Reaction of Lanthanide Zirconate Pyrochlore Environmental Barrier ......

46
Reaction of Lanthanide Zirconate Pyrochlore Environmental Barrier Coating Materials in CMAS Jeffrey W. Fergus 2015 Crosscutting Research Review Pittsburgh, PA 28 April 2015

Transcript of Reaction of Lanthanide Zirconate Pyrochlore Environmental Barrier ......

Reaction of Lanthanide ZirconatePyrochlore Environmental Barrier

Coating Materials in CMAS

Jeffrey W. Fergus

2015 Crosscutting Research ReviewPittsburgh, PA28 April 2015

Participants

• Auburn University– Jeff Fergus – Honglong (Henry) Wang – Ph.D. Student– Xingxing Zhang – Ph.D. Student– Emily Tarwater – Undergraduate Student– Sudip Dasgupta – Visiting Scholar (Summer 2014)

• Plasma Processes LLC– Kyle Murphree– Tim McKechnie

28 April 2015 CCR 2015

Bond coat system

28 April 2015 CCR 2015

• Collaboration with Plasma Processes LLC

• Alternative bond coat layers• YSZ / zirconate coatings

http://www.plasmapros.com/

Thermal barrier coating system

TBC: YSZ and/or pyrochlore

Alloy: 738LC

Ir (50-100 μm)Re diffusion layer

Hf (25-50 μm)

Flash Ni coating

28 April 2015 CCR 2015

Plasma spray for YSZ / pyrochlore

Molten salt electrochemical deposition (El-Form®) for Re/Hf/Ir

Approach

• Coating development– Evaluate need for Ni coating– Optimize Hf/Ir for YSZ – Feasibility Hf/Ir for pyrochlore– YSZ + pyrochlore

• Coating materials– Stability of pyrochlore in CMAS

• Gd2Zr2O7, Sm2Zr2O7, mixed

– Accelerate with high temperature exposures

28 April 2015 CCR 2015

Need for nickel layer

28 April 2015 CCR 2015

TBC: YSZ and/or pyrochlore

Alloy: 738LC

Ir (50-100 μm)Re diffusion layer

Hf (25-50 μm)

Flash Ni coatingEvaluate possible elimination of Ni coating

?

Rhenium coating with/without nickel

28 April 2015 CCR 2015

With Ni LayerWithout Ni Layer

Nickel coating needed

Iridium coatings on round samples

28 April 2015 CCR 2015

2 out of 20 iridium coatings good quality

Electrochemical deposition reveals non-

visible defects in Re coating

Iridium coatings on rectangular samples

28 April 2015 CCR 2015

Rectangular coatings for mechanical testing

Revised approach

• Electrochemical deposition process sensitive to defects in substrate coating

• Focus coating efforts on environmental barrier coatings

• Plasma-sprayed materials to corroborate results from sintered ceramics

28 April 2015 CCR 2015

Pyrochlore coating materials

• Reaction with CMAS• Thermal conductivity

28 April 2015 CCR 2015

Reaction with CMAS

28 April 2015 CCR 2015

La2Zr2O7

YSZ + La2Zr2O7

YSZ

C.S. Ramachandran et al., Ceram. Int. 39, 1413 (2013)

Thermal conductivity of zirconia with 7-8% yttria

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

200 400 600 800 1000 1200 1400 1600

[ 13 ] [ 13 ] [ 14 ] [ 14 ] [ 15 ] [ 16 ]

[ 17 ] [ 18 ] [ 19 ] [ 20 ] [ 21 ] [ 21 ]

[ 21 ] [ 22 ] [ 23 ] [ 23 ] [ 23 ] [ 24 ]

[ 25 ] [ 26 ] [ 27 ] [ 28 ] [ 29 ] [ 30 ]

Temperature (K)

Thermalcond

uctiv

ity (W

m‐1K‐

1 )

Range of thermal conductivities due to variations in morphology and microstructure

28 April 2015 CCR 2015

J. Fergus. Met. Mater. Trans E 1, 118 (2014).

Thermal conductivity of Gd2Zr2O7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

200 400 600 800 1000 1200 1400 1600

[ 16 ] [ 18 ] [ 55 ]

[ 56 ] [ 56 ] [ 58 ]

[ 59 ] [ 60 ] [ 61 ]

Temperature (K)

Thermalcond

uctiv

ity (W

m‐1K‐

1 )

7‐8 wt% YSZ from Figure 1 κ of Gd2Zr2O7

in lower range of YSZ

28 April 2015 CCR 2015

J. Fergus. Met. Mater. Trans E 1, 118 (2014).

Thermal conductivity of Sm2Zr2O7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

200 400 600 800 1000 1200 1400 1600

[ 16 ] [ 56 ]

[ 56 ] [ 61 ]

[ 62 ] [ 63 , 64 , 65 ]

[ 66 ] [ 67 ]

Temperature (K)

Thermalcond

uctiv

ity (W

m‐1K‐

1 )

