RCC Design based in Indian Codes

59
Beam Design Beam Data width 200 mm depth 600 mm d' 36 mm .= cc+ sdia + mdia/2 15 mm eff depth 565 mm .= d - d' Material Grades Concrete 20 MPa Steel 415 MPa Moment 123 KN-m 1.93 xumax 270 .= (700/(1100 * (0.87 * fy)) * d Mulim 176 .= 0.36*fck*b*xumax*(d-(0.42*xumax)) 2.76 Beam is designed as Singly Reinforced Beam Area of Steel Tension (Ast) Compr (Asc) Percentage 0.613 % ------- Refer Table 2 SP 16 pg 48 Area of Steel 692 sqmm Tension Reinforcement Type Bar dia Nos Area of Steel Layer 1 25 mm 2 982 sqmm Layer 2 16 mm 2 402 sqmm Layer 3 - 2 Total Steel Provided 1384 sqmm 1.226 % Provided Steel OK Compression Reinforcement Type Bar dia Nos Area of Steel Layer 1 12 mm 2 Layer 2 - Layer 3 Total Steel Provided #VALUE! Shear Force (Vu) 200 KN ζv 1.771 .=Vu / (b * d) ζc 0.562 Refer Table 61 SP 16 pg 179 ζcmax 2.8 Refer Table J SP 16 pg 175 Type Bar Dia Nos Area of Steel Layer 1 16 mm 2 402 sqmm Layer 2 12 mm 4 452 sqmm Layer 3 - Total Steel Provided 855 sqmm 0.757 % Sectional Dimensions OK Shear Reinforcements required Type of stirrup 2 legged Stirrup diameter 8 mm Spacing 150 c/c clear cover to Mu/bd 2 Mulim/bd 2 or =(0.85* (0.8*fck)* (1+5 β)-1)) / (6β)

description

Design of beams, columns, slabs, staircases, water tank, retaining wall etc. based in Indian Codes

Transcript of RCC Design based in Indian Codes

Page 1: RCC Design based in Indian Codes

Beam Design

Beam Datawidth 200 mmdepth 600 mm d' 36 mm .= cc+ sdia + mdia/2

15 mm eff depth 565 mm .= d - d'

Material Grades

Concrete 20 MPaSteel 415 MPa

Moment 123 KN-m 1.93xumax 270 .= (700/(1100 * (0.87 * fy)) * dMulim 176 .= 0.36*fck*b*xumax*(d-(0.42*xumax))

2.76

Beam is designed as Singly Reinforced Beam

Area of Steel Tension (Ast) Compr (Asc)Percentage 0.613 % ------- Refer Table 2 SP 16 pg 48Area of Steel 692 sqmm

Tension Reinforcement Type Bar dia Nos Area of Steel

Layer 1 25 mm 2 982 sqmmLayer 2 16 mm 2 402 sqmmLayer 3 - 2

Total Steel Provided 1384 sqmm 1.226 %

Provided Steel OK

Compression ReinforcementType Bar dia Nos Area of Steel

Layer 1 12 mm 2Layer 2 -Layer 3

Total Steel Provided #VALUE!

Shear Force (Vu) 200 KNζv 1.771 .=Vu / (b * d)ζc 0.562 Refer Table 61 SP 16 pg 179ζcmax 2.8 Refer Table J SP 16 pg 175

Type Bar Dia Nos Area of SteelLayer 1 16 mm 2 402 sqmmLayer 2 12 mm 4 452 sqmmLayer 3 -

Total Steel Provided 855 sqmm 0.757 %

Sectional Dimensions OKShear Reinforcements required

Type of stirrup 2 leggedStirrup diameter 8 mmSpacing 150 c/c

clear cover to main reinf.

Mu/bd2

Mulim/bd2

or =(0.85*√(0.8*fck)*√(1+5β)-1)) / (6β)

Page 2: RCC Design based in Indian Codes
Page 3: RCC Design based in Indian Codes

Steel Calculation

Grade Check7.1

SRB DRBa 0.75 a 0.75b -3.611 b -3.611c 1.930 c 2.762-p 0.613 -p 0.955

Ast 692 .=(p*b*d)/100 Astlim 1079 .=(p*b*d)/100

Mu2 -53 .=Mu - MulimAst2 -278 .=Mu2/((0.87*fy)*(d-d'))Ast 801 .=Astlim+Ast2

0.0629 d'/d 0.100.1 fsc 353 Refer Table F SP 16 pg 13

fcc 8.92 .=0.466*fckAsc -291 .=Mu2/((fsc-fcc)*(d-d'))

Min steel % 0.205 .=0.85% / fyAst 692Asc -291

Min Steel 231 .=(0.85*b*d) / fyMax Steel 4516 .=0.04*b*d)

Ast 692Asc

Shear Calculations

Pt provided 0.757 .=(Ast*100)/(b*d)Pc provided .=(Asc*100)/(b*d)

β 3.068 .=(0.8*fck)/(6.89*Pt)

Shear Capacity of Concrete (Vs) 63 .=ζc*b*dShear Stg to be caried by Stirrup (Vus) 137 .=Vu-Vs

Spacingactual req 150 .=(Asv*0.87fy*d)/Vus

min 454 .=(Asv*0.87fy)/(b*0.4)max 423 .=0.75dmax 300 .=300mm

.=(0.87435/100) * (fy/fck)2 .=(0.87435/100) * (fy/fck)2

.=(0.87/100) * (fy) .=(0.87/100) * (fy)

.=Mu/bd2 .=Mulim/bd2

.=-(b±√(b2-4ac))/2a .=-(b±√(b2-4ac))/2a

pro

vid

e t

he

le

ast

of

the

4

Page 4: RCC Design based in Indian Codes

Column Design

Design LoadsLoad Pu 2000 KN

Moment Mu 20 KN-m

Column Datawidth b 200 mmdepth d 200 mmlength l 3.00 meters

GradeConcrete fck 20 MPa

Steel fy 415 MPa

Pu/(fckbd) 2.50 Minimum eccentricity0.01 ex 1.27 mm OK

d'/d 0.05 ey 1.27 mm OK

Refer Chart 31 of SP 16, Page no: 116

pt/fck 0.18

pt 3.60%Ast 1440 sqmm

Number of bars dia nos ast

25 mm 4 1963 sqmm ● ● ● ● ● ● 4- ###

20 mm 4 1257 sqmm 4- ###

20 mm 4 1257 sqmm ● ● ● ● ● ● 4- ###

Total 12 4477 sqmm

Steel provided OK

Mu/(fckbd2)

Page 5: RCC Design based in Indian Codes

04/07/2023 Page 5 of 42

Column Design

Load Moment Column Data GradeDesign Constants

Ast Req RemarkArea of Steel

Check Figd'/d Type 1 Type 2 Total Reinf Provided

1 - - C1 R 1500 KN 30 KN-m 30 KN-m 200 mm 750 mm 750 mm 50 mm 3.60 m 20 MPa 415 MPa 0.50 0.01 0.1 0.02 0.40% 600 sqmm 1200 sqmm 4 12 mm 452 sqmm 2 12 mm 226 sqmm 6 679 sqmm

Sl No.

