RCS Beam Quality - nuclpart.kek.jp

45
RCS Beam Quality RCS Beam Quality (and recent status) Kazami Yamamoto Kazami Yamamoto and JPARC 2 nd Accelerator section

Transcript of RCS Beam Quality - nuclpart.kek.jp

Page 1: RCS Beam Quality - nuclpart.kek.jp

RCS Beam QualityRCS Beam Quality(and recent status)( )

Kazami YamamotoKazami Yamamotoand J‐PARC 2nd Accelerator section

Page 2: RCS Beam Quality - nuclpart.kek.jp

Contents

• IntroductionParameter and scheme– Parameter and scheme

• Beam quality at high power operation– Achieved beam power– Transverse profile for MLF and MRTransverse profile for MLF and MR

• Scope for DeeMe experiments• Recovery and power up scenario• SummarySummary

Page 3: RCS Beam Quality - nuclpart.kek.jp

What is 3GeV‐RCS in J‐PARCThe beams are extracted

The H0 dump is used to dump unstripped beams at the stripping foil. The capacity is 4kW.

by kicker magnets and DC septum magnets at the extraction section and then transported either to

Circumference 348.333 m

Superperiodicity 3

Parameters

The stripping foil in the injection section is used to

stripping foil. The capacity is 4kW.

H0 Dump(4 kW)

pMLF or to MR with a pulsed bending magnet placed in the 3NBT line.

Superperiodicity 3

Harmonic number 2

No of bunch 2

Injection energy 181 MeV section is used to convert H- beam from the linac into protons. Beam

CollimatorExtraction

section

(4 kW)1st arcsection

from

Injection energy 181 MeV(400 MeV )

Extraction energy 3 GeV

Repetition rate 25 Hz

RCS has a three-fold symmetric lattice

whose circumference is

FoilInjectionsection

section

3 d

from LINAC to

MR&MLF

Repetition rate 25 Hz

Particles per pulse 1.7e13 – 2.5e13(8.3e13 with 1 MW)

Output beam 0 2 0 3 MW whose circumference is 348.3m.

RF section2nd arcsectio

n

3rd arcsection

Output beam power

0.2- 0.3 MW(1 MW)

Number of dipoles 24

d l 60 (7 f ili )

One of the three-fold symmetric lattice comprises two arc Each arc module has

quadrupoles 60 (7 families)

sextupoles 18 (3 families)

steerings 52

3

pmodules and a long straight insertion.

Each arc module has a missing-bend cell.

RF cavities 12 (11 at present)

Page 4: RCS Beam Quality - nuclpart.kek.jp

MLF

Beam transport scheme of J‐PARC

Intermediate bunches are injected into the 2 RFbuckets of RCS for duration of macro pulse width.Max. macro pulse length:500secMax. macro pulse length:500secMax. Intermediate bunch length: 600nsec RCS accelerates the beam to 3GeV in 20msecin a sinusoidal curve as shown in figure. I MR l f 3 64 8 RCS b hInjection period:500sec (msec)

Time diagram of an RCS cycle

In MR cycle of 3.64 sec, 8 RCS bunches areinjected into 8 out of 9 MR buckets.In the latest operation, MR cycle is 3.04 sec.Then the total batch number is 3.04/0.04=76.

Injection period:500sec=macro pulse width

Then the total batch number is 3.04/0.04 76.ItemizeMR:4 batchesBlank:2 batches(D t f ll ti f th l d b di t f

4Time diagram of a MR cycle

(Due to fall time of the pulsed bending magnet for3-N and 3-50 BT)MLF:70 batches

Page 5: RCS Beam Quality - nuclpart.kek.jp

Achieved beam power(1):User operationJFY 2008 JFY 2009 JFY 2010

Nov. 2010200kW

Startup ofMLF

120 kWNov. 2009MLF user runs

Dec. 2008

20 kW20 kW

・Due to the discharge problem of the RFQ, th RCS b li it d t 20 kW f l i dthe RCS beam power was limited to 20 kW for a long period. 

・By the vacuum improvement of the RFQ section,the performance of the RFQ was recovered.

