3 , p o p - i n o c c u r r e d d u r i n g l o a d i n g a t 29 1 k N . T h e

    s p e c i m e n w a s u n l o a d e d , h e a t - t i n t e d , a n d l o a d e d m o n o -

    t o n i c a l l y a t - 7 3 C u n t i l f ai l u r e o c c u r r e d a t 3 8 0 k N .

    T h e c l a d d i n g w a s n o t s a w e d t o f a c i l i t a t e f r a c t u r e i n t h i s

    s p e c i m e n . T h e f l a w h a d p r o p a g a t e d i n t o t h e b a s e m e t a l

    d u r i n g t h e t e s t b u t r e m a i n e d p i n n e d a t t h e

    c l a d d i n g / E B - w e l d i n te r fa c e .

    T o d e f i n e t h e u p p e r l i m i t o f ar r e s t , a l o a d o f 4 1 8 k N

    w a s c h o s e n a s t h e t e s t l o a d f o r s p e c i m e n C P - 9 , i n t e r -

    m e d i a t e b e t w e e n s p e c i m e n s C P - 5 a n d C P - 8 . P o s t t e s t

    m e a s u r e m e n t s o f t h e f l a w g e o m e t r y r e v e a l e d i t t o b e

    c o n s i d e r a b l y d i f f e r e n t f r o m t h a t a s s u m e d i n t h e p r e t e s t

    c a l c u l a t i o n s s o t h a t t h e a c t u a l s t r e s s i n t e n s i t y f a c t o r a t

    a r r e s t w a s c o n s i d e r a b l y lo w e r t h a n e x p e c t e d . S p e c i m e n

    C P - 9 w a s c o o l e d t o - 4 0 C , l o a d e d t o 4 18 k N , a n d

    h y d r o g e n c h a r g e d . T h e f l a w p o p p e d i n a n d a r r e s t e d .

    T h e s p e o m e n w a s u n l o a d e d , h e a t - t i n t e d , a n d l o a d e d

    m o n o t o n i c a l l y at - 7 3 C u n t i l f a i l u r e o c c u r r e d a t 3 93 .7

    k N . A t t h e p o p - i n , t h e f l a w t u n n e l e d w i t h i n t h e b a s e

    m e t a l w i t h o u t c o n t a c t i n g t h e c l a d d i n g . T w o m e t h o d s

    w e r e i n i t i a l l y u s e d t o c a l c u l a t e t h e s t r e ss i n t e n s i t y f a c t o r

    a t a r r e s t as a f u n c t i o n o f a n g u l a r p o s i t i o n t a b l e 5 ): t h e

    m e t h o d d e v e l o p e d b y M e r k l e [ 12 ,1 3] a n d t h e m e t h o d

    d e v e l o p e d b y N e w m a n a n d R a j u [ 14 ]. L a t e r t h r e e - d i-

    m e n s i o n a l f i n i t e - e l e m e n t c a l c u l a t i o n s w e r e a l s o m a d e

    u s i n g th e O R V I R T p r o g r a m [ 15 ] t a b l e 5 ). N o a t t e m p t

    w a s m a d e t o e s t i m a t e a n d t h e i n c o r p o r a t e b i - m e t a l l i c

    a n d r e s id u a l s t r e s s e s in th e c a l c u la t io n s o r t o a s s e s s th e

    e f f e c t o f p l a s t i c f l o w a t t e s t l o a d i n g . A s i n i t i a l l y p l a n n e d ,

    t e s t l o a d i n g t o o b t a i n s t r e s s e s a p p r o a c h i n g y i e l d a t t h e

    s t a i n l e s s b a s e - m e t a l i n t e r f a c e w o u l d r e s u l t i n p l a s t i c

    f l o w o f t h e s t a i n l e s s c l a d d i n g . T h e s t r a i n r e p o r t e d i n

    t a b le 5 i s t h e a v e ra g e s t r a in o n th e s t a in l e s s c l a d s u r fa c e

    w i t h i n t h e c o n s t a n t m o m e n t z o n e o f t h e f o u r - p o i n t

    b e a m l o a d i n g o f t h e s pe c i m e n s . F o r t h e c o n d i t i o n s o f

    t h e e x p e r i m e n t s p e r f o r m e d w i t h y i e l d i n g o f t h e c l a d -

    d i n g , i t w a s a s s u m e d t h a t f o r a f i r s t a p p r o x i m a t i o n , t h e