Grid No

Col Nos. Col type

Col Shape

Design

Paramenters

Final Ast

RequiredPu/(fckbdl) Mu/(fckbdl2)

Ast less than

min Ast req.

Steel provided NOT OK

Page 6: RCC Design based in Indian Codes

Slab Design

Slab thickness t 150 mm Sunken Depth 325 mm

fck 20 MPa

fy 415 MPa

Loading

Slab Load Sunken Slab Load

Dead Load DL 3.750 KN/m Dead Load DL 3.750 KN/m

Live Load LL 2.000 KN/m Filler Load FL 5 KN/m

Finishes Load WL 1.000 KN/m Live Load LL 3.0 KN/m

Total Load Ws 6.750 KN/m Finishes Load WL 1.0 KN/m

Factored Load Wsu 10 KN/m Total Load Wsk 12.37 KN/m

Factored Load Wsku 19 KN/m

Slab Data

Slab Type Regular

Load 10 KN/m

Longer Span (ly) 9.50 m ly/lx ratio 2.02

Shorter Span (lx) 4.70 m Slab type -

Loading on edges one way two way

24 KN/m .=w*lx/2

.=w*lx/3

Moments one way two way

Mx 28 KN-m

Thickness Check OK .=Mulim > Mux or Muy

Deflection 10 mm

Area of SteelAstx Refer Chart 4 SP 16 pg 21 or

667 sqmm Refer Table 5-44 SP 16 pg 51-80

Spacing required in mm

x y x y x y x x

75 c/c 118 c/c 170 c/c 301 c/c

.=ast of bar*1000/ast req

x y

Concrete

Steel

Wlonger .=(w*lx/2) + (1-(1/3)*(lx/ly)2)

Wshorter

.=w*lx2/ 8 .=αx * w*lx2

.=αy * w*lx2

.= 5*W*l4/(384EI)

8# 10# 12# 16#

Final Ast provided

Page 7: RCC Design based in Indian Codes

Design Calculations

ONE WAY TWO WAYa 0.75 a 0.75

b -3.611 b -3.611

cx 1.654 cy #VALUE!

-px 0.513 -py #VALUE!

Ast 667 .=(p*b*d)/100 Ast #VALUE! .=(p*b*d)/100

Min Ast %0.12 180

Interpolation

Tabl

e 26

IS 4

56 p

g 91

1 0.056

ly/lx 1.1 0.064

1.2 0.072

0.00 0.00 2.02 #N/A #N/A #N/A 0.056 1.3 0.079

1.4 0.085

1.5 0.089

2 0.107

xumax 62 .= (700/(1100 * (0.87 * fy)) * d

Mulim 47 KN-m .= 0.36*fck*b*xumax*(d-(0.42*xumax))

2.76

1.65

#VALUE!

E 2.24E+07

I 2.81E-04Defln 10.23

.=(0.87435/100) * (fy/fck)2 .=(0.87435/100) * (fy/fck)2

.=(0.87/100) * (fy) .=(0.87/100) * (fy)

.=Mu/bd2 .=Mu/bd2

.=-(b±√(b2-4ac))/2a .=-(b±√(b2-4ac))/2a

mm2

αx αylower value

upper value

exact value

lower value

upper value

interptn. value

Mulim/bd2

Mux/bd2

Muy/bd2

.= bd3/12

.= 5*W*l4/(384EI)

Page 8: RCC Design based in Indian Codes

Slab thickness t 150 mm

fck 20 MPa

fy 415 MPa Sunken Depth 450 mm

Loading

Slab Load Sunken Slab Load

Dead Load DL 3.75 KN/m Dead Load DL 3.75 KN/m

Live Load LL 3.00 KN/m Filler Load FL 6.39 KN/m

Floor Finish FF 1.00 KN/m Live Load LL 3.00 KN/m

Other Load OL 0.00 KN/m Floor Finish Load WL 1.00 KN/m

Total Load Ws 7.75 KN/m Total Load Wsk 14.14 KN/m

Factored Load Wsu 12 KN/m Factored Load Wsku 21 KN/m

Design & Reinforcement Details of Slabs

Slab Data

ly/lx

Sla

b ty

pe Loading on edges Moments Area of SteelSpacing required in mm

Sla

b ty

pe

Sla

b N

ame

Sl.No Sl. Id ThicknessLoad

Wsu / Wsku ly lx Mx Astx x y x y x y x y

1 Regular 150 mm 12 KN 7.20 m 3.00 m 2.40 - 18 KN/m 14 KN-m OK 302 sqmm 166 c/c 260 c/c 374 c/c -1a Regular 150 mm 12 KN 7.20 m 3.50 m 2.06 - 21 KN/m 18 KN-m OK 420 sqmm 120 c/c 187 c/c 269 c/c -2 Regular 150 mm 12 KN 9.20 m 1.50 m 6.13 - 9 KN/m 3 KN-m OK 180 sqmm 279 c/c 436 c/c 628 c/c -3 Regular 150 mm 12 KN 5.70 m 2.00 m 2.85 - 12 KN/m 6 KN-m OK 180 sqmm 279 c/c 436 c/c 628 c/c -4 Regular 150 mm 12 KN 3.60 m 2.00 m 1.80 + 11 KN/m 8 KN/m 5 KN-m 3 KN-m OK 180 sqmm 180 sqmm 279 c/c 279 c/c 436 c/c 436 c/c 628 c/c 628 c/c +5 Regular 150 mm 12 KN 15.00 m 2.60 m 5.77 - 16 KN/m 10 KN-m OK 224 sqmm 224 c/c 350 c/c 505 c/c -6 Regular 150 mm 12 KN 6.50 m 5.50 m 1.18 + 25 KN/m 22 KN/m 26 KN-m 20 KN-m OK 604 sqmm 468 sqmm 83 c/c 107 c/c 130 c/c 168 c/c 187 c/c 242 c/c +7 Regular 150 mm 12 KN 7.40 m 6.00 m 1.23 + 28 KN/m 24 KN/m 32 KN-m 24 KN-m OK 782 sqmm 567 sqmm 64 c/c 89 c/c 100 c/c 139 c/c 145 c/c 199 c/c +8 Regular 150 mm 12 KN 8.30 m 2.40 m 3.46 - 14 KN/m 9 KN-m OK 190 sqmm 265 c/c 414 c/c 596 c/c -9 Regular 150 mm 12 KN 6.70 m 3.70 m 1.81 + 20 KN/m 15 KN/m 17 KN-m 9 KN-m OK 379 sqmm 203 sqmm 133 c/c 248 c/c 207 c/c 388 c/c 298 c/c 558 c/c +

10 Sunken 150 mm 21 KN 6.50 m 5.00 m 1.30 + 42 KN/m 35 KN/m 41 KN-m 29 KN-m OK 1066 sqmm 706 sqmm 47 c/c 71 c/c 74 c/c 111 c/c 106 c/c 160 c/c +11 Sunken 150 mm 21 KN 5.80 m 4.80 m 1.21 + 39 KN/m 34 KN/m 35 KN-m 27 KN-m OK 869 sqmm 644 sqmm 58 c/c 78 c/c 90 c/c 122 c/c 130 c/c 176 c/c +