・Then the RCS beam power was increased to 120 kW from Nov 2009・Then the RCS beam power was increased to 120 kW from Nov.2009・The RCS beam power became >200 kW for MLF before earthquake.

Page 6: RCS Beam Quality - nuclpart.kek.jp

Achieved beam power(2):High power trial

420kW‐eq particles(1 shot) trial indicates that there are no significant loss except to ring collimator. Measured loss is about 0.5%. On the other hand, Calculated loss is about 0.35%. In both case, most losses occurred in the first few msec and localized on the ring collimator So far we enoughmsec and localized on the ring collimator. So far we enough understand and control the RCS beam.‐>Tune shift by the space charge at 181MeV‐inj 300kW‐eq‐>Tune shift by the space charge at 181MeV‐inj, 300kW‐eq particles≒ tune shift at 400MeV‐inj, 1MW‐eq particles!!Demonstrate a potential for 1MW operation.Demonstrate a potential for 1MW operation.

Beamtransmission

Beam loss Beam loss power

M t 99 50 % 0 50 % 127 W *Collimator capacity:4kWMeasurement 99.50 % 0.50 % 127 WSimulation 99.65 % 0.35 % 82 W

*Collimator capacity:4kW

Page 7: RCS Beam Quality - nuclpart.kek.jp

Transverse profile for MLF and MRTransverse profile for MLF and MR

Requirement• MLF: wider profile in order to mitigate theMLF: wider profile in order to mitigate the target damage from the beam shock.

• MR: beam with less halo in order to reduce the loss at 3‐50BT collimator

→We investigated the better operation parameter set for each requirementparameter set for each requirement respectively.

Page 8: RCS Beam Quality - nuclpart.kek.jp

Transverse profile for MLF and MR(Con’t)Halo measurement of MR injection beamHalo measurement of MR injection beam

normalized 99.5 %emittance(Calc.)

rad)Loss at the 3-50BT collimator

(%)

x(

mm

mr

) Time (ms)

~90 W assuming 3-sec MR cycle « 4 kW Horizontal

Data ID y

mm

mra

d)

Time (ms)

Data V2 d 12 p/pVertical

(

Time (ms)

at 6

ms

m m

rad)

Data ID

tp ( mm mrad)

V2nd(%)

12(deg)

p/p(%)

2 - 80 -100 -0.0

3 - 80 -100 -0.1ー

ーHorizontal

Data ID

xa

(m

mm

s m

rad)

4 - 80 -100 -0.2

5 50 80 -100 -0.2

6 100 80 100 0 2

Vertical

Data ID y

at 6

(

mm

m6 100 80 -100 -0.2

7 150 80 -100 -0.2ー

The painting parameter “6” gives

Vertical

The painting parameter 6 givesa beam loss minimum both for the RCS and 3-50BT collimators.

Page 9: RCS Beam Quality - nuclpart.kek.jp

Transverse profile for MLF and MR(Con’t)

• So far, a parameter set that takes least loss in the RCSSo far, a parameter set that takes least loss in the RCS is also best for both (MLF and MR) operations.(Transverse painting:100mmmrad.,operations.(Transverse painting:100mm mrad., 2nd RF 80%, p/p offset ‐0.2%,)

• If need, we can choose the best parameter set (Transverse and longitudinal painting pattern, RF acceleration pattern, Excitation pattern of dipole and 

)sextupole correction magnets ) respectively and change them during 20msec(interval of acceleration).

Page 10: RCS Beam Quality - nuclpart.kek.jp

Scope for DeeMe ExperimentEstimation of the rest proton after extraction

STR+BPMSTR+BPM

BeginExt. Ins

Estimation of the rest proton after extraction

RCSRCS

QFL QDLPulse KM1 3

Pulse KM4 8

Σ KM Ki k l 17 d8

1~3 4~8

First Bunch Second bunch

Layout of Extraction Line

Σ KM Kick angle ≈ 17 mrad1

Naive estimation:If the rest proton exists and extracts without pulse kicker magnets, a particle needs to have an inclination (x’) ≧17 mradAn emittance of ≈ 2200 mm mrad!