  • 7/26/2019 Reactor Vessel Cladding

    18/23

    188 14/.R . ( orwm / Reac to r vesse l c ladding separa te ~]fec t~s s tudies

    Table 5

    Tabulation of calculated stress-intensity factor data

    Speci- Flaw ~ Flaw Flaw Plate

    men type depth half- depth

    No. a length 0 = ~r/2

    (cm) b plane w

    (cm) (cm)

    Load b Stress ~ Straind Tempera- Stress intensity factor,

    K~(O)

    (kN) (MPa) micro- ture 'j (MPaf m-)

    strain ( C)

    Method 0= 0 0=~r/6 0=~r/4 0=~r/3 0=~r/2

    CP-1A I 1.43 3.35 5.40 622.8 48 1. 0 205 0 - 40 M 72.8 75.9 78.0 78.8 6g.0

    RN 67. 8 67.5 67.0 65.8 66.4

    CP-3 I 1.57 4.76 4.9 6 327.8 24 6. 6 1413 - 40 M 40.5 42.8 44.5 45.7 34.2

    RN 36.9 36.9 36.7 36.4 35.6

    CP-3 A 2.18 4 . 7 6 4.9 6 327.8 246 .6 1413 - 40 M 37.5 42.1 45.5 48.3 47.6

    RN 30. 2 30.7 31.4 32.9 45.3

    O 33.7 36.8 39.1 42.3 34.9

    CP-5 I 1.51 2.12 4.81 667.2 478 .9 4473 - 40 M 51.5 55.9 59.6 63.6 77.8

    RN 49.2 50.5 52.5 56.1 73.3

    O 51.1 40.4 51.0 63.0 32.2

    CP-7 I 1.15 3 . 3 3 4.86 413.7 31 8. 2 1353 -- 62 M 46.6 48.2 49.5 50.0 37.3

    RN 43. 8 43. 6 43.2 42.3 37.5

    CP-8 I 1.14 3. 26 4.89 291.4 23 3. 1 1360 - 40 M 33.9 35.1 36.0 36.4 27.5

    CP-8 A 1.47 3 .0 1 4.89 291.4 23 3. 1 1360 40 M 33.7 34.0 35.3 36.1 34.9

    O 30.7 31.6 32.4 33.7 21.3

    CP-8 IR 1.47 3 .0 1 4.89 380.3 30 4. 2 164 0 73 M 44.0 44.3 46.1 47.2 45.5

    CP-9 A 1.95 5.03 4.01 418.1 15 9. 7 1690 - 40 M 15.9 19.3 22.3 25.0 26.0

    CP-9 f A 3.06 5.03 5.12 418.1 35 9. 2 1690 -4 0 M 36.3 55.3 62.7 63.0 103.7

    CP-9 A 1.95 5.03 4.01 418.1 15 9. 7 1690 - 40 O 30.7 32.4 33.7 36.6 30.3

    a I = initiation, A = arrested, and IR = initiated on reloading.

    b Measured.

    c Calculated at flaw 0 = ~r/2 plane.

    d Measured average surface.

    c M = Merkle method, RN = Raju-Newman method, and O = ORV1RT method.

    f Calculat ion based on gross section.

    stress intensity factor could be evaluated by assuming

    the deformation of the entire beam was governed by the

    elastic behavior of the bas e material.