Concrete

Steel

Thickness Check

Spacing provided in mm c/cLonger

SpanShorter Span 8# 10# 12#

Wlonger Wshorter

Page 9: RCC Design based in Indian Codes

Values of Moments and Shear force at different locations

Ma

rk Location (meters) Moments (KNm) Shear (KN)

x y0 0 0 0 9 0 0

1.5 0 0 0 9 0 153 0 0 0 7 0 27

4.5 0 0 0 4 0 366 0 0 0 0 0 39

7.5 0 0 0 -4 0 369 0 0 0 -7 0 27

10.5 0 0 0 -9 0 1512 0 0 0 -9 0 00 1.5 0 0 9 15 0

1.5 1.5 20 20 8 14 143 1.5 38 38 6 10 25

4.5 1.5 49 49 3 6 336 1.5 53 53 0 0 36

7.5 1.5 49 49 -3 -6 339 1.5 38 38 -6 -10 25

10.5 1.5 20 20 -8 -14 1412 1.5 0 0 -9 -15 00 3 0 0 7 27 0

1.5 3 38 38 6 25 103 3 69 69 5 19 19

4.5 3 91 91 3 10 256 3 98 98 0 0 27

7.5 3 91 91 -3 -10 259 3 69 69 -5 -19 19

10.5 3 38 38 -6 -25 1012 3 0 0 -7 -27 00 4.5 0 0 4 36 0

1.5 4.5 49 49 3 33 63 4.5 91 91 3 25 10

4.5 4.5 118 118 1 14 146 4.5 128 128 0 0 15

7.5 4.5 118 118 -1 -14 149 4.5 91 91 -3 -25 10

10.5 4.5 49 49 -3 -33 612 4.5 0 0 -4 -36 00 6 0 0 0 39 0

1.5 6 53 53 0 36 03 6 98 98 0 27 0

4.5 6 128 128 0 15 06 6 139 139 0 0 0

7.5 6 128 128 0 -15 09 6 98 98 0 -27 0

10.5 6 53 53 0 -36 012 6 0 0 0 -39 00 7.5 0 0 -4 36 0

1.5 7.5 49 49 -3 33 -63 7.5 91 91 -3 25 -10

4.5 7.5 118 118 -1 14 -146 7.5 128 128 0 0 -15

7.5 7.5 118 118 1 -14 -149 7.5 91 91 3 -25 -10

10.5 7.5 49 49 3 -33 -612 7.5 0 0 4 -36 00 9 0 0 -7 27 0

1.5 9 38 38 -6 25 -103 9 69 69 -5 19 -19

4.5 9 91 91 -3 10 -256 9 98 98 0 0 -27

7.5 9 91 91 3 -10 -259 9 69 69 5 -19 -19

10.5 9 38 38 6 -25 -1012 9 0 0 7 -27 00 10.5 0 0 -9 15 0

1.5 10.5 20 20 -8 14 -143 10.5 38 38 -6 10 -25

4.5 10.5 49 49 -3 6 -336 10.5 53 53 0 0 -36

7.5 10.5 49 49 3 -6 -339 10.5 38 38 6 -10 -25

10.5 10.5 20 20 8 -14 -1412 10.5 0 0 9 -15 00 12 0 0 -9 0 0

1.5 12 0 0 -9 0 -153 12 0 0 -7 0 -27

4.5 12 0 0 -4 0 -366 12 0 0 0 0 -39

7.5 12 0 0 4 0 -369 12 0 0 7 0 -27

10.5 12 0 0 9 0 -1512 12 0 0 9 0 0

Mx My Mxy Qx Qy

Page 10: RCC Design based in Indian Codes

Staircase Design

DataEffective Span (l) 3.30 mmRiser (R) 150 mmThread (T) 300 mmWaist Slab thickness (t) 150 mmClear Cover 20 mmEffective Depth of Waist Slab (d) 130 mm

Grade of Concrete (fck) 25 MPaGrade of Steel (fy) 500 MPa

LoadingLoads on going Loads on waist slabSelf weight of waist slab 4.19 KN/m Self weight of landing slab 3.75 KN/mSelf weight of steps 1.88 KN/m Live Load 2.00 KN/mLive Load 3.00 KN/m Floor Finish Load 1.00 KN/mFloor Finish Load 1.00 KN/m Total Load 6.75 KN/m

Total Load 10.07 KN/m Factored Load 10.13 KN/mFactored Load 15.10 KN/m

Bending Moment

###Bending Moment = 21 KN-m

Reactionto be used as UDL = 25 KN ###

60 KN-m

Area of Main SteelAst 387 sqmm

Spacing

Diameter of barSpacing across x 292 c/c 520 c/c

Provded Main Steel:

Area of Distribution SteelAst 180 sqmm

Spacing

Diameter of barSpacing across y 279 c/c 436 c/c

Provided Distridution Steel:

12ø 16ø

8ø 10ø

Calculate Bending Moment using the equation (W*L*L )/8

Page 11: RCC Design based in Indian Codes

Seismic Zone II Table 2 IS 1893 2002 pg 16Seismic Intensity z 0.1

Importance factor I 1.5 Table 6 IS 1893 2002 pg 18

Response Reduction Factor R 3 Table 7 IS 1893 2002 pg 23

Lateral Dimension of Building d 65.6 metersHeight of the of Building h 50.4 meters

with brick infill

Fundamental Natural Period 0.560

Type of Soil Medium Soil

Spectral Acceleration Coefficient 0.000

Design Horizontal Seismic Coefficient 0

Seismic Weight of Building W 680034 KN

Design Seismic Base Shear 0 KN

Ta

Sa/g

Ah

VB

Page 12: RCC Design based in Indian Codes

Combined Footing

1 Footing Size Design

Load 1 Pu1 2000 KNLoad 2 Pu2 1850 KNCombine load Pcu 3850 KNDesign Load Pc 2823 KN

Moment in x dir Mux 40 KN-mMoment in y dir Muy 40 KN-m

c/c dist b/w col in x dir 2.725 metersc/c dist b/w col in y dir 0.000 meters

Col Dim x dir 0.20 metersy dir 0.20 meters

SBC q 150 KNm2

Footing Size required A req 18.82 sqmm

Footing Size ProvidedL 6.00 metersB 3.20 meters

Area Provided A prvd 19.20 meters

x bar 1.309y bar 0.000

Zx 10.24Zx 19.20

Nup 151 KNm2

Increase the Footing Size

Page 13: RCC Design based in Indian Codes

2 Beam Design

Total Load W 151 KNm2Factored Load Wu 725 KNm2

1.691 meters 2.725 meters 1.584 meters

3.20 meters

6.00 meters

725 KNm2

1.69 meters 2.73 meters 1.58 meters

Beam Size width 600 mmdepth 900 mm

Moment Mb 898 KN-m

Design the beam from the BEAM DESIGN SHEET

Bottom ReinforcementType Bar dia Nos Area of Steel

Layer 1 25 mm 6 2945 sqmmLayer 2 25 mm 6 2945 sqmmLayer 3 -

Total Steel Provided 5890 sqmmPercentage of Steel 1.148 %

Top ReinforcementType Bar dia Nos Area of Steel

Layer 1 25 mm 6 2945 sqmmLayer 2 20 mm 6 1885 sqmmLayer 3 -

Total Steel Provided 4830 sqmm

Page 14: RCC Design based in Indian Codes

3 Slab Design

Net upward pressure Nup 151 KNm2l 1.30 meters /=width of footing from col face

Bending Moment Ms 128 KN-mFactored Moment Mus 191 KN-m 1.5*Ms

Concrete fck 20 MPafy 415 MPa

Minimum Depth Required dmin 264 d=sqrt(Ms/Rumax*1000*b)

