Rcs1-Chapter5-ULS

70
1 Reinforced Concrete Structures 1 - Eurocodes RCS 1 Professor Marwan SADEK https://www.researchgate.net/profile/Marwan_Sadek https://fr.slideshare.net/marwansadek00 Email : [email protected] If you detect any mistakes, please let me know at : [email protected]

Transcript of Rcs1-Chapter5-ULS

Page 1: Rcs1-Chapter5-ULS

1

Reinforced Concrete

Structures 1 - Eurocodes

RCS 1

Professor Marwan SADEKhttps://www.researchgate.net/profile/Marwan_Sadek

https://fr.slideshare.net/marwansadek00

Email : [email protected]

If you detect any mistakes, please let me know at : [email protected]

Page 2: Rcs1-Chapter5-ULS

2

PLAN – RCS1

M. SADEK

Ch 1 : Generalities – Reinforced concrete in practice

Ch 2 : Evolution of the standards – Limit states

Ch 3 : Mechanical Characteristics of materials – Constitutive relations

Ch 4 : Durability and Cover

Ch 5 : Beam under simple bending – Ultimate limit state ULS

Ch 6 : Beam under simple bending – serviceability limit state SLS

Ch 7 : Section subjected to pure tension

Page 3: Rcs1-Chapter5-ULS

3

Selected ReferencesFrench BAEL Code (91, 99)

Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des ouvrages et constructions en béton armé, Eyrolles, 2000. J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000. J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.….

EUROCODES H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013. Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur lesbâtiments selon l'Eurocode 1 , Le moniteur, 2013. J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009. Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur,2013 (2ème édition) Manual for the design of concrete building structures to Eurocode 2, TheInstitution of Structural Engineers, BCA, 2006. A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, Theconcrete centre, BCA, 2006.https://usingeurocodes.com/

M. SADEK

Page 4: Rcs1-Chapter5-ULS

4

In addition to Eurocodes, the references that are mainly used to prepare this course material are : Thonier 2013

Perchat 2013

Paillé 2009

Some figures and formulas are taken from

Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)

Cours béton armé de Christian Albouy

M. SADEK

Page 5: Rcs1-Chapter5-ULS

5

Chapter VBeam under simple bending – Ultimate limit

state ULS

1. Introduction

2. Design Assumptions

3. Rectangular Section without compression Steel

4. Rectangular Section with compression Steel

5. T Section

6. Particular rules

Page 6: Rcs1-Chapter5-ULS

6M. SADEK

Embedded beam

Drop Beam

Inverted beam

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 7: Rcs1-Chapter5-ULS

7M. SADEK

Beam subjected to simple bending : M(x), V(x)

Note : In Reinforced concrete, bending stress and shear stress are treated separately.

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 8: Rcs1-Chapter5-ULS

8M. SADEK

Simple / Pure bending

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 9: Rcs1-Chapter5-ULS

9

Initiation of cracking

Increase in Cracks

Excessive strain in Steel / Crushing of Concrete

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 10: Rcs1-Chapter5-ULS

10M. SADEK

Beam subjected to simple bending (ULS)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 11: Rcs1-Chapter5-ULS

11

ASSUMPTIONS

H1) Principle of Navier-Bernoulli : After deformation, plane sections

remain plane and normal to the axis of the beam (linear strain diagram)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 12: Rcs1-Chapter5-ULS

12

ASSUMPTIONS

H2) The tensile strength of the concrete is neglected

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 13: Rcs1-Chapter5-ULS

13

ASSUMPTIONSH3) bundled bars are treated as a single bar of a diameter derived

from the equivalent total area and placed at the COG of the group

H4) Total bond between concrete and steel (no relative slip)

at the contact : s=c

H5) The design stress-strain diagram for the concrete and the steel

are :

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 14: Rcs1-Chapter5-ULS

14

Stress-Strain Diagram for concrete under compression

a) Parabola-rectangle

b) Bi-linear

fcd :Design value of concrete compressive strength (cylinder, t28 days)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 15: Rcs1-Chapter5-ULS

15

c) Rectangular stress distribution

Note : In the present course, we will use the diagram c (simplified).

The use of diagrams a and b are authorized by the EC2, See Annexes

for more details

cc= 1 (FNA)

C = 1.5 (Persistent situation ) ; 1.2 (Accidental situation)

Stress-Strain Diagram for concrete under compression

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 16: Rcs1-Chapter5-ULS

16

Design :

Horizontal top branch without the need to check the strain limit.