Magnetic field by the Kicker

An emittance of ≈ 2200 mm mrad!4 times of the RCS phisycal aperture

(486mm mrad) or 7 times of the RCS collimator aperture (324mm mrad).

Time structure of extraction beam and after proton

Page 11: RCS Beam Quality - nuclpart.kek.jp

Scope for DeeMe Experiment(Con’t)Estimation of the rest proton after extraction

324Normal operation

Red: Kicker, septum OFFGreen:Kicker septum ON

Estimation of the rest proton after extraction

Green:Kicker, septum ON

1000 Red: Kicker, septum OFFGreen:Kicker OFF septum ON

Beam outer ellipse (H) at the “begin Ext. INS”.(324 ~ 5000 mm mrad)

Green:Kicker OFF, septum ON

We estimated the possible initial Ki k l ff

2500 Red: Kicker, septum OFFGreen:Kicker OFF septum ON

We estimated the possible initial conditions that the proton can extract with no kicker excitation. As a result, the protons that has 2500 emittance can

Kicker always off

Green:Kicker OFF, septum ONppartially extract. however, some particles hit the branch chamber.→We can catch the proton existence after extraction by monitoring loss Kicker always offafter extraction by monitoring loss monitor signals near this point!

Kicker always off

Page 12: RCS Beam Quality - nuclpart.kek.jp

Scope for DeeMe Experiment(Con’t)Preliminary measurement of the proton existence after extractiony p

BPM

• Measurement ‐> 2/8 15:00‐2/19 9:00• Accelerated protons:4e20 • Signals overlaid by Persistent mode

BPM

• Signals overlaid by Persistent mode• It seems that there are no signal except 

the kicker noise.

Scintillator

• We will improve the measurement system(Aoki‐san’s talk) ScintillatorBeam pass timing

Bipolar noise from kicker

Page 13: RCS Beam Quality - nuclpart.kek.jp

Scope for DeeMe Experiment(Con’t)p f pProbability of a proton existence after extraction

• We think that there are no proton after extraction.• The only one scenario that makes it possible is …y p

A) Particle remains after kicker excitation. B) This particle returns near the RCS acceptance (486) by some 

( i b h h b ?) Th i i l RCSreason(scattering by the gas or chamber?).  Then it can circulate RCS ring.

C) Scattered again at the vacuum chambers and It’s a good thing that ) g g gsuch scattered particle has suitable emittance(≈ 2500) for no kicker excitation at just the extraction branch point. This particle also must have enough momentum to pass through 3NBT magnets until it hitshave enough momentum to pass through 3NBT magnets until it hits the Mu‐target.

Is this really exist?

Page 14: RCS Beam Quality - nuclpart.kek.jp

Recovery from the earth quakeRecovery from the earth quakeS fSo far… Sub tunnel Area : Water Pipes and CablesNo significant damagesNo significant damages.

Main Tunnel : AcceleratorNo significant damages to the eye. No water leakages. 

Utilities inside the RCS buildingNo significant damages. 

Th td d d th di d f ll ff d th The outdoor yard and the surrounding road fell off and the electric infrastructures on the yard were inclined.

→We cannot check the magnets and RF systems with electrical→We cannot check the magnets and RF systems with electrical power supply as yet.

→ Nothing can be concluded at this moment.

Page 15: RCS Beam Quality - nuclpart.kek.jp

Damage  ‐ RCS ‐The subsidence of the outdoor yard and the 

surrounding road is extensive at the RCS. 

RCS bld.

Power receiving equipment

Page 16: RCS Beam Quality - nuclpart.kek.jp

Civil constructionTemporaly repair finishedTemporaly repair finished.

Power receiving equipment fell off. We are trying to jack up the entire floor.

Page 17: RCS Beam Quality - nuclpart.kek.jp

RCS power up scenario

for MLFNot only injection energyBut also peak current

400MeV

for MLFp

Alignment ?