Depth Provided D 600 mmClear Cover c 50 mmEffective Cover d' 56 mmEffective Depth d' 544 mm

Area of Steel across x dir Spacing c/c in mm 20#

1014 sqmm 112 c/c 198 c/c 310 c/c

Ast across x direction 12 mm dia @ 100 mm c/c 1131 sqmmDist Ast across y direction 8 mm dia @ 175 mm c/c 287 sqmm

4 Shear Check for Slab

Vu1 171 KNζv 0.315 MPa

ζc 0.316 MPa

Shear Check OK

M=Nup*l2/2

Steel

12# 16#

E110
d'= clear cover + stirrup dia + ø/2
E126
ζv=Shear Force/(bd)
E128
refer Table 61 SP 16 pg 178
Page 15: RCC Design based in Indian Codes

56.00 meters

3.20 meters 600 mm

1.7 meters 2.73 meters 1.6 meters

600 mm

6 - 25 mm dia6 - 20 mm dia

90

0 m

m

6 - 25 mm dia6 - 25 mm dia

60

0 m

m

250 mm

8 mm dia @ 175 mm c/c 12 mm dia @ 100 mm c/c

6 - 25 mm dia6 - 20 mm dia

6 - 25 mm dia6 - 25 mm dia

Page 16: RCC Design based in Indian Codes

Design Of Isolated Footing 16 of 42

1 Footing Size Design

Load Pu 200 KNDesign Load P 147 KN

Moment in x dir Mux 6 KN-mMoment in y dir Muy -7 KN-m

Column size cx 300 mmcy 230 mm

SBC q 180 KN/sqm

Footing Size required A req 0.81 sqmm

Footing Size ProvidedL 1.00 metersB 1.00 meters

Area Provided A prvd 1.00 meters

Zx 0.17Zx 0.17

Net upward pressure Nup 143 KNm2

Footing Size OK

2 Slab Design

lx 0.350ly 0.385

Bending Moment in x dir Mx 13 KN-mBending Moment in y dir My 16 KN-m

Concrete fck 25 MPafy 500 MPa

Minimum Depth Required dmin 69

Depth Provided D 300 mmClear Cover c 50 mmEffective Cover d' 56 mmEffective Depth d' 244 mm

Area of SteelSpacing c/c in mm

20#293 sqmm 386 c/c 687 c/c 1073 c/c293 sqmm 386 c/c 687 c/c 1073 c/c

Minimum Ast required across x direcionMinimum Ast required across y direcion

Ast across x direction 12 mm dia @ 200 mm c/c 565 sqmm

Ast across y direction 12 mm dia @ 200 mm c/c 565 sqmm

Steel

12# 16#

E47
d'= clear cover + stirrup dia + ø/2
Page 17: RCC Design based in Indian Codes

Design Of Isolated Footing 17 of 42

3 One Way Shear along x direction

Vu1 23 KNζv 0.093 MPa

ζc 0.263 MPa

Vc1 64 KN

One Way Shear Check OK

4 One Way Shear along y direction

Vu1 30 KNζv 0.124 MPa

ζc 0.263 MPaVc1 64 KN

One Way Shear Check OK

5 Two Way ShearVu2 159 KNζv 0.320 MPa

ks*ζc 1.250 MPaVc1 621 KN

Two Way Shear Check OK

E65
ζv=Shear Force/(bd)
E67
refer Table 61 SP 16 pg 178
E75
ζv=Shear Force/(bd)
E77
refer Table 61 SP 16 pg 178
Page 18: RCC Design based in Indian Codes

Design Of Isolated Footing 18 of 42

L= 1.00 meters

300

B= 1.00 meters 230

30

0 m

m150 mm

12 mm dia @ 200 mm c/c 12 mm dia @ 200 mm c/c

Page 19: RCC Design based in Indian Codes

Dome Design

Dimensions of DomeDiameter d = 12600 mmHeight h = 3000 mmThickness t = 150 mm

Radius of Sphere r = 8115 mm

h =

3.0

0 m

Φ = 50.93Ѳ = 0 to 50.93

Loading d = 12.60 mDead Load DL = 3.75 KN/m

Live Load LL = 0.10 KN/m 50.93 r = 8.12 mWind Load WL = 0.10 KN/mTotal Load W = 3.95 KN/mFactored Load Wu = 5.93 KN/m

Meridional Stress Hoop StressѲ Mt Ѳ Mt

50.93 0.197 MPa 50.93 0.003 MPa45.00 0.188 MPa 45.00 0.025 MPa40.00 0.182 MPa 40.00 0.041 MPa35.00 0.176 MPa 35.00 0.055 MPa30.00 0.172 MPa 30.00 0.067 MPa25.00 0.168 MPa 25.00 0.077 MPa20.00 0.165 MPa 20.00 0.086 MPa15.00 0.163 MPa 15.00 0.093 MPa5.00 0.161 MPa 5.00 0.100 MPa0.00 0.160 MPa 0.00 0.101 MPa

Maximum Meridional Stress 0.197 MPa Maximum Hoop Stress 0.101 MPa

fck 20 MPaFy 415 MPa

230.00

Area of steel 128 sqmm Area of steel 66 sqmm

Bar Dia 10 mm Bar Dia 10 mmSpacing 613 c/c Spacing 1187 c/c

Meridional Thrust @ Base 29 KN/mHorizontal Component on Ring Beam 19 KN/mHoop Tension on Ring Beam 117 KN

Area of steel 509 sqmm

Bar Dia 16 mmNo of Bars 3 nos

бst

r = 8115.00 m

Page 20: RCC Design based in Indian Codes
Page 21: RCC Design based in Indian Codes

3 Hinged Arch Design

19.7 KNm2

Dimensions of DomeDiameter d = 5000 mmHeight h = 1270 mm

Radius of Sphere r = 3096 mmΦ = 53.86Ѳ = 0 to 53.86

LoadingDead Load DL = 3.00 KN/m

Live Load LL = 0.10 KN/mOther Load OL = 10.00 KN/mTotal Load W = 13 KN/mFactored Load Wu = 20 KN/m