Inclined top branch with a strain limit (s ud = 0.9ud )

s = 1.2 (persistent)

1.0 (accidental)

Stress-Strain Diagram for concrete under compression

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 17: Rcs1-Chapter5-ULS

17

Example : Persistent situation : fyd = fyk / s= 435 MPa

se = fyd/Es = 2.17.10-3

< se => s = 200 000

> se => s = 435 MPa.

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 18: Rcs1-Chapter5-ULS

18

s > se

s 435 + 727 (s -2.17.10-3) < 466 MPa for steel B

s 435 + 952 ( s -2.17.10-3) < 454 MPa for steel A

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 19: Rcs1-Chapter5-ULS

19

Rule of 3 Pivots :The design of a RC section at ULS is carried out assuming that the stress-strain

diagram through one of the 3 Pivots A, B or C.

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 20: Rcs1-Chapter5-ULS

20

Pivot A (Not very frequent)

Steel : c cu

s = ud that depends on the steel type (A, B or C)(no limitation when the horizontal top branch diagram is used)

Difference with BAEL : The EC2 fix the pivot A at ud higher than 10x10-3 (BAEL)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 21: Rcs1-Chapter5-ULS

21

Pivot B (Common Case)

Concrete : c = cu2 =3.5 ‰ , c2 =2 ‰ (for fck50 MPa)

s ud

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 22: Rcs1-Chapter5-ULS

22

Pivot C

(h-y) / h = c2/cu2 => y = (1-c2/cu2).h

(Compression, bending with axial force)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 23: Rcs1-Chapter5-ULS

23

Simple Bending, ULS

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 24: Rcs1-Chapter5-ULS

24

Fundamental Combination (detail in Ch. 2)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 25: Rcs1-Chapter5-ULS

25

c

s

sc

Strain Diagram

Internal Forces

Fc,sc

Fsc

Fc

Fs

z

A : Cross sectional area of reinforcement (tension zone) (A or As)

d : Effective depth of a cross-section : distance from the C.O.G of the tension steel to the extreme

compression fibre

A’ : Cross sectional area of compression steel

d’ : distance from the C.O.G of the compression steel A’ to the extreme compression fibre

z : Lever arm of internal forces

M > 0

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 26: Rcs1-Chapter5-ULS

26

Fc : Resultant of compression force in the concrete

Fsc : Resultant of compression force in the compression steel

Fc,sc : Resultant of Fc and Fsc

Fs : Resultant of tensile force at the tensile steel

x : Position of the N.A

c

s

sc

Strain Diagram

Internal Forces

x Fc,sc

Fsc

Fc

Fs

z

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 27: Rcs1-Chapter5-ULS

27

c

s

scx Fc,sc

Fsc

Fc

Fs

z

Equilibrium of forces Fs = Fc,sc

Equilibrium of moments MEd = Fc,sc .z = Fs.z

3 Unknowns (in general) : A, A’, x

Strain Diagram

Internal Forces

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 28: Rcs1-Chapter5-ULS

28

Rectangular section, Without compression steel (A’=0)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 29: Rcs1-Chapter5-ULS

29

Simplification of the constitutive law of the Steel

EC2 3.1.7(3)

Rectangular section, Without compression steel (A’=0)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 30: Rcs1-Chapter5-ULS

30

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 31: Rcs1-Chapter5-ULS

31

Fc

FS

Fc = Fs

MED = Fc.z

z

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 32: Rcs1-Chapter5-ULS

32

Dimensionless Form :

By substituting :

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 33: Rcs1-Chapter5-ULS

33

fck 50 MPa, = 1 ; =0.8

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 34: Rcs1-Chapter5-ULS

34

Note that :

x = u.d =(c / c+s) d

u = (c / c+s)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 35: Rcs1-Chapter5-ULS

35

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 36: Rcs1-Chapter5-ULS

36

Steel type A ud = 22,5 .10-3AB = (3.5 / 3.5+22.5) = 0.135 AB = 0.102

Steel type B AB =0.072 AB = 0.056

Steel type C AB =0.049 AB = 0.039

fck 50 MPa, = 1 ; =0.8

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 37: Rcs1-Chapter5-ULS

37

Pivot B AB u

It can be noted that in general, the Pivot B is reached

c = cu2 =3.5 ‰ ; s ud

s = (1/u -1) cu

(The concrete reaches its maximum strength)

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 38: Rcs1-Chapter5-ULS

38

Pivot B AB u lim

The tensile steel stress should not be in the elastic domain (non economical

solution) ! In this case, the tensile steel section should be reduced , or a

compression steel should be added.