420kW1 shot facility

400MeVinstallation

summershut down

Previous ti t

300kW1 hour

1 shot facilityrecovery

shut down estimate

eq.‐300kWfor MR

Newestimate

Page 18: RCS Beam Quality - nuclpart.kek.jp

SummaryWe successfully achieved power rump up on

SummaryWe successfully achieved power rump up on schedule so far.Strong earthquake bring serious damagesStrong earthquake bring serious damages.We must carefully check and recover it.We will also install upgrade components in this shutdown.resume user operation as soon as possible with beam power of 100kW for MLF users.with beam power of 100kW for MLF users.We can enough suppress the background signals for DeeMe Experimentssignals for DeeMe Experiments.

Page 19: RCS Beam Quality - nuclpart.kek.jp

Backup SlidesBackup Slides

Page 20: RCS Beam Quality - nuclpart.kek.jp

Issue 3:Assynmetry components from inj-ext magnetsNormalized emittance calculatedNormalized emittance calculated

with systematic combinationof lattice imperfections

H i t l V ti l

Leakage fields (K1 & skew K1)from the extraction line :

causes a beta modulation &

mra

d)

Horizontal Vertical

100 paintData ID: 6

- causes a beta modulation &linear coupling

- excite various random resonancesEd f

Calculated withno collimator aperture

(m

m

Edge focusof the injection bump magnet (K1) :

- causes a strong beta modulationespecially in the vertical plane

m m

rad)

especially in the vertical plane- excite various random resonances

relating to the vertical motionSh i k f th d i t

by leak fields

(m

m

200 paintData ID: 8

⇒Shrinkage of the dynamic apertureThis can be one of the main reasonsof the large beam loss that appearsby edge focus

Time (ms) Time (ms) for large transverse painting.

Pink⇒Blue ; added “edge focus of the injection bump magnet”Bl G dd d “fi ld d li t ”

We plan to install the correction magnets for these local modurations.

Blue⇒Green ; added “field and alignment errors”Green⇒Red ; added “leakage fields from the extraction beam line”

Page 21: RCS Beam Quality - nuclpart.kek.jp

March 11, 2011

The run cycle of Run#38 began on March 2, and beam delivery to neutrino users and to MLF users at 220kW started on March 4 and March 7, respectively. The MR RF cavity which stopped running in the previous run restored and the beam tuningThe MR RF cavity which stopped running in the previous run restored, and the beam tuning 

made it possible to deliver 145kW beam to the neutrino. 

In the morning on March 11In the morning on March 11, the beam operation of the RCS and the MR was stopped for the radiation survey in the 

accelerator tunnels as scheduled.  Meanwhile the beam study had been carried out in the LINACMeanwhile the beam study had been carried out in the LINAC. 

The earthquake occurred when the beam was stopped temporarily to shift to the beam destination from the LINAC to the RCS. The beam was stopped as it was and also high‐powerdestination from the LINAC to the RCS.  The beam was stopped as it was and also high power equipment stopped.

In the RCS, all devices were in‐service but the beam operation was stopped for the radiation , p ppsurvey as scheduled. All devices suddenly shut down because of high power equipment and cooling water 

stopped then.

Page 22: RCS Beam Quality - nuclpart.kek.jp

Arc section

●Dipole magnetNumber of magnet 24 Quadrupole

Arc section (1/3)Dipole

Pole Gap 210 mmCore Length 2770 mmField strength 0 27T ~ 1 1T Sextupole

Steering

Field strength 0.27T ~ 1.1T ●Quadrupole magnet

Number of magnet 60

p

gBore Radius 140 mmField gradient < 4.5 T/m Dipole magnet

Sextupolemagnet

●Sextupole magnetNumber of magnet 18Bore Radius 140 mm SteeringBore Radius 140 mmField gradient 26.2T/m2

●Steering magnetQuadrupole magnet

gmagnet

22

g gNumber of magnet 52

magnet

Page 23: RCS Beam Quality - nuclpart.kek.jp

Resonant network and power supply for BMAC power supplyVoltage : 5832 VpCurrent : 1587 Ap

Chokes (25units)Inductance:62 mHMass:42 ton

Choke Transformer:Distributed TypeAC

Resonant Capacitor

pRating   : 3273 kW

DC

mag-0 mag-1 mag-2 mag-3 mag-24(monitor)DC power supply Capacitors (25units)

l(a)Bending magnet Power supplyVoltage : 2661 V

Current : 1667 ARating   : 4436 kW

Voltage:11108 VpCapacitance:1325 uFMass:11 ton

23Bending Magnet

Page 24: RCS Beam Quality - nuclpart.kek.jp

Resonant network and power supply for QM60 QM are excited in 7 independent resonant networks60 QM are excited in 7 independent resonant networks.

