Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2...

49
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p- type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier Promoter Dr. Saroj P. Dash Co- supervisor Andre Dankert Examiner Dr. Thilo Bauch 1

Transcript of Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2...

Page 1: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

1

Ravi Sharma

Co-PromoterDr. Michel Houssa

Electrical Spin Injection into p-type Silicon using SiO2- Cobalt Tunnel Devices:

The Role of Schottky Barrier

Promoter Dr. Saroj P. DashCo- supervisor Andre Dankert

ExaminerDr. Thilo Bauch

Page 2: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Outline

• Introduction & Motivation • Device Fabrication

• Electrical measurements

• Spin transport measurements

• Summary

2

Page 3: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spintronics

Quantum property of electrons Spin +1/2 (clock wise) -1/2 (anti clockwise)

Two possible spin states represent the "0" and "1" states in logical operations

* Low power consumption

- Energy scale for the charge interaction ~ eV, - spin interaction ~100 meV. • Non-volatile memory • Integration between the logic and storage devices.

Advantages

3

Page 4: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin polarization in ferromagnet

E

MajoritySpin

MinoritySpin

4

Page 5: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Giant Magnetoresistance (GMR)

Baibich et al. PRL 61, 2472(1988)Binasch et al. PRB 39, 4828 (1989)

2007Nobel prize for Physics

P. Grünberg A. Fert

5

Page 6: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Tunnel Magnetoresistance (TMR)

Co

CoFe

MgO 5K

300 K

Anti-parallel

Parallel

Data storage

> 500 GB

MRAM

Moodera et al. PRL 74, 3273 (1995) Parkin et al. Nature Mat. 3, 868 (2004)

6

Page 7: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Opportunities for new technology

Silicon MOSFET - scaling for smaller and faster transistor

?22 nm32 nm45 nm

201220102008 2020

Spin-Electronics

Process information

Semiconductor chip

Combining the

best of both worlds

Storage information

Magnetic hard disc

7

Page 8: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin transistor

Major challenges

Spin Injection Transport Detection Manipulation

Room Temperature n- and p- type Si

FerromagnetGate

Silicon

Ferromagnet

• Low spin –orbit coupling • Low hyperfine interaction

Longer spin life time in Si

Available technology

Advantage of Si Spintronics

8

Page 9: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Creation of Spin polarization in Si

All optical method Electrical InjectionOptical detection

All electrical methodat Room Temperature

Lampel, Phys. Rev. Lett. 20, 491 (1968)

Jonker, Nature Phys. 3, 542 (2007)

Dash, Nature 462, 491 (2009)

9

Page 10: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

My Thesis

p- Silicon

SiO2

Cobalt

I V

Ferromagnet

h+

SiO2

p-type Silicon

W

ϕB

Fabrication of devices

Electrical characterization

Spin-transport measurement

Ozone oxidized SiO2

p-type Silicon (Boron Doping Dependence)

To study the effect of Schottky barrier width on spin injection and extraction

10

Page 11: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Outline

• Introduction & Motivation • Device Fabrication

• Electrical measurements

• Spin transport measurements

• Summary

11

Page 12: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Fabrication

p-type Silicon

SiO2

Cobalt

Cr/AuCr/Au

12

Page 13: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Fabrication

300 nm SiO2

Silicon

Silicon

BHF

TB

Silicon

UV lamp

O3

AuAuCo Co

Silicon

Au/Cr

Au/Cr cont. bylift off

AuAuCo Co

Silicon

Au/Co Evaporation

patterning by ion-beam etching

13

Page 14: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Microscope images of device

Contact holes

Au/Co definition

Cr/Au contact pads

Cr/A

u

Cr/A

u

Au/Co/SiO2/p-Si 14

Page 15: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Microscope images of device

Hall Bar

15

Page 16: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Outline

• Introduction & Motivation • Device Fabrication

• Electrical measurements• Resistivity and Hall measurement • Schottky barrier height and width

• Spin transport measurements• Spin injection and detection in p-Si• Doping dependence studies

• Summary16

Page 17: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Electrical measurements

Resistivity measurement

𝑹𝒆𝒔𝒊𝒔𝒕𝒊𝒗𝒊𝒕𝒚 ,𝝆=𝑹𝑾𝒕𝒅

𝜴𝒎

d = distance between two contacts over which voltage is measured, W = channel width and t = thickness of the channel

Silicon Resistivity

p- 10x10-2

p 11x10-5

p+ 7.2x10-5

p++ 5x10-5 17

Page 18: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Electrical measurements

Hall measurement

Lorentz force, Hall voltage,

18

Page 19: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Silicon Doping concentration

cm-3

Resistivity Carrier mobilitycm2V-1s-1

Diffusion coefficients

cm2s-1

p- 1.34x1015 10x10-2 466 11.65

p 5.4x1018 11x10-5 109 2.72

p+ 1.5x1019 7.2x10-5 57 1.42

p++ 2.1x1019 5x10-5 44 0.8

Electrical measurements

Silicon parameters

19

Page 20: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Schottky barrier

20

Page 21: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Schottky barrier

IV

Cr/Au

Cr/AuAu/Co/SiO2/p-Si

p- Silicon

Tunnel barrier

Ferromagnet

I V

21

Page 22: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Schottky barrier

Ferromagnet

h+

SiO2

p-type Silicon

W

ϕB

22

Page 23: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

1exp

TnK

qVII

B

asat

TKTAAI

B

Bnsat

exp*. 2

TKTAA

I

B

Bnsat 1

*.log

2

)5617.8*( eslopeB eV

Schottky barrier

Schottky barrier height is 0.23 eV

23

Page 24: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Silicon p- p p+ p++

Schottky barrier

width (nm)

