Random vibration of MDOF systems-1 - · PDF fileForced vibration analysis using modal...

50
1 Stochastic Structural Dynamics Lecture-13 Dr C S Manohar Department of Civil Engineering Professor of Structural Engineering Indian Institute of Science Bangalore 560 012 India [email protected] Random vibration of MDOF systems - 1

Transcript of Random vibration of MDOF systems-1 - · PDF fileForced vibration analysis using modal...

Page 1: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

111

Stochastic Structural Dynamics

Lecture-13

Dr C S ManoharDepartment of Civil Engineering

Professor of Structural EngineeringIndian Institute of ScienceBangalore 560 012 India

[email protected]

Random vibration of MDOF systems -1

Page 2: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

2

Preliminaries

Discrete MDOF systems under deterministic excitations

Nature of equations of motionInput - output relations in time domainInput - output relations in frequency domainForced vibration analysis using modal expansion

Page 3: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

3

A rigid bar supported on two springs

1 1 1 2 2

2

O : Elastic centre O : Centre of gravity

k L k L

Two DOF-s1 Translation1 Rotation

1 2 1 2l l L L L

Page 4: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

4

1 1 2 2

2 2 2 1 1 1

1 2 1 1 2 22 2

1 1 2 2 1 1 2 2

0

0

00

0

my k y l k y l

I k y l l k y l l

k k k l k lm y yk l k l k l k lI

is diagonal and is non-diagonalM KStatic coupling

Page 5: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

5

1 22 2

1 1 2 2

00

0k km me z z

k L k Lme m

is non-diagonal and is diagonalM KInertial coupling

Page 6: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

6

1 1 2 22

1 2 2

0m ml k k k Lx x

ml m k L k L

is non-diagonal and is non-diagonalM KStatic and inertial coupling

Page 7: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

7

Remarks

•Equations of motion for MDOF systems are generally coupled

•Coupling between co-ordinates is manifest in the form of structural matrices being nondiagonal

•Coupling is not an intrinsic property of a vibrating system. It is dependent upon the choice of the coordinate system. This choice itself is arbitrary.

•Equations of motion are not unique. They depend upon the choice of coordinate system.

Page 8: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

8

Remarks (continued)

•The best choice of coordinate system is the one in which the coupling is absent. That is, the structural matrices are all diagonal.

•These coordinates are called the natural coordinates for the system. Determination of these coordinates for a given system constitutes a major theme in structural dynamics. Theory of ODEs and linear algebra help us.