Vertical Reaction VA = VB = 49.1 KNHorizontal Reaction HA = HB = 145.1 KN

Ѳ x y Moment53.86 0.00 0.00 075.00 -0.49 -1.02 12260.00 -0.18 -0.28 3150.00 0.13 0.16 -1840.00 0.51 0.55 -5730.00 0.95 0.86 -8620.00 1.44 1.08 -10710.00 1.96 1.22 -1195.00 2.23 1.26 -1220.00 2.50 1.27 -123

Max Values 123 KN-m

Page 22: RCC Design based in Indian Codes

3 Hinged Arch Design

4.725

h =

1.2

7 m

d = 5.00 m

53.86 r = 3.10 m

Radial Shear Normal Thrust 0 46 125-46 125 122 10 8510 85 31 30 115-30 115 18 56 131-56 131 57 80 143-80 143 86 101 150

-101 150 107 120 153-120 153 119 134 151-134 151 122 140 149-140 149 123 145 145-145 145

145 KN 153 KN

r = 3095.63 m

Page 23: RCC Design based in Indian Codes

Circular Beam

Dimensions of Ring BeamRadius r = 6.30 mtsNo of supports n = 8 nos

Constants Ѳ = 23 deg 0.3927 radians

9 1/2 0.1658 radians

C1 = 0.066C2 = 0.03C3 = 0.005

LoadingWu = 10 KN/m

Shear Force

deg KN KN-m KN-m0 24.74 -20.62 0.009 1/2 14.29 -0.05 1.57

22 1/2 0.00 10.39 0.00

Beam Datawidth 300 mmdepth 600 mm

Equivalent Shear

Ve = V+1.6(T/b) = 33 KN

Equivalent MomentMt = T((1+D/b)/1.7) = 1 KN-m Mt = BM due to torsion

22 KN-m

20 KN-m

Φm =

ΦFΦ MΦ Mm

t

Bending Moment

Torsional Moment

T=MΦ

Me1 = M+Mt = Me1 = Equivalent BM on tension side

Me2 = M-Mt = Me2 = Equivalent BM on compression side

Page 24: RCC Design based in Indian Codes

A Load 2700Moment x-dir y-dirBottom 0 29Top 6 137

Col Type Rectangular Column (reinf. on 2 sides)

x-dir y-dirUnsupported Length 8250 8250Col Size 200 900

d'/D 0.05 0.20d' 40

Concrete 20Steel 415

D

Effective Length Ratio0.80 from IS Code0.90 manual Calculation

Effective Length to be considered from Manual CalculationEffective Length (le) lex Ley

7425 7425E Slenderness Ratio

le/D 8 Short Columnle/b 37 Slender ColumnMoment due to Slen Muax 0

Muay 372

Min Ecc ex 46.5ey 23.2

Moment due to ecc Mux 125.55Muy 62.55

G Reduction of MomentsPercentage assumed 2.18

Asc 3924

Puz 2841

k1 K2 Pbx-x 0.219 0.096 367y-y 0.184 -0.022 291

Kx 0.06Ky 0.06

Additional Moments due to ecc Max 0May 21

Modified Initial Moments Mux 3.6Muy 70.6

Summary of MomentsA Moment due to eccentricity + Modified additional moments

Mux 126Muy 83

B Modified initial moments + Modified additional momentsMux 4Muy 91

C 0.4Muz + Modified additional momentsMux 0Muy 32

Final Design LoadsPu 2700Mux 126Muy 91

Page 25: RCC Design based in Indian Codes

Bi-Axial Column

Design LoadsPu = 2400 KN

Mux = 192 KN-mMuy = 517 KN-m

Col Datab = 600 mmD = 750 mmd' = 40.0 mm

d'/D = 0.10d'/b = 0.10

Material Gradesfck = 20 MPafy = 415 MPa

Design ConstantsSteel % pt = 1.2 Ast = 5400 sqmm

pt/fck = 0.06 Min Ast = 3600 sqmmPu/fck*b*D = 0.27

0.11

0.11

Puz = 5682

743

594

Pu/Puz = 0.42

0.26

0.87

1.37

0.98

Steel Percentage OK

Steel Detailsnos dia ast

Type 1 4 20 mm 1257 sqmmType 2 8 16 mm 1608 sqmm

Total Steel 12 - 2865 sqmmPercentage 0.64%

Mux/fck*b*D2 =

Muy/fck*b*D2 =

Mux1 =

Muy1 =

Mux/Mux1 =

Muy/Muy1 =

αn =

(Mux/Mux1)αn + (Muy/Muy1)αn

Page 26: RCC Design based in Indian Codes

Deflection Calculation

Load W 8 KN/m 70 KN/mLength l 2.60 m 3.00 m

Ec 22000000 MPa 22000000 MPa

Width b 0.20 m 0.20 mDepth d 0.45 m 0.60 mMoment M 8.66 m 82.13 mReaction R 13.33 m 109.50 m

Ixx 0.0015 mm4 0.0036 mm4

Deflectiondy

0.1 mm 0.5 mmFormula

Simply supported beam with UDL

Simply supported beam with Point Load

Elasticity of Concrete = 5000(√fck)

Moment of Inertia = bd3/12

5Wl4/384EI Wl3/48EI

Page 27: RCC Design based in Indian Codes

Deflection Calculation

1400 KN/m 10 KN/m3.80 m 5.00 m

22000000 MPa 22000000 MPa

1.50 m 0.20 m1.10 m 0.60 m2601.46 m 40.63 m2738.38 m 32.50 m

0.1664 mm4 0.0036 mm4

10.0 mm 5.3 mm

Cantilever beam with UDL

Cantilever beam with Point Load

Wl4/8EI Wl3/3EI

Page 28: RCC Design based in Indian Codes

Span

125 mm 150 mm 175 mm 200 mm

Spacing Spacing Spacing Spacing

3 16 1.45 46512# @ 243 c/c

17 1.01 38612# @ 293 c/c

18 0.75 33712# @ 336 c/c

19 0.59 36912# @ 306 c/c

16# @ 432 c/c 16# @ 521 c/c 16# @ 597 c/c 16# @ 546 c/c

3.5 22 2 66912# @ 169 c/c

23 1.36 53612# @ 211 c/c

25 1.04 44712# @ 253 c/c

26 0.8 42112# @ 269 c/c

16# @ 301 c/c 16# @ 375 c/c 16# @ 450 c/c 16# @ 479 c/c

4 28 2.54 89912# @ 126 c/c

30 1.78 72312# @ 156 c/c

32 1.33 62412# @ 181 c/c

34 1.05 55912# @ 202 c/c

16# @ 224 c/c 16# @ 278 c/c 16# @ 322 c/c 16# @ 360 c/c

4.5 38 2.25 95612# @ 118 c/c

41 1.71 82412# @ 137 c/c

44 1.36 74112# @ 153 c/c

16# @ 210 c/c 16# @ 244 c/c 16# @ 271 c/c

5 50 2.08 103912# @ 109 c/c

54 1.67 93112# @ 121 c/c

16# @ 194 c/c 16# @ 216 c/c

5.5 61 2.54 132712# @ 85 c/c

65 2.01 115512# @ 98 c/c

16# @ 152 c/c 16# @ 174 c/c

6 77 2.38 141812# @ 80 c/c

16# @ 142 c/c

Moment (KNm)

