Rapid Prototyping - GBV

8
Rapid Prototyping: Theory and Practice Edited by Ali Kamrani, Ph.D. Industrial Engineering Department University of Houston Houston, TX, USA and Emad Abouel Nasr Industrial Engineering Department University of Houston Houston, TX, USA Springer

Transcript of Rapid Prototyping - GBV

Rapid Prototyping: Theory and Practice

Edited by

Ali Kamrani, Ph.D. Industrial Engineering Department University of Houston Houston, TX, USA

and

Emad Abouel Nasr Industrial Engineering Department University of Houston Houston, TX, USA

Springer

Contents

List of Figures xxiii ListofTables xxix Contributors xxxi

Chapter 1: Material Properties and Charactenzation 1 Ghassan T. Kridli.

1.1. Structural Properties of Materials 2 1.1.1. Crystalline Structures 2 1.12. Non-crystalline (Amorphous) Structures 5

1.2. Engineering Material Classification 6 1.2.1. Metals 6 1.2.2. Ceramics and Glass 7 1.2.3. Polymers 7 1.2.4. Composite Materials 8

1.3. Mechanical Properties of Materials 9 1.3.1 Uniaxial Tension Test 9

1.3.1.1. Tensile Modules 10 1.3.1.2. Engineering Stress 11 1.3.1.3. Engineering Strain 13 1.3.1.4. Ductility 14 1.3.1.5. True Stress and True Strain 14

1.3.2. Toughness Tests 15 1.3.3. Hardness Tests 16 1.3.4. Flexure Tests 16 1.3.5. Creep Test 17

1.4. Polymers used in Rapid Prototyping 18 1.5. Material Selection 20

XVI

Part I. Direct and Indirect Data Input Formats

Chapter 2: IGES Standard Protocol for Feature Recognition CAD System 25 Emad Abouel Nasr and Ali Kamrani

2.1. History and Overview 26 2.2. Standard data format 27

2.2.1. Data transfer in CAD/CAM Systems 27 2.2.2. Initial Graphics Exchange Specifications (IGES) 29

2.2.2.1. Structure of IGES File 30 2.2.2.1.1. Start Section 31 2.2.2.1.2. Global section 31 2.2.2.1.3. Directory entry section (DE) 31 2.2.2.1.4. Parameter data section (PD) 32 2.2.2.1.5. Terminate section 32

2.3. The Feature extraction Methodology 33 2.3.1. Conversion of CAD data files into Object

Oriented Data structure 34 2.3.1.1. Basic IGES entities 34

2.3.2. The Overall object-oriented data structure of the proposed methodology 37

2.3.2.1. Geometry and topology of B-rep 41 2.3.2.1.1. Classification of Edges 41 2.3.2.1.2. Classification ofloops 42

2.3.2.2. Definition of the Data Fields of the Proposed Data structure 44

2.3.2.3. Algorithms for Extracting Geometrie Entities from CAD File 44

2.3.2.3.1. Algorithm for extracting entries from directory and parameter sections 46

2.3.3.3.2. Algorithm for extracting the basic entities of the designed part 47

2.3.3.4 Extracting Form Features from CAD Files 49 2.3.3.4.1. An Example for identifying the coneave

edge/faces 51 2.3.3.4.2. Algorithm for determining the coneavity

oftheedge 51 2.3.3.4.3. Algorithms for feature extraction

(Production rules) 52 2.4. An Illustrative Example 54 2.5. Summary 60

XV11

Chapter 3: The Digital Imaging and Communications in Medicine (DICOM): Description, Structure and Applications 63 Jinho (Gino) Lim and Rashad Zein

3.1. Introduction 64 3.1.1. History 64 3.1.2. The scope of current DICOM Standards 67

3.2. DICOM structure 67 3.2.1. Entity- Relationship modeis 68 3.2.2. DICOM components 70 3.2.3. DICOM Format 72

3.3. Current applications 75 3.4. Use of DICOM in Radiation Treatment Planning 78 3.5. Potential use of DICOM as a tool in various Industries 83 3.6. Summary 84

Chapter 4: Reverse Engineering: A Review & Evaluation of Non-Contact Based Systems 87 Kevin D. Creehan and Bopaya Bidanda