(1) The power supply provided both AC and DC components simultaneously is    inserted in series by halving one of the resonant meshesinserted in series by halving one of the resonant meshes.

(2) The QM networks consist of 3 or 6 meshed each

Ch k T f All i TR t C it

Power SupplyVoltage : 1200 VpCurrent : 1180 Ap

DC+AC

Choke Transformer:All-in-one TypeResonant Capacitor(2)

Current : 1180 ApRating : 193 kW Choke Transformer

Type : All‐in‐oneInductance : 144 mH

mag-1 mag-2 mag-3

(1)Inductance : 144 mHMass : 29 ton

(e)Quadrupole magnet Power supply QFM

Resonant CapacitorVoltage : 3587 Vp

Q magnet

24Capacitance : 1740 mFMass : 12 ton

Page 25: RCS Beam Quality - nuclpart.kek.jp

Straight section (RF section)

●RF CavityNumber of RF Cavity 11 (12)Length 1 65 m

RF Cavity AmplifierLength 1.65 mGap 3Gap Voltage (Max.) 43kV (14.4kV/gap *3)

25RF Cavities installed in the RCS tunnel Amplifiers installed in the RCS tunnel

Page 26: RCS Beam Quality - nuclpart.kek.jp

InjectionH0 DumpH0 Dump

(4 kW)Paint bump Collimator

(Primary:2, Collector:5)

Paint bump (horizontal)

Charge exchange foil Shift b t

Injection septum

& electron catcher The injection scheme 

was hard to design for the large beam

Shift bump magnets

electron catcher

the large beam aperture. 

A beam collimation system is prepared to 

26Carbon foil

localize and to control the beam loss.

Page 27: RCS Beam Quality - nuclpart.kek.jp

ExtractionBeam transport lines

Kickermagnets

pto MLF to MR

RCS

Septummagnetsmagnets

27

Page 28: RCS Beam Quality - nuclpart.kek.jp

Components of RCSMonitor (Number)

BPM 60 Profile 9  (MWPM:7, IPM:2)BLM 134 Current 10 (DCCT:1 SCT:1 MCT:2BLM 134 Current 10  (DCCT:1, SCT:1, MCT:2, Tune 2 (Horizontal :1, Vertical:1 )              FCT:1, WCM:3 )

WCM

BPMIPM

SCTWCM

IPMDCCT

IPM

282nd arc section1st arc section

Page 29: RCS Beam Quality - nuclpart.kek.jp

Components of RCSV (N b )Vacuum (Number)

Ceramics Chamber 100 Ti Chamber & Ti Bellows    ~300Gate Valve 9           Pump 44 (turbo:24, ion pump:20)

Gate ValveCeramicschamber Gauge

Dipolemagnet

Ti chamberTi bellows

Ion pump

Ti chamber

29

Ion pump

Page 30: RCS Beam Quality - nuclpart.kek.jp

Vacuum test5

3.1x10‐4Pa5.2x10‐5Pa

3.7x10‐5Pa

Turbo molecular pump Scroll pump

After 4hours

No serious problems was found !

2.4x10‐5Pa3.7x10‐5Pa

f

Vacuum pressure of each sectionafter 4 hours pumping 

Page 31: RCS Beam Quality - nuclpart.kek.jp

Status of RCS devices

Th fi ti f th t f tThe confirmation of the vacuum system, rf system and so on has been carried out by securing the lighting with a diesel engine power generator for a whilewhile. Big problem has not been found so far. It is 

necessary to use heavy machines to check the soundness of the equipment in the yardsoundness of the equipment in the yard.