Mu/bd2 Ast (mm2)

Moment (KNm)

Mu/bd2 Ast (mm2)

Moment (KNm)

Mu/bd2 Ast (mm2)

Moment (KNm)

Mu/bd2 Ast (mm2)

Page 29: RCC Design based in Indian Codes

DESIGN OF RETAINING WALL

1 Preliminary Datai) Height of RW h 3.00 meters

ii) Soil Density 18 KN/cum

iii) SBC 250 KN/sqm

iv) Angle of repose Ø30 degrees

0.524 radians

v) Surcharge Angle Ө0 degrees

0.000 radiansvi) Coefficient of friction µ 0.5

vii) Surcharge Load 4 KN/sqm

2 Pressure Coefficients

i)Active Pressure Coefficients

Ca 0.333

ii)Passive Pressure Coefficients

Cp 3.00 = (1+SinØ) / (1+SinØ)

3 Preliminary DimensionsProposed Adopted

i) Thickness of Stem - 0.20 meters

ii) Thickness of footing base slab 0.24 meters 0.30 meters

iii)Length of base slab L = 1.5 * √(Ca/3) * (h + hs) 1.61 meters

2.00 metersor L = 0.6h to 0.65h 2.09 meters

iv) Extra Height of Retaining Wall due to Surcharge 0.22 meters

v) Total Height of Retaining Wall due to Surcharge 3.22 meters

vi) Extra Height of RW due to inclined back fill 0.00 meters

vii) Total Height of RW due to inclined back fill 3.00 meters

viii) 3.22 meters

4 Stability against Overturning

i) Active pressure due Surcharge Load 4 KN

ii) Active pressure due Backfill Load 27 KN

iii) Total Load on stem 31 KN

iv) Overturning Moment 33 KNm

v) Load Lever arm from end of stem Moment

Backfill Load = (L-ts)*(h-tb)*γs 87 KN 0.90 meters 79 KNm

Surcharge Load = Ca*Ws*h 4 KN 0.90 meters 4 KNm

Inclined Backfill Load = ((L-ts)*hi)/2*γs 0 KN 0.60 meters 0 KNm

= ts*(h-tb)*γconc 14 KN 0.95 meters 13 KNm

Base self weight = L*tb*γconc 15 KN 1.00 meters 15 KNm

Downward component = Pa*sinӨ 0 KN 0 KNm

Other Load 0 KNm∑W 120 KN 110 KNm

vi) Distance of Resultant Vertical Force from end of heel 0.92 meters

vii) Stabilizing Moment 130 KNm

viii) Factor of Safety against OVERTURNING

3.54 > 1.4 Safe against Overturning

5 Stability against Slidingi) Sliding Force Pa*CosӨ 31 KNii) Resisting Force 60 KN

iii) Factor of Safety against SLIDING

1.74 > 1.4 Safe against Sliding

Shear Key not required

iv) Shear key Design

a) Shear Key Sizex 0.00 metersy 0.00 meters

b) Distance from stem z 0.00 meters

c) Heigth of exacavation 0.00 meters

d) Heigth of exacavation 0.00 meters

e) Passive Pressure 0 KN

v) Revised Factor of Safety against SLIDING

1.74 > 1.4Safe against Sliding

6 Soil Pressures at footing basei) Resultant Vertical Reaction ∑W = R 120 KNii) Distance of R from heel Lr = (Mw+Mo)/R 1.19 metersiii) Eccentricity e = Lr- L/2 0.19 meters

Eccentricity lies within middle third of the base hence OK

iv) Pressure Distridution on soil 95 KN/sqm

25 KN/sqmMax Pressure qmax<SBC hence pressure on base is OK

v) 88 KN/sqm

γs

qo

Ws

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Ө-cos2Ø))

ts

tb = 0.08 * (h + hs)

hs = Ws/γs

Hs = h+hs

hi = (L-ts)* tanӨ

Hi = h+hi

Design Height of RW considered H = Max of H1 & H2

Pa1 = Ca*Ws*h

Pa2 = Ca*γs*h2 / 2

Pa = Pa1 + Pa2

Mo= (Pa1 * h/2) +(( Pa2*CosӨ)* h/3)

W1 (L-ts) / 2

W2 (L-ts) / 2

W3 (L-ts) / 3

W4 Stem self weight (L- (ts/2))/2

W5 L / 2

W6

W6

∑Mw

xw=∑Mw/∑W

Mr =∑W * (L - xw)

(FS)OT = 0.9 * (Mr/Mo)

F = µ*∑W

(FS)SL=0.9*(F/(Pa*CosӨ))

h1

h2 = h1 + y + (z * tanØ)

Pp = Cp*γs*(h12-h2

2) / 2

(FS)sliding = 0.9 * ((F+Pp)/(Pa*CosӨ))

qmax = R/L * (1+(6*e/L))

qmin = R/L * (1-(6*e/L))

Pressure at junction of stem and heel

qsh=qmax-((qmax-qmin)/L)*ts)

Page 30: RCC Design based in Indian Codes

DESIGN OF L Shaped Cantilever RETAINING WALL

1 Preliminary Datai) Height of Retaining Wall h 3.60 meters

ii) Soil Density 18 KN/cum

iii) SBC 150 KN/sqm

iv) Angle of repose Ø 30 degrees

0.524 radians

v) Surcharge Angle Ө 0 degrees

0.000 radiansvi) Coefficient of friction µ 0.5

vii) Surcharge Load 2 KN/sqm

2 Pressure Coefficientsi) Active Pressure Coefficients Ca 0.333

ii) Passive Pressure Coefficients Cp 3.00 = (1+SinØ) / (1+SinØ)

3 Preliminary DimensionsProposed Adopted

i) Thickness of Stem min 200mm 0.20 meters

ii) Thickness of footing base slab 0.29 meters 0.25 metersiii) Length of base slab L = 1.5 * √(Ca/3) * (h + hs) 1.86 meters