4.1. Introduction 88 4.2. Non-contact reverse engineering Techniques 89

4.2.1. Reverse Engineering Taxonomy 89 4.2.2. Active Technique - Laser Scanning 91 4.2.3. Passive Technique - Three-Dimensional Photogrammetry 94 4.2.4. Medical Imaging 96

4.2.4.1. Magnetic Resonance Imaging 96 4.2.4.2. Computed Tomography 98 4.2.4.3. Ultrasound Scanning 99 4.2.4.4. Medical Image Data File 99 4.2.4.5. Three-Dimensional Reconstruction 101

4.3. Applications 102 4.4. Relationship to rapid prototyping 104

Chapter 5: Reverse Engineering: A Review & Evaluation of Contact Based Systems 107 Salil Desai and Bopaya Bidanda

5.1. Introduction 108 5.1.1. Need for reverse engineering 108

5.2. Contact Based Reverse Engineering Systems 109 5.3. Coordinate Measuring Machine (CMM) 110

5.3.1. Types of CMM Configurations 111

XV111

5.3.1.1. Bridge Type 111 5.3.1.1.1. Applications 111

5.3.1.2. Gantry type 112 5.3.1.2.1. Applications 113

5.3.1.3. Cantilever Type 113 5.3.1.3.1. Applications 114

5.3.1.4. Horizontal Arm Type 114 5.3.1.4.1. Applications 114

5.3.1.5. Articulated Arm Type 115 5.3.1.5.1. Applications 115

5.3.2. Specifications of Coordinate Measuring machines 116 5.3.2.1. Controltypes 116 5.3.2.2. Mounting options 116

5.4. CMM Measurement process 117 5.4.1. Data Collection Procedure for CMM 118 5.4.2. Digitization from the Surface 119 5.4.3. Preprocessing of The Point Clouds 119

5.4.3.1. Point processing as applied to a Knee Joint 120 5.4.4. Surface fitting 121

5.5. Performance Parameters of CMMs 121 5.5.1. Scanning speed 121 5.5.2. CMM probe accuracy 122 5.5.3. CMM Rigid Body Errors 123 5.5.4. CMM Structural Deformations 124

5.6. Integration of CMM data into other design and manufacturing System Software 124

5.7. Recent advances in CMM technology 125 5.7.1. Reverse Engineering method based on

Haptic Volume Removal 125 5.7.2. Nano CMM 127

Part IL Methods and Techniques

Chapter 6: VIRTUAL ASSEMBLY ANALYSIS ENHANCING RAPID PROTOTYPING IN COLLABORATIVE PRODUCT DEVELOPMENT 133 Kyoung-Yun Kim and Bart O. Nnaji

6.1. History and Overview 134 6.2. Modern Design and product development 136

6.2.1 Rapid product development 136 6.2.2 Internet-enabled collaboration 137 6.2.3 Inevitable impact on assembly and joining Operations 138

XIX

6.3. Collaborative Virtual Prototyping and Simulation 140 6.4. Service-oriented Collaborative Virtual Prototyping and Simulation 140 6.5. Virtual Assembly analysis 143

6.5.1 Service-Oriented VAA architecture and Components 144 6.5.2 VAA tool 145

6.5.2.1. Assembly design formalism and assembly design model generation 146

6.5.3. Assembly analysis model (AsAM) generation 147 6.5.4. Pegasus Service Manager 149 6.5.5. e-Design Brokers 150 6.5.6. Service Providers 150

6.6. Implementations 151 6.7. Contributions 159 6.8. Conclusions 160

Chapter 7: Subtractive Rapid Prototyping: Creating a Completely Automated Process for Rapid Machining 165 Matthew C. Frank

7.1. Background 166 7.2. Related Work 168 7.3. Assumptions 169 7.4. Overview of the CNC-RP Process 170 7.5. Approach to setup Planning 174 7.6. Approach to Tool Selection 178 7.7. Challenges with Rapid Fixturing 180 7.8. General System model . 184 7.9. Example parts using CNC-RP 185 7.10. Economicsof CNC-RP 189 7.11. Limitations and Future Work 192 7.12. Summary 194