Page 9: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

9

u t u t

1m

2m

3m

1k

2k

3k

1z t

2z t

3z t

A building frame under support motion

Page 10: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

10

1 1 1 1 2 1 2 1 1 2 1 2

2 2 2 2 1 3 2 3 2 2 1 3 2 3

3 3 3 3 2 3 3 2

0

0

0

m z c z u c z z k z u k z z

m z c z z c z z k z z k z z

m z c z z k z z

Page 11: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

11

1 1

2 2

3 3

1 1 1 1 2 1 2 1 1 2 1 2 1

2 2 2 2 1 3 2 3 2 2 1 3 2 3 2

3 3 3 3 2 3 3 2 3

x z ux z ux z u

m x c x c x x k x k x x m u

m x c x x c x x k x x k x x m u

m x c x x k x x m u

1 1 1 2 2 1 1 2 2 1

2 2 2 2 3 3 2 2 2 3 3 2

3 3 3 3 3 3 3 3

0 0 0 00 00 0 0 0

m x c c c x k k k xm x c c c c x k k k k x

m x c c x k k x

1

2

3

0 0 1 0 0 1

0 0 1

mm u

m

Page 12: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

12

gx t

gy t

A frame with asymmetric plan under multi-componentsupport motions

Page 13: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

13

x t

y t

t

O

O

Page 14: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

14

Page 15: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

15

Page 16: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

16

1 11 4 2 3

1 2 3 4

1 14 3 1 2

1 2 3 4

1 2 3

4

( ) ( )2 2 2

( ) ( )2 2 2

( / 2)( / 2),

s s s s sS

s s s

s s s s sS

s s s

a a

s s S s s s

b b b b bm m m m mx

tb d m m m m

d d d d dm m m m my

tb d m m m mm m m A hm A h m tb d

Page 17: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

17

34332112

;12

hIE

kh

IEkkk ssaa

22

22

22

22

21

21

22

21

21

2222

22223

2)(

2

2212

223

sssalaassaa

sssssss

sss

ssaassscolumnsslab

rhArhAyx

hAyxyxyx

hA

dy

bxdtbdb

dtbI

hAhAdtbmmm

Page 18: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

18

0)()()()(

)()()()(

)()()()(

)()()()(

0)()()()(

)()()()(

0)()()()(

)()()()(

141411111

252528282

262623232

171712121

26262323

17171212

25252828

14141111

gggg

gggg

gggg

gggg

gggg

gggg

gggg

gggg

xyxcxyxkxyxcxyxky

xyxcxyxkxyxcxyxky

yxycyxykyxycyxykx

yxycyxykyxycyxykxI

yxycyxykyxycyxyk

yxycyxykyxycyxykym

xyxcxyxkxyxcxyxk

xyxcxyxkxyxcxyxkxm

)(tfKuuCuM

x tu t y t

t

Page 19: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

19

0 00 ; 0, and , in general, are non-diagonal

Equations are coupledSuppose we introduce a new set of dependentvariables ( ) using the transformation

( )where is a tra

MX CX KX F t

X X X XM C K

Z tX t TZ t

T n n

nsformaiton matrix, to beselected.

How to uncouple equations of motion?

Page 20: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

20

0 00 ; 0

( )

( )

( )

( )

, ,& structural matrices in the new coordinate system.( ) force vector in the new coord

t t t t

MX CX KX F t

X X X X

X t TZ t

MTZ t CTZ t KTZ t F t

T MTZ t T CTZ t T KTZ t T F t

MZ t CZ t KZ t F t

M C KF t

inate system

Can we select such that , ,& are all ?If yes, equation for ( ) would then represent a set of uncoupled equations and hence can be solved easily.

T M C KZ t

QuestionDIAGONAL

Page 21: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

21

How to select to achieve this?TConsider the seemingly unrelated problem ofundamped free vibration analysis

0Seek a special solution to this set of equations in whichall points on the sturcutre oscillate harmonically at thesa

MX KX

2

2

me frequency.That is

exp ; 1,2, ,

or, exp where is a 1 vector.

exp & exp

exp 0

k kx t r i t k n

X t R i t R n

X t i R i t X t R i t

MR KR i t

Page 22: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

22

2

2

2

exp 0

0

This is a algebraic eigenvalue problem.

; is positive semi-definite is positive definite

Eigensolutions would be real valuedand eigenvalues w

t t

MR KR i t

RM KR

KR MR

K K M MKM

Note

ould be non-negative.

Page 23: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

23

2

2

12

12 2

12

12

0

Let exist.

0

0 0

If exists, =0 is the solution.

Condition for existence of nontrivial solution is that

should not exist

KR MR

K M R

K M

K M K M R

IR R

K M R

K M

2

2 2 21 2

1 2

.

0

This is called the characteristic equation.This leads to the characteristic values

and associated eigenvectors, , , .

n

n

K M

R R R

Page 24: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

24

2

2

2

2

Consider - th and -th eigenpairs. (1)

(2)

(1)

(3)

(2)

r r r

s s sts

t ts r r s r

tr

tr s s

r sKR MR

KR MR

R

R KR R MR

R

R KR

Orthogonality property of eigenvectors

2

2

2 2

(4)Transpose both sides of equation (4)

Since & , we get (5)

Substract (3) and (5)

0

tr s

t t t ts r s s r

t t

t ts r s s r

tr s s r

R MR

R K R R M R

K K M MR KR R MR

R MR

0

0

ts rts r

R MR r s

R KR r s

2

Normalization1t

s sts s s

R MR

R KR

Page 25: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

25

21 ( )

2 2 21 2

Introduce

Diag

n n n

n

R R R

t

t

M IK

Orthogonality relations

Select T

Page 26: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

26

0 0

2

0 ; 0

( )

( )

( )

( )