    The initial interpretation of the flaw arrest experi-

    enced at the stainless base-metal interface for specimens

    CP-3 and CP-8 was that the arrest was a result of the

    stainless cladding. However, arrest within the base metal

    for specimen CP-9 raised the question of the validity of

    the approximate analyses used in light of the actual

    specimen geometry prompting the additional ORVIR T

    stress intensity factor calculations given in table 5, the

    results of which are shown with the simpler method as

    functions of the polar angle in fig. 21 for specimen

    CP-3, as an example.

    It is evident that the fabrication techniques em-

    ployed were inadequate. The intent was to machine a

    groove precisely down to the interface between the

    stainless steel cladding and base metal and apply the

    EB weld in the bot tom of the grooves in the base metal.

    The grooves for CP-3, CP-5, and CP-8 were machined

    too shallow. The groove for CP-9 was controlled in

    depth by an etching technique, and while all traces of

    the cladding layer were removed, the result was a deep

    groove appreciably lower than the mean depth of the

    weld interface.

  • 7/26/2019 Reactor Vessel Cladding

    19/23

    W R Corwin / Reactor vessel cladding separate effects studies 189

    7 0

    6 O

    v

    z

    n 3O

    / }

    U J

    n-

    I -

    ~

    . : _ 2 0

    v

    1 0

    I I I I I I

    I 1 - 1 1

    ~ ~ A ~ & ~

    M E R K L E M E T H O D

    R A J U - N E W M A N M E T H O D

    I I O R V I R T

    I I I I I I I

    0 1 0 2 0 3 0 4 0 5 0 5 0 7 0 8 0 9 0 1 0 0

    P O L A R A N G L E , (d og )

    I

    Fig. 21. Stress intensity for arrested flaw in specimen CP-3 as function of polar angle as calculated by Merkle, Raju-Newman, and

    ORVIRT methods.

    The simplified methods of analysis employed as-

    sumed a plane surface at the bottom of the groove for

    the calculation of the stress intensity factor because the

    calculations were based on the intersection of a flaw

    with a free surface; that is, the effect of the groove in

    the cladding was ignored. In addition, the flaw was

    assumed to have a semielliptical shape. On the other

    hand, the ORVIRT calculations used the posttest-de-

    termined shape of the groove and flaw to calculate the

    stress inten sity factor. The resulting improved stress-in-

    tensity factor calculation agreed reasonably well with

    the simpler methods for specimens CP-3, CP-5, and

    CP-8 which contained a shallow groove except for the

    zone where the polar angle approache d 90 , near the

    intersec tion of the flaw with the botto m of the groove in

    the cladding. Here the stress intensity factors were

    elevated, presumably due to the stress concentration

    effects of the 6.25-mm-wide groove. For s pecimen CP-9,

    which contained the deep groove and for which the

    simplified methods were inadequate, only the ORVIRT

    calculation appeared useful.

    To see what effect the cladding had on the crack-ar-

    rest properties of the composite clad-plate specimens, it

    is useful to compare the maximum values of stress

    intens ity factor calculated for the plate specimens at the

    arrest of the pop-ins with values for the base metal. For

    this purpose it was judged most reasonable to use the

    peak values of Kt taken from the ORVIRT calculations

    which are listed in table 6. This is because the peak

    values reflect the stress conce ntrati on effects of the

    Table 6

    Maximum near-surface stress intensity factor values calculated

    by ORVIRT for plates with 308/309 cladding

    Plate Condition Angle K 1

    deg) MPa~fm)

    CP-3 Arrest 85 67

    C P - 5 Initiation 90 101

    CP-8 Arrest 80-85 50

    CP-9 Arrest 89 57

  • 7/26/2019 Reactor Vessel Cladding

    20/23

    190 ~ R. ( or w m / Reac tor t~e.ssel c ladding separa te tJ~bc ts ,s tudies

    groove, which appear to be significant near the clad-

    din g-b ase metal interface although not elsewhere. The

    reason for using the peak values rather than those at

    0 = ~r/2 was tha t the steeply falling segments of the

    ORV IRT curves between the peaks and 0 = ~r/2 are not

    considered accurate, because of finit e-element distortio n

    effects which appear to have developed very near the

    ends of the flaws. The results for the crack arrest

    specimens and the clad-plate specimens shown in fig. 22

    indicate that two of the values of arrest toughness

    calculated for the clad-plate experiments CP-8 and -9)

    coincide closely with those obtained using crack-arrest

    specimens ; the third CP-3), however, is slightly higher.