7‐8 wt% YSZ from Figure 1 κ of Sm2Zr2O7

in lower range of YSZ

28 April 2015 CCR 2015

J. Fergus. Met. Mater. Trans E 1, 118 (2014).

Ytterbium-doping

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

200 400 600 800 1000 1200 1400 1600

0 Yb0.1 Yb0.3 Yb0.5 Yb

Temperature (K)

Thermalcond

uctiv

ity (W

m‐1K‐

1 )

(Gd1‐xYbx)Zr2O7

Increasing Yb

7‐8 wt% YSZ from Figure 1

Gd2Zr2O7from Figure 7

Sm2Zr2O7from Figure 8

Doping can reduce κ

28 April 2015 CCR 2015

J. Fergus. Met. Mater. Trans E 1, 118 (2014).

Thermal conductivity of mixed pyrochlores

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.0 0.2 0.4 0.6 0.8 1.0

[ 55 ] [ 66 ]

Thermalcond

uctiv

ity (W

m‐1K‐

1 )

x

(La1‐xGdx)Zr2O7

(Sm1‐xYbx)Zr2O7

Pyrochloresolid solutions have lower κ

28 April 2015 CCR 2015

J. Fergus. Met. Mater. Trans E 1, 118 (2014).

Pyrochlore coating materials

• Synthesis of pyrochlore– Co-precipitation

• CMAS exposure– Melt / solidify Ca-Mg-Al-Si oxide

mixtures– Crush glass, apply to pyrochlore pellet– Expose to 1200-1400°C

• Characterization– XRD, SEM, optical microscopy

28 April 2015 CCR 2015

CMAS CompositionOxide PercentageCaO 33MgO 9AlO1.5 13SiO2 45

Microstructure of Gd2Zr2O7

28 April 2015 CCR 2015

Co-precipitation

Phase content of Gd2Zr2O7

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

(511

)

(531

)

(840

)(6

62)

(800

)

(444

)(6

22)

(440

)

(331

)(400

)

(222

)

1500C 5h

1400C 10h

1400C 5h

Inte

nsity

(A.U

.)

2

Pyrochlore

Gd2Zr2O7 after CMAS at 1400°C for 5 hours

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

****

P(511)P(331)

P(511)P(331)

PPPP

PP

P

P

PPPP

PPP

PFFFF

FFF

2Before corrosion

Non-contacted surface

CMAS contacted surface

Inte

nsity

(A.U

.)

F

* Ca2Gd8(SiO4)6O2

# Gd2Si2O7P Pyrochlore Gd2Zr2O7F Fluorite structure

Pyrochlore

Fluorite

Gd2Zr2O7 after CMAS at 1300°C for 5 hours

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

# ## *****

P(511)P(331) PPPP

PP

P

P

PPPP

PP

P(511)P(331)P

F

FFFFF

FF

* *****

2Before corrosion

Non-contacted surface

CMAS contacted surface

Inte

nsity

(A.U

.)

*

* Ca2Gd8(SiO4)6O2

P

# Gd2Si2O7

P Pyrochlore Gd2Zr2O7F Fluorite structure

Pyrochlore

Fluorite

Gd2Zr2O7 after CMAS at 1300°C for 5 hours

28 April 2015 CCR 2015

28 April 2015 CCR 2015

Gd2Zr2O7 after CMAS at 1300°C for 5 hours

Ca2Gd8(SiO4)6O2

Gd2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 62 - - 14 5 - 15 42 60 2 4 12 5 - 13 4

Gd silicate

Gd2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 56 - - 14 6 1 17 52 63 - 3 12 5 1 13 43 67 - 1 12 4 1 12 34 64 - 1 1 5 - 13 4

Gd silicate

Gd2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 60 1 1 1 2 27 5 42 67 - 1 1 2 23 4 33 61 - 1 2 2 25 6 4

Cubic fluorite

Gd2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 59 - - - - 17 18 52 65 - - - - 18 17 -

Pyrochlore

Gd2Zr2O7 after CMAS at 1200°C

28 April 2015 CCR 2015

Concentration# Mg Al Si Ca Zr Gd1 0 0 15 7 9 142 0 0 15 6 11 203 0 0 14 6 7 124 0 0 2 2 33 55 0 0 2 3 34 76 0 0 2 2 29 5

Concentration# Mg Al Si Ca Zr Gd1 0 0 2 3 32 42 0 0 2 3 38 63 0 0 2 3 35 64 0 0 15 6 6 135 0 0 13 11 10 286 0 0 5 4 18 7

40 hours 60 hours

Gd2Zr2O7 after CMAS at 1200°C – 60 hours

28 April 2015 CCR 2015

Gd+Zr

CMAS

ZrO2-Gd2O3phase diagram

28 April 2015 CCR 2015

T = tetragonalF = cubic fluoriteM – monoclinicP = pyrochloreC, B, H = Gd2O3 phases

Microstructure of Sm2Zr2O7

28 April 2015 CCR 2015

1μm

Figure 2. Surface morphology of Sm2Zr2O7, sintered at 1500°C for 5h.