; 1,2, ,

How about initial conditions?(0) 0

(0) 0 0

0 (0) & 0 (0)

t t t

r r r r

t t

t t

MX KX F t

X X X X

X t Z t

M Z t K Z t F t

M Z t K Z t F t

IZ t Z t F t

z z f t r n

X Z

MX M Z Z

Z MX Z MX

ConsiderUndampedForcedVibrationAnalysis

Page 27: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

27

0

1

1 0

0 10 cos sin sin

0 10 cos sin sin

tr

r r r r r rr r

n

k kr rr

tnr

kr r r r r rr r r

zz t z t t t f d

X t Z t

x t z t

zz t t t f d

Page 28: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

28

0 00 ; 0

( )

( )

( )

( )

If is not a diagonal matrix, theequations

t t t t

t

t

MX CX KX F t

X X X X

X t Z t

M Z t C Z t K Z t F t

M Z t C Z t K Z t F t

IZ t C Z t Z t F t

C

How about damped forced response analysis?

of motion would still remain coupled.

Page 29: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

29

If the damping matrix is such that is a diagonal matrix, then equations would

get uncoupled.Such matrices are called classical damping matrices.

Rayleigh's proport

t

CC

C

Classical damping models

Exampleional damping matrix

t t t

C M K

C M KI

Page 30: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

30

2

2

[ ]

[ ] [ ]

2 2

T T

T T

i

n n

nn

n

C M KC M KI K

I Diag

c

Page 31: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

31

100

101

102

103

10-4

10-3

10-2

10-1

100

frequency rad/s

eta

mass and stiffness proportional

stiffness proportionalmass proportional

Page 32: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

32

2

0

( )

0 (0) & 0 (0)

2 ; 1,2, ,

with 0 & 0 specified.

exp cos sin

1 exp

t

t t

r r r r r r r

r r

r r r r dr r dr

t

r r rdr

IZ t C Z t Z t F t

Z MX Z MX

z z z f t r n

z z

z t t a t b t

t f d

Page 33: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

33

0

1

1 0

1exp cos sin exp

1exp cos sin exp

1,2, ,

t

r r r r dr r dr r r rdr

n

k kr rr

tn

kr r r r dr r dr r r rr dr

z t t a t b t t f d

X t Z t

x t z t

t a t b t t f d

k n

Page 34: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

34

u t u t

1m

2m

3m

1k

2k

3k

1z t

2z t

3z t

Example 1

Page 35: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

35

Page 36: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

36

0.024 0.009 0.007 t

Page 37: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

37

1 2 3

Page 38: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

38

Page 39: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

39

gx t gy t

Example 2

Page 40: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

40

Physical properties of the frame members

Page 41: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

41 0.02 0.02 0.01 t

Page 42: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

42

1 2 3

Mode shapes

Page 43: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

43

Page 44: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

44

Summary

• Normal modes of vibration of a structure are special undamped free vibration solutions such that all points of the structure oscillate harmonically at the same frequency with the ratio of displacements at any two points being independent of time.

• Thus, for a structure vibrating in one of its modes, the phase difference between oscillations at any two points is either 0 or π.

• The frequencies at which normal mode oscillations are possible are called the natural frequencies.

Page 45: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

45

Summary (Continued)

• Modal matrix is orthogonal to mass and stiffness matrices. This helps is diagonalising the mass and stiffness matrices.

• Undamped normal modes, in conjunction with proportional damping models, simplify vibration analysis procedures considerably.

Page 46: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

46

2

Recall

exp

1 exp2

Consider response as .

exp exp

exp

Mx Cx Kx f t

X x i d

x t X i t d

t

M X i t d C i X i t d

K X i t d

Frequency domain input - output relations

expF i t d

Page 47: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

47

2

12

12

exp 0M i C K X F i t d

X M i C K F

X H F

H M i C K

( 1) ( ) ( 1)N N N N

X H F

( )

Matrix of complex frequency response functionsN N

H

Page 48: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

48

Frame in Example 1 under harmonic base motion

1x t

Page 49: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

49

Frame in Example 1 under harmonic base motion

2x t

Page 50: Random vibration of MDOF systems-1 -  · PDF fileForced vibration analysis using modal expansion. 3 A rigid bar supported on two springs 11122 ... KKM M RKR RMR RMR

50

Frame in Example 1 under harmonic base motion

3x t