Page 32: RCS Beam Quality - nuclpart.kek.jp

The confirmation of the vacuum system etc. has been carried out by securing the lighting Checking works  ‐ RCS ‐

with a diesel engine power generator for a while. Abnormality that may lead big problems has not been found so far. 

Sub tunnel Area : Water Pipes and Cables No significant damages.

Main Tunnel : Accelerator No significant damages. No water leakages. Concerning ceramics chambers, vacuum 

tests are definitely necessary.  Nothing can therefore be concluded at this moment. B th t t d h idit hi h Both temperature and humidity are very high.

2nd Floor below zero : Cooling water and air conditioning No significant damages.

1st Floor below zero : Pulse Power Supplies cooling water air conditioning 1st Floor below zero : Pulse Power Supplies, cooling water, air conditioning No significant damages.

First Floor (Electric Power Room) : Main Magnet and RF power supplies No significant damages No significant damages. 

It is necessary to use heavy machines to check the soundness of the equipment in the yard.  To perform this confirmation of safety becomes first because there are many hollows underTo perform this, confirmation of safety becomes first because there are many hollows under the base of the equipment.   As the first step, the restoration of the surrounding road was started on May 11.

Page 33: RCS Beam Quality - nuclpart.kek.jp

from  http://j‐parc.jp/

Page 34: RCS Beam Quality - nuclpart.kek.jp

J‐PARC Recovery Schedule (@2011.5.20)

Beam test : middle of Dec Beam test : middle of Dec. User operation : middle of Jan.The restoration schedule 

of some conventional items becomes an issue s h as dama e of ables in the po er ele tri alsuch as damage of cables in the power electrical system,  unavailability of cranes, cooling water system and air‐conditioning system, etc.

Beam stability and availability are ・・・・・???

Page 35: RCS Beam Quality - nuclpart.kek.jp

Answer for recommendation(2)  Systematics for dose rate

H i M i h H0 d liH-steering Magnet in the H0 dump line

Branch duct of H0 dump line and downstream BPM

35

downstream BPMDuct between Injection septum 1 and 2

Page 36: RCS Beam Quality - nuclpart.kek.jp

RCS Major loss pointResidual radiation level after beam shutdown

- 4 hour after 200kW 20days operation(10th Feb., 2011)

Red: measured at the chamber surface

(A) Injection area (B) Collimatorsection

6200, 220530, 95Red: measured at the chamber surface

Blue: measured at 30 cmUnit: Sv/h

1 0 6 01100, 70

530, 95

60, 10

15.0, 6.0

4500 400

(B) Collimator section530, 95

45, 4.0

45, 6.0

4500, 400

(A) Injection area

(B) Collimator section

9.0, <0.55500, 530

,

45, 10

5.0, <0.5

36

2000, 130

Page 37: RCS Beam Quality - nuclpart.kek.jp

Loss at the H0 dump branchp

• The number of foil hits can be reduced t.) nch 24.3 (# of foil hits)

• ‐ by the transverse painting• ‐ by optimizing the foil position

x

BLM(in

t@H0

bra

22.813.8

11.08.8

BLM signal/foil hits

x

Current foil size110(H)x40(V)  mm2

y

i b 2 M(in

t.)entrance

Linac beam ~7x7 mm2

BLM

@QFM

 e 7

x=9 mm

y=10 mmx=7 mm

Next foil size

H paint (150mm mrad), x=15 mm, y=20 mm

H&V anti‐paint (150mm mrad)110(H)x15(V)  mm2

37

We installed smaller foils in the last summer maintenance period and studied those foils.

Page 38: RCS Beam Quality - nuclpart.kek.jp

Loss mitigation at the H0 dump branch(1):small foil installation

• Vertical 15mm foil reduced branch  loss S f i i

V 40mm foil

52% smaller than V 40mm foil case.• But, charge exchange efficiency was 

reduced 99 5%→95%

Software integration

reduced 99.5%→95%Increased non‐exchanged fraction caused activation along the dump line. (d t fl ti t f H0

V 15mm foil (due to reflective neutrons from H0 dump)

• When V 20mm foil, beam loss was 68% 

Software integration

smaller than V 40mm foil, and the charge exchange efficiency was improved to 98%.improved to 98%.