s ud but s se

Line BE (Pivot B & steel at

elastic limit)

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 39: Rcs1-Chapter5-ULS

39

(fck 50 Mpa)

Persistant Situation Accidentelal Situation

s = 1.15 s = 1

fyk(MPa) lim lim lim lim

400 0.668 0.392 0.636 0.380

500 0.617 0.372 0.583 0.358

lim = BE

Pivot B AB u lim

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 40: Rcs1-Chapter5-ULS

40

Pivot A

s =ud ; c =cu

u AB

Boundaries of Pivots A, B

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 41: Rcs1-Chapter5-ULS

41

Tensile steel section A (fck 50 MPa)

a) Stress-Strain diagram with Inclined Top branch

i. u AB Pivot A

s = 455 MPa (Steel A) , 466 MPa (Steel B)

ii. AB u lim Pivot B

s = (1/u -1) cu

s 435 + 727 (s -2.17.10-3) < 466 MPa Steel B

s 435 + 952 (s -2.17.10-3) < 454 MPa Steel A

(A’=0, u lim )

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 42: Rcs1-Chapter5-ULS

42

Tensile steel sectiopn A (fck 50 MPa)

b) Stress-Strain diagram with horizontal Top branch

(A’=0, u lim )

s = fyd

Note : No limitation for the steel strain

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 43: Rcs1-Chapter5-ULS

43

Note 1

Effective depth d – Initial value dini

The exact value of d could not be determined before the choice of the steel

reinforcement.

Take d 0.9 h for common beams (this formula is not safe for embedded beam

and for slab with low thickness 20 cm)

Take d = h – cnom – 1 cm (Slab with a thickness 20 cm )

After the determination of the reinforcement, it becomes possible to calculate the

exact value of d=dreal. If dreal < dini , the steel reinforcement section As should be

recalculated.

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 44: Rcs1-Chapter5-ULS

44

Note 2

Approximate value of A (Quick check)

z 0.9 ; d 0.9 h

This formula doesn't give any information about the compression stress

in the concrete. It becomes obsolete if a compression steel is required.

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 45: Rcs1-Chapter5-ULS

45

Minimum Reinforcement (to prevent brittle failure)

For rectangular section bh, the ultimate resistant bending moment of Non-

reinforced concrete :MRc = (I/v) fctm = (b.h²/6) fctm

The minimum As,min section should resist the following moment

MRs = As,min fyk z

By considering MRc = MRs , and substituting z 0.9 h ; h d / 0.9

As,min = b.d.[fctm/(0.9 0.81 6)fyk] 0.23 b d fctm / fyk

L’EC2 replace the value of 0.23 by 0.26 and fix a lower limit of the quantity 0.26 fctm/fyk

with the value 0.0013

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 46: Rcs1-Chapter5-ULS

46

Minimum Reinforcement

Maximum Reinforcement

As,max = 0,04 Ac

Ac : denotes for the cross sectional area of the concrete

As,max : Maximum steel reinforcement in both compression and tension zones

As,min : Minimum tensile section of longitudinal steel reinforcement;

bt : denotes the mean width of the tension zone;

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 47: Rcs1-Chapter5-ULS

47

Rectangular section , With compression steel (A’0)

u lim

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 48: Rcs1-Chapter5-ULS

48

3 unknowns (A, A’, x) / 2 equations ???

Infinite number of solutions

Possibility n°1 : Minimum of “A+ A’ " (long run)

Possibility n°2 : Concept of limit Moment (adopted in general)

- Resolution by the decomposition method - 2 imaginary sections

u lim

Rectangular section , With compression steel (A’0)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 49: Rcs1-Chapter5-ULS

49

2 imaginary sections

Maximum capacity of the concrete Mlim A1

The compression steel A’ will resist (Med Mlim) A2

u lim Med Mlim= lim .b.d².fcd

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 50: Rcs1-Chapter5-ULS

50

cu

s

scx=lim.d

d’

d

A1 = Mlim / (1 – 0.4.lim).d.fyd

A’ = (Med – Mlim) / [sc . (d-d’)]

sc = 3,5.10-3. (1-d’/xlim)

The value of sc is close to 3 °/°° (>se), in other terms sc=fyd when using the diagram

with horizontal top branch, and a value slightly great than fyd when using the diagram

with inclined top branch.

In general, we take a value sc=fyd .