    The stress inten sity factor for clad-plate specimen CP-5,

    which did not arrest, was calculated for the flaw geome-

    try and loading conditions at initiation and, because of

    the load reached, was well in excess of the values

    obtained with the crack arrest specimens. Overall the

    comparisons made between the crack-arrest specimens

    and the clad-plate experiments show that there may be

    limited ability of the moderate toughness cladding ex-

    amined to enhance structural resistance to crack exten-

    sion. However, the present da ta are not entirely conclu-

    sive because only a modest increase, if any, in the

    calculated arrest toughness of the clad-plate specimens

    beyon d the base material scatter band was observed.

    To provide a more definitive answer regarding if and

    indeed how much structural enhancement the cladding

    could yield in this geometry would require additional

    testing. Initial loading conditions need to be reached

    that would produce a level of stress inten sity factor in

    the dynamic ally moving flaw in between those obta ined

    in CP-3, -8, and -9 which arrested more or less within

    the scatter band for the base plate), and that obtained

    in CP-5 which did not arrest at all). However, such

    tests were not performed in this series of experiments. It

    was not possible to reach a level of load that was high

    enough to produce the required initial conditions as a

    result of premature pop-ins during loading, such as

    occurred in CP-3 and CP-8. This was caused by not

    removing all the stainless steel weld metal prior to EB

    welding. Mixing of the stainless steel with the low alloy

    2

    1 8 0

    1 6 0

    140

    or 120

    I.-

    100

    >-

    F--

    Z

    Id J

    I---

    7

    0 3

    0 3

    t .~

    ee-

    l---

    8

    6

    4

    2

    - 5 0 - 4 0

    I I I I I I I I 1 I I

    P L A T E H S ST 0 7 O V A L I D 1 T C A S P E C I M E N

    L T O R I E N T A T I O N I N V A L I D 1 T C A S P EC I M EN

    N D T = - 1 8 o c 0 O F) B E A M S P E C I M E N

    T / 6 8 J = 2 0 o c 6 8 F ) F L A W A R R ES T E D

    R T N D T = _ 1 3 o c 8 OF )

    B E A M S P E C I M E N

    F L A W D I D N O T A R R E S T

    c e - 5 ~

    C P - 3 O

    c _ o

    C P - 8 , ~

    C L A D B E A M

    T E S T T E M P E R A T U R E , R E L A T I V E T O R T N D T O F B AS E M E T A L

    t z J i J J J

    - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

    T - R T N D T o c )

    Fig. 22. Comparing the crack-arrest values calculated for clad-plate specimens that arrested with those obtained from crack-arrest

    specimens indicates only a possibility that the cladding enhanced the toughness of the structure.

  • 7/26/2019 Reactor Vessel Cladding

    21/23

    W.R. Corwin / Reactor vesse l c ladding separate e f fec ts s tudies 191

    ba s e p l a t e r e s u l t e d i n c r a c ks w i t h i n t he w e l d nugge t ,

    w h i c h i n i t i a t e d t he l ow l oa d pop - i n s . Spe c i m e n C P- 5 ,

    w h i c h d i d r e a c h t he t a r ge t l oa d o f i nc i p i e n t s u r f a c e

    y i e l d i n g a n d d e m o n s t r a t e d t h a t r a p i d f r a c t u r e i n t h e

    p r e s e n c e o f m o d e r a t e l y t o u g h c l a d d i n g c o u l d o c c u r ,

    p r o d u c e d a v a l u a b l e u p p e r l i m i t a t w h i c h a r re s t d i d n o t

    h a p p e n .