Chapter 8: SELECTIVE INfflBITION OF SINTERING 197 Behrokh Khoshnevis and Bahram Asiabanpour

8.1.Introduction 197 8.2. The sis process materials 202 8.3. The sis process machine path generation 204

8.3.1. Step 1: slicing algorithm 204 8.3.2. Step 2: machine path generation 206

8.4. The SIS process optimization 210 8.5. Physical part fabrication 216 8.6. Powder waste Reduction 217 8.7. Vision for future Research 218

XX

Chapter 9: Contour Crafting: A Mega Scale Fabrication Technology 221 Behrokh Khoshnevis and Dooil Hwang

9.1.Introduction 222 9.1.1. CC Process error analysis 223 9.1.2. CC Applications 226

9.1.2.1. Ceramic part Fabrications 226 9.1.2.2. CC machine structure for Ceramics Processing 227 9.1.2.3. Preparing ceramic Paste 227 9.1.2.4. Prefabricated Ceramic Parts 228 9.1.2.5. Fabrication of pre-functional piezoelectric lead

zirconate titanate (PZT) ceramic components and thermo-plastic parts 228

9.1.2.6. Design considerations 230 9.1.2.7. Experiments 232

9.1.3. Construction Automation 234 9.1.3.1. Challenges faced by Construction industry Today 235 9.1.3.2. The current State of automation in construction sites 236 9.1.3.3. Barriers for construction automation 237 9.1.3.4. The needs for an innovative construction process 238 9.1.3.5. CC concrete formwork design 239 9.1.3.6. Physical properties of CC formwork material 241 9.1.3.7. CC nozzle geometry 242 9.1.3.8. Fabrication of vertical concrete formwork 244 9.1.3.9. Placing fresh concrete 245 9.1.3.10. Results 247 9.1.3.11. Extraterrestrial construction 248

9.1.4. Conclusion 249

Part III. Economic Analysis

Chapter 10: Strategie Justification of Rapid Prototyping Systems 253 Rakesh Narain and Joseph Sarkis

lO.l.Introduction 254 10.2. Investment justification factors 256

10.2.1. Strategie and Operational Benefits 256 10.2.2. Cost 257 10.2.3. Systems Characteristics and Factors 258

10.2.3.1. Inter- and Intra-Firm Adaptability 258 10.2.3.2. Platform Neutrality and Interoperability 258 10.2.3.3. Scalability 258 10.2.3.4. Reliability 258

XXI

10.2.3.5. Ease of Use 259 10.2.3.6. Customer Support 259

10.3. Issues and Models for Evaluation and Justification of RP 259 10.3.1. The Analytical Network Process (ANP) Methodology 260

10.3.1.1. Step 1: Setting up the Network Decision Hierarchy 261

10.3.1.1.1. The Planning Horizon 263 10.3.1.2. Step 2: Pairwise Comparisons 263 10.3.1.3. Step 3: Calculate Relative Importance

Weights 264 10.3.1.4. Step 4: Form a Supermatrix 265 10.3.1.5. Step 5: Arrive at a Converged set of Weights 265

10.4. Summary and Discussion 267

Chapter 11: SELECTION OF RAPID MANUFACTURING TECHNOLOGIES UNDER EPISTEMIC UNCERTAINTY 271 Jamal O. Wilson and David Rosen

ll.l.Introduction 272 11.2. Uncertainty and its representations 273 11.3. Selection for rapid manufacturing 277 11.4. Illustrative example: direct production of caster wheels 281 11.5. Illustrative example: direct production of hearing aid Shells 286 11.6. Closure 289

Chapter 12: Economic Analysis of Rapid Prototyping Systems 293 Khaled Gad El Mola, Hamid Parsaei, and Herman Leep

12.1.Introduction 294 12.2. Recent Literature on Justification Techniques 295 12.3. Analytic Hierarchy Process and Expert Choice 299 12.4. Analytical Model to Justify Advanced Manufacturing

Technologies 301 12.4.1. Identify the competitive criteria and their measures 302 12.4.2. Structuring the hierarchy 302 12.4.3. Determine the Overall weight for each alternative and

select the alternative that has the highest weight 303 12.5. An Illustrated Example 305 12.6. Summary 315

Index 319