Phase content of Sm2Zr2O7

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

1500C 5h

1400C 15h

1400C 10h

(511

)

(311

)

(840

)(6

62)

(800

)

(444

)(6

22)

(440

)

(331

)(440

)

Inte

nsity

(A.U

.)

2

(222

)

1400C 5h

Sm2Zr2O7 after CMAS at 1400°C for 5 hours

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

****

P(511)P(331)

P(511)P(331)

PPPP

PP

P

P

PPP P

PPP

P

FFFFFFF

2

Before Corrosion

Non-contactedsurface

CMAS contacted surface

* Ca2Sm8(SiO4)6O2

P Pyrochlore Sm2Zr2O7F Fluorite Sm2Zr2O7

Inte

nsity

(A.U

.)

F

*

Sm2Zr2O7 after CMAS at 1300°C for 5 hours

28 April 2015 CCR 2015

 

30 40 50 60 70 80 90

*****

P(331)

P(511)

P(511)

PPPP

PP

P

P

PPPP

PP

P(331)

P

P

FFFFFF

F

F

Inte

nsity

(A.U

.)

2

Before corrosion

Non-contacted surface

CMAS contacted surface

* Ca2Sm8(SiO4)6O2

P Pyrochlore Sm2Zr2O7F Fluorite Sm2Zr2O7

*

Sm2Zr2O7 after CMAS at 1300°C for 5 hours

28 April 2015 CCR 2015

10μm

28 April 2015 CCR 2015

Sm2Zr2O7 after CMAS at 1300°C for 5 hours

Sm2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 47 1 8 20 11 2 8 32 60 3 10 18 7 1 1 23 58 1 5 16 9 1 7 34 53 6 5 17 18 - - 25 54 4 7 17 13 - 1 26 55 3 10 19 10 1 1 2

1,3: Bright spotsSm silicate

Sm2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 62 - 1 1 2 27 4 32 66 - - 1 2 25 3 33 58 2 5 7 10 13 3 34 65 1 2 3 5 18 4 2

Cubic fluorite

Sm2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 47 - - 10 6 6 23 92 44 - - 2 4 38 7 53 51 - - 7 7 15 15 54 54 - - 2 3 31 6 45 40 - - 8 7 12 26 96 53 - 1 4 4 26 7 5

1,3,5: Sm silicate2,4,6: Cubic fluorite

Sm2Zr2O7 after CMAS at 1300°C for 15 minutes + 1200°C for 30 hours

28 April 2015 CCR 2015

Concentration

# O Mg Al Si Ca Zr Gd Au1 67 - 1 - - 18 12 22 72 - - 1 - 17 7 33 68 - - - - 19 13 -4 65 - - - - 18 15 35 66 - - 1 - 18 12 3

Pyrochlore

Sm2Zr2O7 after CMAS at 1200°C – 60 hours

28 April 2015 CCR 2015

Concentration# Mg Al Si Ca Zr Gd1 0 0 15 6 7 132 0 0 16 6 5 143 0 0 15 6 6 124 0 0 0 3 33 35 0 0 1 2 33 36 0 0 1 3 37 4

Sm2Zr2O7 after CMAS at 1200°C – 60 hours

28 April 2015 CCR 2015

CMAS

Sm + Zr

28 April 2015 CCR 2015

T = tetragonalF = cubic fluoriteM – monoclinicPyr = pyrochloreC, B, H = Sm2O3 phases

ZrO2-Sm2O3phase diagram

(Gd,Sm)2Zr2O7 after CMAS at 1200°C for 60 hours

28 April 2015 CCR 2015

(Gd0.8Sm0.2)2Zr2O7 (Gd0.6Sm0.4)2Zr2O7

Concentration# Mg Al Si Ca Zr Sm Gd1 0 0 14 5 5 10 02 0 0 19 7 6 17 03 0 0 17 6 8 14 04 0 0 17 6 8 14 15 0 0 1 3 41 5 06 0 0 3 3 46 6 07 0 0 2 3 45 6 0

Concentration# Mg Al Si Ca Zr Sm Gd1 0 0 17 7 6 6 92 0 0 15 10 9 10 143 0 0 13 5 4 4 64 0 0 1 3 35 1 35 0 0 1 2 36 2 36 0 0 1 3 39 2 4

Conclusions• Coatings

– Ni flash coating needed to obtain quality Re coating– Only 2 out of 20 Ir coatings on Re-coatings round

samples were successful– No Ir coatings on rectangular samples were

successful• EBC materials

– Reaction of Gd2Zr2O7, Sm2Zr2O7 and (Gd,Sm)2Zr2O7with CMAS evaluated

• Pyrochlore dissolves in CMAS• Reprecipitates as lanthanide silicate and cubic fluorite phase

28 April 2015 CCR 2015