→we choose V20mm foil to balance the branch loss with the charge exchange ffi i

Software integrationV 20mm foil

efficiency.

Page 39: RCS Beam Quality - nuclpart.kek.jp

Loss mitigation at the H0 dump branch(1):small foil 

By M.Ikegami

p ( )installation(Con’t)

• It was found that such worse charge exchange efficiency was due to the wider Linac beam profile. 

• After 120kW operation with V 20mm foil , H steering in the H0 dump line became 1.7mSv/hr.

• Linac profile was improved at the present operation• Linac profile was improved at the present operation. charge exchange efficiency improved to 99%.

• We need more better linac beam quality in order to achieve less branch loss and less non exchange

During foil study

achieve less branch loss and less non‐exchange component.(Fine tuning, L3BT collimation…)

Improved

39

Page 40: RCS Beam Quality - nuclpart.kek.jp

30mradTrajectories of scattered protons (by H.Harada) Shielding design by MARS

30mrad45cm Iron

‐30mrad Shielding

FOIL QDL QFMPBH3

PBH4

Branch BPMBranch5.08 Sv/h

Collimator Block3.91 mSv/h

Paint Bump Duct581 Sv/h

H3 H4

40

Page 41: RCS Beam Quality - nuclpart.kek.jp

Loss mitigation at the H0 dump branch(3):Residual dose• After 200kW, 20day continuous 

operation and 4hr cooling, Cooling:4hr

residual dose at branch duct was 4.5mSv/hr on contact and 400Sv/hr at 30cm position.f 9d li id l

120kW200kW

Cooling:9days10mSv

• After 9days cooling, residual dose was reduced to 30%.

• We worked one hour at 30cm position from the branch duct 1 S

branch duct position from the branch duct during the new year shutdown period in order to measure the dimension of existing septum 

1mSv

H0 li tand duct. Then we were exposed about 10Sv.

• It seemed that this dose l l h l k

100Sv

H0 line steer

level is enough low to work near the branch duct in order to install the new lli t t i thicollimator system in this 

summer shutdown.41

Page 42: RCS Beam Quality - nuclpart.kek.jp

Dispersion maximum point• The RF feed forward compensates the beam loading.

→Loss at the dispersion maximum point disappeared even if 400kW ioperation.

• Residual dose was less than 100Sv/hr after 1 month 200kW operation This level is low enough to allow hands on maintenance!operation. This level is low enough to allow hands‐on‐maintenance!

400kw:feed forward off 400kw:feed forward on

42Beam injection

Beam Extraction

Beam injection

Beam Extraction

Page 43: RCS Beam Quality - nuclpart.kek.jp

Scattered particle motion in the horizontal phase space. 

Here we assumed that there was only a horizontal halo. Plots at the following locations are shown: (a) at the transverse primary collimator. (b) at the first secondary collimator (c) at the thirdfirst secondary collimator. (c) at the third secondary and (d) at the last (fifth) secondary collimator. (e) at the quadrupole magnet after two dipole magnets. (f) at the maximum dispersion point of the first arc after the collimators. The particles scattered by the horizontal primary collimator (figurethe horizontal primary collimator (figure a) were absorbed in each secondary collimator (figure b‐d). However, few particles leaked from the 486pmm.mrad. acceptance range and were lost when the beam entered the arc(figure e‐f).  This was because the number of particles suffering a largenumber of particles suffering a large energy loss though angle scattering was small. 43

Page 44: RCS Beam Quality - nuclpart.kek.jp

L3BT Scraper test

• Confirmed the loss First Scraper Last Scraper

signal around the L3BT scraper and

No Scraper

L3BT scraper and CT signal at 100d D100deg. Dump (charge exchange )

Scraper 2σ position

With Scraper

Scraper 2σ position:1.2×1012ppp

Total current~8 8×1012pppTotal current 8.8×10 ppp→ 13% of total beam→more than 2σ(95%) tales cuttedNeed position fix!

44

p

Page 45: RCS Beam Quality - nuclpart.kek.jp