    R e m ov i ng a l l t r a c e s o f t he c l a dd i ng p r i o r t o EB

    w e l d i ng , a s i n s pe c i m e n C P- 9 , s o l ve d t he p r ob l e m o f

    p r e m a t u r e pop - i n s . H ow e ve r , t he r e s u l t i ng de e p g r oove

    g e o m e t r y in t r o d u c e d s u f fi c ie n t e x p e ri m e n t a l a n d a n a -

    l y r i c a l a m b i gu i t i e s t ha t no i m pr ove m e n t i n de f i n i ng t he

    s t r uc t u r a l e f f e c t o f t he c l a dd i ng on c om pos i t e c r a c k - a r -

    r e s t p r ope r t i e s o f t he c l a d - p l a t e s pe c i m e ns w a s ob -

    ta ined.

    f l a w o n t h e s u r f a c e a n d k e e p a s h o r t f l a w f r o m b e c o m -

    i ng l ong . O ne s pe c i m e n a r r e s t e d a t a c a l c u l a t e d s t r e s s

    i n t e ns i t y f a c t o r i n e xc e s s o f t he obs e r ve d s c a t t e r ba nd

    f o r c r a c k a r r e s t da t a w i t h i n t he ba s e p l a t e ; m or e ove r ,

    none o f t he f l a w s t ha t a r r e s t e d s hou l d ha ve done s o i n

    t he e x i s t i ng s t r e s s f i e l d un l e s s t he r e ha d be e n s om e

    d e g r e e o f p i n n i n g o f t h e e n d s o f t h e f l a w b y a t o u g h

    s u r f a c e l a ye r . I t i s i m por t a n t t o s t r e s s , how e ve r , t ha n

    a n y s t r u c t u r a l t o u g h n e s s e n h a n c e m e n t b y t h e c l a d d i n g

    i n t h i s s t udy w a s l i m i t e d . The f a c t t ha t p l a t e C P- 5

    f r a c t u r e d c om pl e t e l y w i t h no i nd i c a t i on o f c l a dd i ng - i n -

    duc e d a r r e s t i s a c l e a r de m ons t r a t i on o f t he m ode r a t e l y

    t oug h c l a dd i ng s l i m i ta t i on .

    4 . 7 . P l a n s f o r c l a d p l a t e e x p e r i m e n t s P h a s e tw o

    4 .6 . C o n c l u s i o n s P h a s e o n e

    B y c o m p a r i n g t h e b e h a v i o r o f t y p e s 3 0 8 / 3 0 9 s t a i n -

    l e s s s t e e l c l a d p l a t e s C P- 3 , C P- 5 , C P- 8 , a nd C P- 9 w i t h

    t ha t o f t he unc l a d p l a t e a nd t he ba s e p l a t e c r a c k - a r r e s t

    da t a , i t a ppe a r s t ha t m ode r a t e l y l ow - t oughne s s s t a i n l e s s

    s t e e l c l a dd i ng ha s a l i m i t e d c a pa c i t y t o a r r e s t a r unn i ng

    Pha s e t w o o f t he c l a d p l a t e e xpe r i m e n t s w i l l be t t e r

    de f i ne t he s t r uc t u r a l e f f e c ts o f c l a dd i ng , u s i ng bo t h

    e n h a n c e d e x p e r im e n t a l t e c h n i q u e a n d h i g h q u a l i ty c o m -

    m e r c i a l l y p r oduc e d c l a d ove r l a y w e l dm e n t .

    To e l i m i na t e t he c om pl i c a t i ons o f t he g r oove - i n -

    duc e d s t r e s s c onc e n t r a t i on a nd o f ha v i ng t he f l a w i n a

    p r e v i ous l y w e l de d r e g i on , a ne w s pe c i m e n d e s i gn ( fi g.

    P 2

    P 2

    P 2

    I M E N S I O N S I N

    CENTIMETERS

    Fig. 23. Specim en dimension s and load locations of optimized specim en to be used in phase two of clad plate investigations.