2.50 metersL = 0.6h to 0.65h 2.41 meters

iv) Extra Height of Retaining Wall due to Surcharge 0.11 meters

v) Total Height of Retaining Wall due to Surcharge 3.71 meters

vi) Extra Height of RW due to inclined back fill 0.00 meters

vii) Total Height of RW due to inclined back fill 3.60 meters

viii) 3.71 meters

4 Stability against Overturning

i) Active pressure due Surcharge Load 2 KN

ii) Active pressure due Backfill Load 41 KN

iii) Total Load on stem (Force) 44 KN

iv) Overturning Moment due to Imposed load 5 KN

v) Overturning Moment due to Backfill load 51 KN

vi) Overturning Moment 68 KN

v) Load Lever arm at end of stem Moment

Backfill Load = (L-ts)*(h-tb)*γs 143 KN 1.35 meters 193 KNm

Inclined Backfill Load = ((L-ts)*hi)/2*γs 0 KN 0.97 meters 0 KNm

= ts*(h-tb)*γconc 17 KN 0.10 meters 2 KNm

Base self weight = L*tb*γconc 16 KN 1.25 meters 20 KNm∑W 176 KN 215 KNm

viii) Safe against Overturning -clause 20.1 page 33 of IS 456 2000

5 Stability against Sliding

i) Sliding Force 44 KNii) Resisting Force 88 KN

iii) 1.81 > 1.4 Safe against Sliding -clause 20.2 page 33 of IS 456 2000

6 Soil Pressures at footing basei) Net Moment at toe Mn = Mw - Mo 159 KNii) Point of application of Resultant R x = Mn/W 0.90 metersiii) Eccentricity e = (L/2) - x 0.35 meters L/6= 0.42

e<L6 Eccentricity lies within middle third of the base hence OK

iv) Pressure Distridution on soil 129 KN/sqm

12 KN/sqmMax Pressure qmax<SBC hence pressure on base is OK

v) 120 KN/sqm

γs

qo

Ws

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Ө-cos2Ø))

ts

tb = 0.08 * (h + hs)

hs = Ws/γs

Hs = h+hs

hi = (L-ts)* tanӨ

Hi = h+hi

Design Height of RW considered H = Max of H1 & H2

PHS = Ca*Ws*h

PH = Ca*γs*h2 / 2

Pa = PHS + PH

MOIL = PHS*h/2

MODL = PH*h/3

Mo = (1.2*MDIL) + (1.4*MOIL)

W1 ((L-ts) / 2) + ts

W2 ((L-ts) / 3) + ts

W3 Stem self weight ts / 2

W4 L / 2

∑Mw

Mw not less than (1.2*MODL) +(1.4*MOIL)

Pa = PHS + PH

F = µ*∑W

(FS)SL= (0.9*F)/(Pa)

qmax = W/L * (1+(6*e/L))

qmin = W/L * (1-(6*e/L))

Pressure at junction of stem and heel

qsh=qmax-((qmax-qmin)/L)*ts)

Page 31: RCC Design based in Indian Codes
Page 32: RCC Design based in Indian Codes

7 Constants for Working Stress Method

Design Constantsi) Grade of concrete 20 MPaii) Grade of steel 415 MPa

iii) Compr stress in concrete c 7.0 table 21 page 81 IS 456iv) Tensile stress in steel t 230v) Modular ratio m = 280/3c 13.33vi) Neutral axis depth factor k=mc/(mc+t) 0.289vii) Lever arm j = 1 - k/3 0.904viii) Factor R= cjk / 2 0.913

8 Design

A) Stem

i) Beanding Moment at base of stem 56 KN/m

ii) Thickness required 0.01 metersiii) Thickness provided ts 0.20 meters

Thickness of Stem is OK

iv) Ast required 1914 sqmm

v) Ast provided 16 mm dia @ 105 mm c/c 1915 sqmm

vi) Percentage of Steel 1.37 %

Steel OK

B) Base SlabForce Lever arm from end of stem Moment

i) Force due to backfill+surcharge 143 1.15 meters 165 KNm

ii) Force due to inclined backfill 0 0.77 meters 0 KNm

iii) Self Weight of base slab 16 1.25 meters 20 KNm∑Ws 159 Md 184 KNm

vi) Upward soil pressure 151 0.83 meters 126 KNmDownward Pressure is greater Mu 126 KNm

v) Bending Moment Msh = Mu-Md 58

vi) Thickness required 0.25 metersThickness of Stem is OK

vii) Thickness provided ts 0.25 meters

viii) Ast required 1440 sqmm

ix) Ast provided 16 mm dia @ 125 mm c/c 1608 sqmm

x) Percentage of Steel 0.74 %

Steel OK

C) Reinforcement Details

M = MODL + MOIL

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

= (H2-tb)*(L-ts)*γs (L-ts) / 2

= hi/2*(L-ts)*γs (L-ts) / 3

=L *tb*γconc L / 2

Nup = ((qsh+qmin)/2)*(L-ts) ((qsh+(2*qmin))/(qsh+qmin)) * ((L-ts)/3)

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

FILL

Page 33: RCC Design based in Indian Codes

DESIGN OF Reverse L Shaped Cantilever RETAINING WALL

1 Preliminary Datai) Height of Retaining Wall h 3.00 metersii) Height of Plinth Fill hp 0.50 meters

iii) Soil Density 18 KN/cum

iv) SBC 250 KN/sqm

v)Angle of repose Ø 30 degrees

0.524 radians

vi)Surcharge Angle Ө 0 degrees

0.000 radiansvii) Coefficient of friction µ 0.5

vii) Surcharge Load 4 KN/sqm

2 Pressure Coefficientsi) Active Pressure Coefficients Ca 0.333

ii) Passive Pressure Coefficients Cp 3.000 = (1+SinØ) / (1+SinØ)

3 Preliminary DimensionsProposed Adopted

i) Thickness of Stem min 200mm 0.20 meters

ii) Thickness of footing base slab 0.24 meters 0.45 meters

iii) Length of base slabif sloped backfill

-0.60 meters

2.45 meters0.00 meters

if horizontal backfill-0.96 meters0.00 meters

L = 0.6h to 0.65h 2.09 meters

iv) Extra Height of Retaining Wall due to Surcharge 0.22 meters

v) Total Height of Retaining Wall due to Surcharge 3.22 meters

vi) Extra Height of RW due to inclined back fill 0.00 meters

vii) Total Height of RW due to inclined back fill 3.00 meters

viii) 3.22 meters

4 Stability against Overturning

i) Active pressure due Surcharge Load 4 KN

ii) Active pressure due Backfill Load 31 KN

iii) Total Load on stem (Force) 35 KN

iv) Overturning Moment due to Imposed load 7 KN

v) Overturning Moment due to Backfill load 33 KN

vi) Overturning Moment 50 KN

v) Load Lever arm at start of heel Moment

Front fill Load = (L-ts)*(hp-tb)*γs 2 KN 1.13 meters 2 KNm

= ts*(h-tb)*γconc 14 KN 2.35 meters 33 KNm

Base self weight = L*tb*γconc 28 KN 1.23 meters 34 KNm

Other Load PT Beam Load 0 KN∑W 43 KN 69 KNm

viii) Safe against Overturning -clause 20.1 page 33 of IS 456 2000

5 Stability against Sliding

i) Sliding Force 35 KNii) Resisting Force 22 KN

iii) 0.55 < 1.4 Unsafe against Sliding -clause 20.2 page 33 of IS 456 2000

5a Shear key Design

a) Shear Key Sizex 0.30 metersy 0.30 meters

b) Distance from stem z 0.30 meters

c) Heigth of exacavation 0.60 meters

d) Heigth of earth mobilization 1.07 meters

e) Passive Pressure 21 KN

v) Revised Factor of Safety against SLIDING

γs

qo

Ws

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Ө-cos2Ø))

ts

tb = 0.08 * (h + hs)

α = 1 - (q0/2.7*γs*H)L = H*sqrt((Ca*cosβ)/((1-α)*(1+3α))

