Random Process Simulation For Stochastic Fatigue Analysis · PDF file theory to random...
date post
23-Jun-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of Random Process Simulation For Stochastic Fatigue Analysis · PDF file theory to random...
/ NASA Technical Memoi-an_lum 100464
Random Process Simulation For
Stochastic Fatigue Analysis
|NAS&-TM-100_64) RANDOM PROCESS SIMULATION
FOE STOCHASTIC FATIGUE ANALYSIS Ph°D° :Thesis
-Rice Univ., Houston, Tex° , [NASA) 150 p CSCL 12A
G3/65
N88-22654
Unclas
0131795
Curtis E. Larsen
March 1988
Nt A
NASA Technical Memorandum 100464
Random Process Simulation For
Stochastic Fatigue Analysis
Curtis E. Larsen
Lyndon B. Johnson Space Center
Houston, Texas
TABLE OF CONTENTS
Chapter
I
Page
INTRODUCTION ....................... i
2 BACKGROUND ........................ 3
2.1 Stochastic Processes ................. 3
2.2 Concepts in Fatigue ................. 10 2.3 Gaussian Process Simulation ............. 15
2.4 Autoregressive (AR) Processes and Simulation .... 17
3 GAUSSIAN SIMULATION RESULTS ............... 22
3.1PSD Component Contributions to Damage ........ 25 3.2 High Frequency Truncation Effect .......... 32 3.3 Extrema Correlations ................ 34
4 AUTOREGRESSIVE SIMULATION: UNIMODAL PSD'S ........ 57
4.1AR(1) Processes ................... 57
4.2 AR(1) Application to Extrema Processes ....... 58
4.3 Simulation Results ................. 63
5 AUTOREGRESSIVE SIMULATION FOR BIMODAL PSD'S ....... 69
5.1Bimodal PSD Process Modeling Difficulties ...... 69 5.2 Adaptation of the AR(1) Model ............ 70
5.3 Simulation Results ................. 75
CONCLUSION ....................... 93
APPENDIX A PSD CASES STUDIED USING GAUSSIAN TECHNIQUE ....... 96
APPENDIX B A NOTE ON THE CORRECTION OF RANGE MOMENTS FOR
SIMULATED STRESS TIME HISTORIES ............. 102
APPENDIX C AR(1) TECHNIQUE SIMULATION CASES ............ 104
APPENDIX D AR(1) SUPERPOSITION TECHNIQUE SIMULATION CASES ..... 105
APPENDIX E RELATING EXTREMA CORRELATIONS TO THE AUTOCORRELATION
FUNCTION ........................ 107
E.I The Step-Type Model ................. 107 E.2 A Normal Approximation for the Distribution of N*..123
E.3 A Phase-Angle Approximation ............. 125
E.4 A Second Simplification to the Step-Type
Approximation .................... 132
REFERENCES .............................. 136
PRECEDING PAGE BLANK NOT FILMED
£J.J.
4-I
E-I
E-2
E-3
E-4
E-5
LIST OF TABLES
Page
Effect of Mapping Procedure on Correlation
Pl .......................... 65
Comparison of RXX(T ) Extrema Values to Values
Predicted by Step-Type Model ............. 115
Comparison of VN* to VT for 5 Unimodal Psd's ..... 129
VN Compared to VT for E[N*] = 1,2,3,4 ........ 129
Comparison of VN* = (i - B)I/2 to VN* using Equation E-46 .................. 134
Comparison of B Values ................ 135
iv
LIST OF FIGURES
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
Typical S-N Curve ...................... 11
Rainflow Cycle-ldentification ................ 14
PSD Types Studied ...................... 23
Normalized Damage Rate vs Normalized Area Ratio: m = 3.... 26
Normalized Damage Rate vs Normalized Area Ratio: m=5. . .27
Normalized Damage Rate vs Normalized Area Ratio: m =7 .... 28
Vanmarcke's Parameter vs Area and Frequency Ratios:
Bimodal Region ....................... 31
Normalized Damage Rate vs Normalized Cut-Off Frequency . . .33
Normalized Damage Rate vs Normalized Vanmarcke's Parameter .......................... 35
Correlation Pl vs Vanmarcke's Parameter: Scattergraph ........................ 37
Correlation Pl vs Vanmarcke's Parameter: Frequency Ratlo Effect ................... 38
Correlation Pl vs Vanmarcke's Parameter: Area Ratio Effect, r = 15 .................. 39
Correlation Pl vs Vanmarcke's Parameter: Linear RegresSion ...................... 41
Typical Extrema Correlations: Unimodal PSD ......... 42
Extrema Correlations: r=7 ................. 43
a) b = 0.001
b) b : 0.01
Extrema Correlations: r =7 ................. 44
a) b = 0.1
b) b : 1.0
Extrema Correlations: r =7 ................. 45