  • 7/26/2019 Reactor Vessel Cladding

    22/23

    92

    W.R. Corwin / Reactor vessel cladding separate fjbcts studies

    2 3 ) h a s b e e n u s e d to c o n t in u e th i s w o rk in th e n e x t

    s e r i e s o f e x p e r ime n t s . In th i s s p e c ime n , p r io r t o w e ld -

    in g , t h e b a s e me ta l w a s r e c e s s e d to a d e p th e q u a l t o th a t

    o f t h e c l a d d i n g o n b o t h s i d e s o f t h e m i d d l e r e g i on .

    T h e s e r e c e s s e d r e g io n s w e re th e n f i l l e d in w i th w e ld

    c la d d in g . T h i s d e s ig n p ro v id e s a f l a t s u r fa c e , f r e e f ro m

    d is c o n t in u i t i e s , o th e r t h a n th e f l a w i t s e l f , fo r a n a ly t i c a l

    s i m p l i f i c i t y a n d w i l l a ls o p r o v i d e a n a r e a n o t c o n -

    t a m i n a t e d w i t h s t a i n l e s s s t e e l w e l d m e t a l i n w h i c h t h e

    E B w e l d c a n b e p l a c e d . T h i s s h o u l d a l l o w t he s p e c i m e n

    t o r e a c h w h a t e v e r i n i t i a l l o a d i n g c o n d i t i o n s a r e d e s i r e d

    to a c c u ra t e ly a s s e s s th e e f f e c ts o f t h e c l a d d in g .

    T h e w e l d m e n t s f r o m w h i c h t h e s e s p e c i m e n s h a v e

    b e e n f a b r i c a t e d w e r e c o m m e r c i a l l y p r o d u c e d u s i n g t h e

    s a m e t h r e e w i r e s e r i e s a r c p r o c e d u r e s e m p l o y e d f o r t h e

    s e c o n d p h a s e o f t h e c l a d d i n g i r r a d i a t i o n e x p e r i m e n t s .

    O n l y o n e l a y e r o f c l a d d i n g w a s n e c e s s a r y t o m e e t t h e

    th i c k n e s s r e q u i re me n t s fo r t h e t e s t p l a t e s , w h e re a s th re e

    l a y e r s w e r e a p p l i e d t o p r o d u c e a n a d e q u a t e t h i c k n e s s

    f o r t h e c o m p a n i o n c h a r a c t e r i z a t i o n s p e c i m e n s . H o w -

    e v e r , d e m a n d i n g c o n t r o l s o n t h e f i n i s h e d w e l d m e n t

    i n c l u d i n g s u b s i ze i m p a c t s p e c i m e n t e s t i n g a n d c h e m i c a l

    a n d m e t a l l o g r a p h i c a n a l y s i s o f e a c h l a y e r h a s a s s u r e d

    u n i f o r m i t y a m o n g l a y e r s o f c l a d d i n g . S p e c i a l i ze d h e at

    t r e a t m e n t o f t h e A 5 3 3 g r a d e B c h e m i s t r y b a s e p l a t e

    u s e d in f a b r i c a t in g th e p l a t e s w a s u s e d to g re a t ly e l e v a te

    i t s d u c t i l e - t o - b r i t t l e tr a n s i t i o n t e m p e r a t u r e . T h e r e s u lt -

    i n g s p e c i m e n s , c o m p o s e d o f a h i g h l y u n i f o r m c l a d d i n g ,

    ty p ic a l o f o ld e r r e a c to r p re s s u re v e s s e l s , d e p o s i t e d o n a

    h i g h t r a n s i t i o n b a s e p l a t e , w i l l a l l o w t h e s t r u c t u r a l

    e v a l u a t i o n o f a n a r b i t r a r i l y t o u g h c l a d d i n g . S e l e c ti o n o f

    a t e st t e m p e r a t u r e b e t w e e n - 2 5 a n d 2 5 C w i l l r e s u l t

    i n a c l a d d i n g w i t h c h a r p y i m p a c t e n e r g y v a r y i n g f r o m

    a b o u t 4 0 to 7 0 J , w h i l e ma in ta in in g a f r a n g ib le b a s e

    p la te f ig . 24).