A2 = A’. sc / s = A’. fyd / s

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 51: Rcs1-Chapter5-ULS

51

A1 = Mlim / [(1 – 0.4.lim).d.fyd]

A2 = A’. sc / s

A’ = (Med – Mlim) / [fyd . (d-d’)]

When using same types and grade for A and A’ sc = s = fyd

A2 = A’

A = A1 + A2

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 52: Rcs1-Chapter5-ULS

52

Note 1 : The EC2 don’t restrict the moment that could be supported by

the compression steel like the previous BAEL standard (40% Med).

However A’ is limited by the maximum requirement

A+A’ As,max = 0,04 Ac

Note 2 : Any compression longitudinal reinforcement (diameter )

which is included in the resistance calculation should be held by

transverse reinforcement with spacing not greater than 15 .

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules

Page 53: Rcs1-Chapter5-ULS

53

T Section

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 54: Rcs1-Chapter5-ULS

54

Effective width of flanges (all limit states)

l0 : distance between points of zero moment

(EC 2-1-1, 5.3.2)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 55: Rcs1-Chapter5-ULS

55

Effective width of flanges (All limit states)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 56: Rcs1-Chapter5-ULS

56

(EC 2-1-1, 5.3.2) Effective width of flanges (All limit states)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 57: Rcs1-Chapter5-ULS

57

Maximum resistant moment that could be supported by the

flange (flange in compression)

2f

uT eff f cd

hM b h f ( d )

1sA

ux fh

s 1sN

1cN

ff h,dz 501

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 58: Rcs1-Chapter5-ULS

58

Case 1: Common case M Mu uT

bw

b = beff

d

hf

The Neutral Axis is located in the flange, the

flange is partially in compression

The T section is calculated as a rectangular

section (width beff and height h)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 59: Rcs1-Chapter5-ULS

59

Case 2: The Neutral Axis is located in the WebM Mu uT

Divide the section in 2 imaginary sections

The reinforcement section is expected to be very significant

bw

b=beff

d

hf

=

beff-bw

A1 A2

bw

+

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 60: Rcs1-Chapter5-ULS

60

M Mu uT

1eff w

u uTeff

b bM M

b

Section A1 will resist:

bw

b=beff

d

hf

=

beff-bw

A1 A2

bw

+

A1= (beff-bw)×h0×fcd / s(s = fyd, diagram with horizontal top branch)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 61: Rcs1-Chapter5-ULS

61

M Mu uT

Section A2 will resist

Calculation identical to a rectangular section with a width

bw and a height h

bw

b=beff

d

hf

=

beff-bw

A1 A2

bw

+

M M Mu u u2 1

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 62: Rcs1-Chapter5-ULS

62

M Mu uT

s = fyd , diagram with horizontal top branch or Pivot A (palier incliné)

s = to be determined function of s if Pivot B (diagram with inclined top branch). This stress could be used when calculating A1

cdw

uu fdb

M22

2 u u2 2125 1 1 2 , ( )

Note: Introduce A’ whenu2 > lim

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 63: Rcs1-Chapter5-ULS

63

M Mu uT

bw

b=beff

d

hf

=

beff-bw

A1 A2

bw

+

A = A1 + A2

A1= (beff-bw)×h0×fcd / s

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 64: Rcs1-Chapter5-ULS

64

Predimensioning of concrete section – Rectangular section

b

hIf b is not imposed , we can take

0.3 h b 0.5 h

We fix b, and we find the value of h

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 65: Rcs1-Chapter5-ULS

65

b

hb/h 0.4 ; h 2.5 b

d 0.9 h = 2.25 d

Pivot B AB u lim

Steel B 0.056 u 0.372

0.056 Med / bd²fcd 0.372

Predimensioning – Rectangular section

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 66: Rcs1-Chapter5-ULS

66

b

h

Other criterion

- Design at SLS + maximum deflection condition

Steel A

Predimensioning – Rectangular section

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 67: Rcs1-Chapter5-ULS

67

Effective span of beams and slabs in buildings (EC2 - 5.3.2.2)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 68: Rcs1-Chapter5-ULS

68

Other detailing arrangements (EC2 - 9.2.1.2)

1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 69: Rcs1-Chapter5-ULS

69

Extracted from Thonier (2013)1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules

Page 70: Rcs1-Chapter5-ULS

70

Exercices Rectangular section without compression steel:

Tensile steel reinforcement

o using the stress strain diagram with inclined top branch

o using the stress strain diagram with horizontal top branch

o Exact value of d

Rectangular section with compression steel:

Determination of the reinforcement steel sections (tension and

compression)

Predimensioning of a rectangular section of concrete and determination of

the steel reinforcement while taking in account the beam self weight

Design of T section