α = 1 - (q0/2.2*γs*H)L = 0.95*H*sqrt((Ca)/((1-α)*(1+3α))

hs = Ws/γs

Hs = h+hs

hi = (L-ts)* tanӨ

Hi = h+hi

Design Height of RW considered H = Max of H1 & H2

PHS = Ca*Ws*h

PH = Ca*γs*h2 / 2

Pa = PHS + PH

MOIL = PHS*h/2

MODL = PH*h/3

Mo = (1.2*MDIL) + (1.4*MOIL)

W1 ((L-ts) / 2)

W3 Stem self weight (ts/2) + (L-ts)

W4 L / 2

W5

∑Mw

Mw not less than (1.2*MODL) +(1.4*MOIL)

Pa = PHS + PH

F = µ*∑W

(FS)SL= (0.9*F)/(Pa)

h1

h2 = h1 + y + (z * tanØ)

Pp = Cp*γs*(h12-h2

2) / 2

Page 34: RCC Design based in Indian Codes

v)1.09 > 1.4

Unsafe against Sliding. Shear Key Required

6 Soil Pressures at footing base

i) Net Moment at toe 28 KNii) Point of application of Resultant R x = Mn/W 0.65 metersiii) Eccentricity e = (L/2) - x 0.58 meters L/6= 0.41

e>L6 Eccentricity lies outside the middle third of the base. Revise the base dimensions

iv) Pressure Distridution on soil 43 KN/sqm

-7 KN/sqmMax Pressure qmax<SBC hence pressure on base is OK

v) 39 KN/sqm

(FS)sliding = 0.9 * ((F+Pp)/(Pa*CosӨ))

Mn = Mw - (MOIL+MODL)

qmax = W/L * (1+(6*e/L))

qmin = W/L * (1-(6*e/L))

Pressure at junction of stem and heel

qsh=qmax-((qmax-qmin)/L)*ts)

Page 35: RCC Design based in Indian Codes

7 Constants for Working Stress Method

Design Constantsi) Grade of concrete 20 MPaii) Grade of steel 415 MPa

iii) Compr stress in concrete c 7.0 table 21 page 81 IS 456iv) Tensile stress in steel t 230v) Modular ratio m = 280/3c 13.33vi) Neutral axis depth factor k=mc/(mc+t) 0.289vii) Lever arm j = 1 - k/3 0.904viii) Factor R= cjk / 2 0.913

8 Design

A) Stem

i) Beanding Moment at base of stem 40 KN/m

ii) Thickness required 0.01 metersiii) Thickness provided ts 0.20 meters

Thickness of Stem is OK

iv) Ast required 1387 sqmm

v) Ast provided 16 mm dia @ 120 mm c/c 1676 sqmm

vi) Percentage of Steel 0.99 %

Steel OK

B) Base SlabForce Lever arm from end of stem Moment

i) Force due to Frontfill 2 1.13 meters 2 KNm

iii) Self Weight of base slab 28 1.23 meters 34 KNm∑Ws 30 Md 36 KNm

vi) Upward soil pressure 35 0.58 meters 20 KNm

Upward Pressure is greater Mu 20 KNm

v) Bending Moment Msh = Mu-Md 16

vi) Thickness required 0.13 meters Thickness of Stem is OK

vii) Thickness provided ts 0.45 meters

viii) Ast required 193 sqmm

ix) Ast provided 12 mm dia @ 150 mm c/c 754 sqmm

x) Percentage of Steel 0.05 %

Steel OK

C) Reinforcement Details

M = MODL + MOIL

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

= (L-ts)*(hp-tb)*γs (L-ts) / 2

= L* tb * γconc L / 2

Nup = ((qsh+qmin)/2)*(L-ts) ((qsh+(2*qmin))/(qsh+qmin)) * ((L-ts)/3)

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

FILL

Page 36: RCC Design based in Indian Codes

DESIGN OF Reverse L Shaped Cantilever RETAINING WALL

Page 37: RCC Design based in Indian Codes
Page 38: RCC Design based in Indian Codes
Page 39: RCC Design based in Indian Codes

Design Constants for Working Stress Method

i) Grade of concrete 25 MPaii) Grade of steel 500 MPa

iii) Compr stress in concrete c 8.5iv) Tensile stress in steel t 275v) Modular ratio m = 280/3c 10.98vi) Neutral axis depth factor k=mc/(mc+t) 0.253vii) Lever arm j = 1 - k/3 0.916viii) Factor R= cjk / 2 0.986

Design

i) Height of Tank h 5.80 meters

ii) Saturated Soil Density 18 KN/cum

iii) Water Density 9.81 KN/cum

iv) Dry Soil Density 8.19 KN/cum

v) SBC 180 KN/sqm

vi)Angle of repose Ø 28 degrees

0.489 radians

vii)Active Pressure Coefficients

Ka 0.36 = (1-SinØ) / (1+SinØ)

A) Design of Long Walls

a) Tank empty with pressure of saturated soil from sidei) Active pressure pa = (Ka*γ'*H) + (γw*H) 74 KNii) Beanding Moment at base of wall M = (pa) *H/3 143 KN/m

iii) Thickness required 0.381 metersiv) Thickness provided ts 0.400 meters

Thickness of Stem is OK

v) Ast required

vi) Ast provided 16 mm dia @ 100 mm c/c

vii) Percentage of Steel

Steel OK

viii)50 % bars to be Curtailed from base 1.20 meters

plus 12 dia or thickness12dia 0.19 meters

thinkness 0.40 metersTotal curtaliment length from base 1.60 meters

ix) Ast required

Ast provided is more than mimimun Ast required hence OK

γs

γw

γ' = γ - γw

qo

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

h1 = h - h*(1/2)1/3

Ast min = 12 % of area

Page 40: RCC Design based in Indian Codes

b) Tank full with water and no earth fill outsidei) Active pressure pa = (γw*H) 57 KNii) Beanding Moment at base of wall M = (pa) *H/3 110 KN/m

iii) Thickness required 0.334 metersiv) Thickness provided ts 0.230 meters

Revise the thickness of Stem

v) Ast required

vi) Ast provided 12 mm dia @ 100 mm c/c

vii) Percentage of Steel

Steel OK

viii)50 % bars to be Curtailed from base 1.20 meters

plus 12 dia or thickness12dia 0.14 meters

thinkness 0.23 metersTotal curtaliment length from base 1.43 meters

ix) Ast required

Ast provided is more than mimimun Ast required hence OK

dreq=√(Ms/(R*b)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

h1 = h - h*(1/2)1/3

Ast min = 12 % of area

Page 41: RCC Design based in Indian Codes

table 21 page 81 IS 456

pa = w*l/2

1434 sqmm

2011 sqmm

0.39 %

Steel OK

IS 456 caluse 26.2.3.1 page 44

480 sqmm

Ast provided is more than mimimun Ast required hence OK

Page 42: RCC Design based in Indian Codes

pa = w*l/2

1102 sqmm

1131 sqmm

0.57 %

Steel OK

IS 456 caluse 26.2.3.1 page 44

276 sqmm

Ast provided is more than mimimun Ast required hence OK