    I n a d d i t i o n t o e x a m i n i n g t h e e f f e c t s o f c l a d d i n g o n

    c ra c k a r r e s t i n th e c o mp o s i t e s t ru c tu re , i n i t i a t io n e f f e c t s

    w i l l a l s o b e e x a m i n e d . F o l l o w i n g p o p - i n a n d a r r e s t i n

    th e s e s p e c ime n s , t h e y w i l l b e h e a t t i n t e d to ma rk th e

    i n i t i a l f r a ct u r e s u r f a c e a n d t h e n m o n o t o n i c a l l y l o a d e d

    to f a i lu re a t a p re s e l e c t e d t e mp e ra tu re .

    A l l t e s t m a t e r i a l s a n d s p e c i m e n s a r e c u r r e n t l y o n

    h a n d a n d m a t e r i a l s c h a r a c t e r i z a t i o n t e s t i n g i s u n d e r -

    w a y . P la t e t e s t in g i s e x p e c te d to b e c o mp le te d in 1 9 8 6 .

    2 0 0

    1 7 5

    1 5 0

    1 2 5

    100

    z

    w

    75

    5 0

    2 5

    I I I

    - - - - O - - - - 3 - W I R E S E R I E S - A R C C L A D D I N G

    r l A 5 3 3 G R A D E B B A S E P L A T E

    O

    O J

    [ I

    O

    B A S E P L A T E

    N D T

    0 i i i J i i i ~ i I . , .

    - 1 0 0 0 1 0 0 2 0 0 3 0 0

    T E M P E R A T U R E ( C )

    Fig. 24. A clad plate test temperature can be selected for phase two which will yield a brittle base plate and an arb itrarily tough

    cladding.

  • 7/26/2019 Reactor Vessel Cladding

    23/23

    W.R. Cor win / Reactor vessel cladding separate effects studies 193

    5. Summary

    In the two-pronged effort on the potential effects of

    cladding relating to the integrity of an RPV during an

    over cooling transient, encouraging results were pro-

    duced. Good quality weld overlay cladding generally

    maintained its inherent toughness following irradiation

    exposure and cladding of even only moderate toughness

    appeared to slightly enhance the integri ty of a struct ural

    member. Additional irradiation and structural data on a

    commercial weld overlay being generated in phase two

    of these experiments will add greatly to the existing

    unde rsta ndin g of cladding effects. On the cau tionar y

    side, it is clear that poor quality cladding can exhibit

    marked radiation induced embrittlement. Moreover,

    there are clearly loading conditions which negate the

    limited structural benefit weld overlay can add to a

    structure.

    Acknowledgments

    The author gratefully acknowledges G.C. Robinson,

    R.G. Berggren, and R.K. Nanstad for assistance in

    designing and executing the experiments; W.J. Stelz-

    man, G.M. Goodwin, J.W. Hendrix, and J.D. Hudson

    for development of welding and heat-treating proce-

    dures and production of the test materials; R.J. Gray

    and C.P. Haltom for metallographic studies; J.G.

    Merkle, R.H. Bryan and B.R. Bass for fracture-mecha-

    nics analysis; P.P. Holz for electron beam welding;

    W.F. Jackson and R. Smith for instrume ntati on; R.L.

    Swain and T.D. Owings for experimental assistance;

    a n d D L .

    Northern for revising and preparing the

    manuscript. Lastly, the author wishes to acknowledge

    M. Vagins and the U.S. Nuclear Regulatory Commis-

    sion for the technical and financial backing which made

    this work possible.