a) b = 5.2
b) b : 115
v
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3
5.4
Page
Typical Time History: Bimodal PSD, r =3, b=0.0016 ..... 47
Typical Time History: Bimodal PSD, r:3, b =0.63 ...... 48
Typical Time History: Bimodal PSD, r:3, b:70 ....... 49
Autocorrelation Function: r =7, b =0.001 ............ 50
Autocorrelation Function: r =7, b =0.01 .......... 51
Autocorrelation Function: r =7, b =0.I ........... 52
Autocorrelation Function: r =7, b:loO ........... 53
Autocorrelation Function: r =7, b:5.2 ........... 54
Autocorrelation Function: r =7, b:115 ........... 55
Mapping from Normal to S.O. Rice Distribution ....... 60
Autoregressive Simulation Technique ............ 61
AR(1) Simulation Algorithm ................. 62
Range Moment Comparison, AR(1) and Gaussian Techniques: m = 3 ............................ 66
Range Moment Comparison, AR(1) and Gaussian Techniques: m = 5............................ 67
Range Moment Comparison, AR(1) and Gaussian Techniques: m = 7 ............................ 68
Superposition of Time History Components .......... 72
a) r=3 b) r=2 c) r=6
General Component Superposition .............. 74
AR(1) Superposition Algorithm ............... 76
Range Moment Comparison, AR(1) Superposition and Gaussian Techniques: m =3 ....................... 78
a) r = 1.5 ......................... 78 b) r = 2.0 ......................... 78 c) r = 2.5 ......................... 79 d) r : 3.0 ......................... 79 e) r = 3.5 ......................... 80
vi
5.4
5.5
5.6
E-1
E-2
E-3
E-4
E-5
E-6
E-7
E-8
E-9
Page Continued
f) r = 4.0 .......................... 80
g) r = 4.5 .......................... 81
h) r = 5.0 .......................... 81
i) r=7.5 .......................... 82
j) r : 10.0 ......................... 82
Range Moment Comparison, AR(1) Superposition and Gaussian
Techniques: m =5 ...................... 83
a) r-- 1.5 .......................... 83
b) r = 2.0 .......................... 83
c) r = 2.5 .......................... 84
d) r = 3.0 .......................... 84
e) r = 3.5 .......................... 85
f) r = 4.0 .......................... 85
g) r = 4.5 .......................... 86 h) r = 5.0 .......................... 86
i) r=7.5 .......................... 87
j) r = 10.0 ......................... 87
Range Moment Comparison, AR(1) Superposition and Gaussian
Techniques: m = 7 ...................... 88
a) r = 1.5 .......................... 88
b) r = 2.0 ............ .............. 88
c) r = 2.5 .......................... 89
d) r = 3.0 .......................... 89
e) r-- 3.5 .......................... 90
f) r = 4.0 .......................... 90
g) r = 4.5 .......................... 91 h) r = 5.0 .......................... 91
i) r=7.5 .......................... 92
j) r = 10.0 ......................... 92
Comparlson of RXX(T) to Approximation ........... 116
Comparlson of RXX(T) to Approximation ........... 117
Comparlson of RXX(T) to Approximation ........... 118
Comparlson of RXX(T) to Approximation ........... 119
Comparlson of RXX(T) to Approximation ........... 120
Comparlson of Rxx(T) to Approximation ........... 121
Comparlson of RXX(T) to Approximation ........... 122
Correction Factor, K vs. Vanmarcke's Parameter ...... 130
2 a0 vs. Vanmarcke's Parameter ............... 131
vii
AR
ARMA
at
e2
b
C
C 0
d/d o
d. J
d/t
D(t)
E(.)
E[Rm]
E[Sm]
erf(x)
erfc(x)
fx (.), px(.)
FX(-)
G
Gx(m)
r(x)
rxx(_)
INT(r)
LIST OF SYMBOLS
Autoregressive
Autoregressive Moving Average
Random variate in ARMA model
Bandwidth parameter, irregularly factor for
processes
2-block psd area ratio
Material constant
Estimate for o_
Normalized damage rate
Fractional damage due to nj cycles
Expected damage rate
Total damage at time t
Mathematical expectation
Rainflow stress range moment
Theoretical stress range moment
Error function
Complementary error function
Probability density function for X
Cumulative distribution function for X
Constant magnitude of psd
1-sided psd, defined on (0,_)
Gamma function
Autocovariance function, stationary processes