736

13.52

8.26

7.02

𝑾 =√ 𝟐𝝐𝒔(𝝋𝑩+

𝒌𝑻 . 𝒍𝒏(𝒏𝒑

𝒏𝒊)

𝒒−𝑽 𝒂)

𝒒 .𝒏𝒑

Schottky barrier

24

Page 25: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Outline

• Introduction & Motivation • Device Fabrication

• Electrical measurements• Resistivity and Hall measurement • Schottky barrier height and width

• Spin transport measurements• Spin injection and detection in p++Si• Doping dependence studies

• Summary25

Page 26: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Hole Injection Hole Extraction

J-V curve

I-V measurement

Resistance at -200 mV = 1.3 KΩ

Co/SiO2 /p++ Si

B doped5 mOhm.cm

26

Page 27: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin Injection

∆μ

E

Silicon

Tunnel barrier

Ferromagnet

I V

27

Page 28: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

2).(1

)0()(

sL

B

Spin-signal has a Lorentzian line-shape

The half width is inversely proportional to the spin-lifetime

Spin detection by Hanle effect

∆μ

E

E

∆μ = 0

∆μ

B

Bg B

L

Larmor frequency

28

Page 29: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin Detection by Hanle effect

P++ type Si/SiO2/Co

300 K

29

Page 30: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin life time and Polarization in p++ Si

∆V=929 uVSpin Lifetime τ = 49 ps

Spin polarization P=10.38 %

Diffusion Length,

LD > 63 nm

300 K ∆V=929 uVΔµ = 2.ΔV/TSP = 5.3 mV

TSP = 0.35

30

Page 31: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin Extraction

P++ type Si/SiO2/Co

300 K800 mV

B doped5 mOhm.cm 31

Page 32: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

𝑺𝒑𝒊𝒏𝑹𝑨=∆𝑽 / 𝑱

32

Page 33: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

𝑺𝒑𝒊𝒏𝑹𝑨=∆𝑽 / 𝑱=𝜸𝒅 𝜸 𝒊/𝒆𝒓𝒄𝒉=𝜸𝒅 𝜸 𝒊 /𝒆 𝝆 √𝑫𝝉 is the TSP for the detection is the TSP for the injection/extraction is spin lifetime is the spin-flip resistance in Si bulk channel.

TSP2= )

Assuming, TSP2 =()

33

Page 34: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Temperature dependence

- 200 mV

Weak temperature dependence indicates - true spin accumulation in silicon over the full temperature range 34

Page 35: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Outline

• Introduction & Motivation • Device Fabrication

• Electrical measurements• Resistivity and Hall measurement • Schottky barrier height and width

• Spin transport measurements• Spin injection and detection in p++Si• Doping dependence studies

• Summary35

Page 36: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Ferromagnet

h+

SiO2

p-type Silicon

300 K

Doping Dependence

W

ϕB

36

Page 37: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin-signal increases with reducing Schottky barrier width

Doping Dependence of Spin signal

Spin injection

37

Page 38: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

Direct tunnelingDominating

As expected

P++ type Si

38

Page 39: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

P+ type Si

39

Page 40: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

P+ type Si

40

Page 41: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence

P type Si

41

Page 42: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Bias dependence of Spin signal

42

Page 43: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin injection model

Doping Total Junction

RA

(KΩ.μm2)

-200mV

SiO2 barrier

RA

(KΩ.μm2)

 

p 338 x104 1 x104

p+ 16 x104 1 x104

p++ 2.6 x104 1 x104

• Direct tunneling (when RSC is small)

• Two step tunneling (When RSC is large)

Tran et al., PRL 102, 036601, 2009

Rtun RSC

43

Page 44: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Direct tunneling

Direct tunnelingDominating

As expected

Hole Spin Injection

Hole Spin Extraction

Doping Junction

RA

(KΩ.μm2)

@-200mV

VSi-VFM

Junction

RA

(KΩ.μm2)

@+200mV

VSi-VFM

p++ 2.6 x104 1.068 x104

44

Page 45: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin reversal during extraction

Doping Junction

RA

(KΩ.μm2)

@+200m

V

VSi-VFM

Junction

RA

(KΩ.μm2)

@+800mV

VSi-VFM

p 27.62 x104 0.678 x104

Localized state Paramagnetic in nature45

Page 46: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Spin reversal during injection

Doping Junction

RA

(KΩ.μm2)

@-200mV

VSi-VFM

Junction

RA

(KΩ.μm2)

@-800mV

VSi-VFM

p 338x104 151.9 x104

p+ 16.68 x104 14.23 x104

46

Page 47: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Summary

Large spin accumulation in p-type Si using SiO2 tunnel barrier ( ~ 10%)

Lower limit for Spin life time ( ~ 50 ps), Spin diffusion length > 60 nm

Higher doping in Si higher spin accumulation, due to reduction in Schottky barrier width

Spin reversal phenomena observed when Schottky barrier width is higher

Schottky barrier width determines the spin transport behavior (sequential and/or direct tunneling)

47

Page 48: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Saroj P. Dash

Andre Dankert

Michel Houssa

Guido Groeseneken

Acknowledgement

Thilo Bauch

QDP members

MC2 Staffs

Goran Johansson

All my friends in Chalmers

48

Page 49: Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.

Thank You!!!

49