    References

    [1] W.R. Corwin, R.G. Berggren, and R.K. Nanstad, Charpy

    toughness and tensile properties of a neutron-irradiated

    stainless steel submerged arc weld cladding overlay,

    NUREG/CR-3927, ORNL/TM-9309, Martin Marietta

    Energy Systems, Inc., Oak Ridge National Laboratory

    September 1984).

    [2] W.R. Corwin et al. , Effect of stainless steel weld overlay

    cladding on the structural integrity of flawed steel plates

    in bending, Series 1, NUREG/CR-4015,

    O R N L / T M

    9390, Martin Marietta Energy Systems, Inc., Oak Ridge

    National Laboratory April 1985).

    [3] A. Schaeffler, A constitution diagram for stainless steel

    weld metal, Met. Prog. 56 5) 1949) 680-6g0B.

    [4] R.J . Gray, Magnetic etching with ferrofluid, in: Metallo-

    graphic Specimen Preparation, pp. 155-77, ed. J .L. Mc-

    Call and W.M. Mueller Plenum, New York, 1974).

    [5] E.B. Norris, D.R. Ireland, and C.E Lautzenheiser, The

    second inspection of the Elk River reactor pressure vessel

    after operation, SWRI 1228 P9-13, Southwest Research

    Institute, San Antonio, Tex. July 21, 1967).

    [6] T. Kondo, H. Nakajima, and R. Nagasaki, Metallographic

    investigation on the cladding failure in the pressure vessel

    of a BWR, Nucl. Engrg. Des. 16 1971) 205-222.

    [7] D.T. Read et al., Metallurgical factors affecting the tough-

    ness of 316L SMA weldments at cryogenic temperatures,

    Weld J. 59 4) April 1980) 104-113-s.

    [8] F.W. Bennett and C .P . Dillon, Impact strength of

    austenitic stainless steel welds at -32 0 F - Effects of

    composition, ferrite content, and heat treatment, J. Basic

    Engrg. 88 March 1966) 33-36.

    [9] G.M. Goodwin, Fracture toughness of austenitic stainless

    steel weld metal at 4 K, ORNL/TM-9172, Martin Marietta

    Energy Systems, Inc., Oak Ridge National Laboratory

    August 1984).

    [10] J.R. Hawthorne and H.E. Watson, Exploration of the

    influence of welding variables on notch ductility of irradi-

    ated austenitic stainless steel welds, Proc. Int. Conf. On

    Radiation Effects in Breeder Reactor Structural Materials,

    pp. 327-36, meeting held in Scottsdale, Ariz., June 1977.

    [11] W.R. Corwin, Assessment of radiation effects relating to

    reactor pressure vessel cladding, NUREG/CR-3671

    ORNL-6047), Martin Marietta Energy Systems, Inc., Oak

    Ridge National Laboratory July 1984).

    [12] J.G. Merkle, Stress-intensity factor estimates for part-

    through surface cracks in plates under combined tension

    and bending, pp. 3-22 in: Quarterly Progress Report on

    Reactor Safety Programs Sponsored by the Division of

    Reactor Safety Research for July-September 1974,

    ORNL/TM-4729, Vol. If, Union Carbide Corporation,

    Nuclear Division, Oak Ridge National Laboratory.

    [13] R.D. Cheverton et al ., Applicability of LEFM to the

    analysis of PWR vessels under LOCA-ECC thermal shock

    conditions, NUREG/CR-0107 ORNL/NUREG-40),

    Union Carbide Corporation, Nuclear Division, Oak Ridge

    National Laboratory October 1978).

    [14] J.C. Newman, Jr., and I.S. Raju, Analyses of surface

    cracks in finite plates under tension or bending loads,

    NASA Technical Paper 1578 1979).

    [15] B.R. Bass and J.W. Bryson, ORVIRT: a finite element

    program for energy release rate calculations for 2-dimen-

    sional and 3-dimensional crack models, NUREG/CR -

    2997, Vol. 2 ORNL/TM-8527/V2), Union Carbide Cor-

    poration, Nuclear Division, Oak Ridge National Labora-

    tory February 1983).