Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random...

44
Motivation Problem Formulation 1 -Minimization Classification Experiments Future Directions Random Feature Selection for Robust Face Recognition Allen Y. Yang <[email protected]> Department of EECS, UC Berkeley with Shankar Sastry, Yi Ma, & John Wright HSN MIT Review, Sep 24, 2007 Allen Y. Yang < [email protected]> Random Feature Selection for Robust Face Recognition

Transcript of Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random...

Page 1: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Random Feature Selection for Robust Face Recognition

Allen Y. Yang <[email protected]>

Department of EECS, UC Berkeleywith Shankar Sastry, Yi Ma, & John Wright

HSN MIT Review, Sep 24, 2007

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 2: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Next Generation Sensor Networks

1 Transition from dedicated sensor networks to general-purpose sensor networks.

2 Similar revolutions in IT industry:Computer:

Services:

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 3: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Next Generation Sensor Networks

1 Transition from dedicated sensor networks to general-purpose sensor networks.

2 Similar revolutions in IT industry:Computer:

Services:

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 4: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Advances in Sensor Networks

1 Proliferation

(a) Ubiquitous (b) Mobile (c) Personal

2 More powerful processing units

Intel XScale 600MHz CPU

Memory: 16 MB ROM, 64 MB RAM

Resolution: 1280× 1024 up to 15 fps

Integrated microphone, infrared, motionsensors.

IEEE 802.15.4 protocal, 250 kbps.

Figure: Next generation Berkeleywireless camera mote.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 5: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Advances in Sensor Networks

1 Proliferation

(a) Ubiquitous (b) Mobile (c) Personal

2 More powerful processing units

Intel XScale 600MHz CPU

Memory: 16 MB ROM, 64 MB RAM

Resolution: 1280× 1024 up to 15 fps

Integrated microphone, infrared, motionsensors.

IEEE 802.15.4 protocal, 250 kbps.

Figure: Next generation Berkeleywireless camera mote.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 6: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 7: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 8: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

On-Demand Surveillance

1 Distributed recognition system:Multi-tasking.Adaptive to environments.

2 Adaptive feature selection is critical for on-demand surveillance.Thermometer, infrared: simple thresholding.

Face IDs:Action: spatial-temporal features in video sequences.

3 Sensor-server network

On-demand surveillance and band-limited channels present a conundrum.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 9: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Contributions

Qualification for feature selection

Data independent.

Application independent.

Fast to generate and compute.

Accurate in preserving true data structures.

Contributions

1 New framework for object/face recognition via compressed sensing.

2 Classification is encoded in a (global) sparse representation.

3 Random projection as universal dimensionality redunction.

4 Efficient solution via `1-minimization outperforms classical algorithms.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 10: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Contributions

Qualification for feature selection

Data independent.

Application independent.

Fast to generate and compute.

Accurate in preserving true data structures.

Contributions

1 New framework for object/face recognition via compressed sensing.

2 Classification is encoded in a (global) sparse representation.

3 Random projection as universal dimensionality redunction.

4 Efficient solution via `1-minimization outperforms classical algorithms.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 11: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 12: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 13: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Representation using Linear Models

1 Representation of samples in vector form y ∈ RD .

Figure: Stacking of 2-D image.

2 Recognition (supervised learning)Training: For K classes, collect samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK}.

Test: Present a new y, solve for label(y) ∈ [1, 2, · · · ,K ].

3 Subspace model for face recognition: [Belhumeur et al. 1997, Basri & Jocobs 2003]

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1vi,ni

,= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 14: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 15: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 16: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Recognition via Sparse Representation

1 The label of y is unknown:

y = [A1,A2, · · · ,AK ]

α1α2

...αK

,= Ax0.

Over-determined system: A ∈ RD×n, where D � n = n1 + · · ·+ nK .

2 x0 encodes membership of y: If y belongs to Subject 1,

x0 =

α100

...0

∈ Rn.

That is, y should be only represented using the same subject!

If we recover sparse x0, recognition is solved! Not so fast!!

Directly solving A is expensive: D > 7× 104 for a 320× 240 grayscale image.

x0 is sparse: 1K

terms non-zero.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 17: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 18: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 19: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 20: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Dimensionality Redunction

1 Dimensionality redunctionConstruct linear projection R ∈ Rd×D , d is the feature dimension.

y.

= Ry = RAx0 = Ax0.

A ∈ Rd×n, but x0 is unchanged.

2 Holistic features

Eigenfaces [Turk & Pentland 1991]

Fisherfaces [Belhumeur et al.1997]

Laplacianfaces [He et al.2005]

3 Partial features

4 Unconventional features

Downsampled faces

Randomfaces

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 21: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 22: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 23: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomfaces

Definition

Consider a projection matrix R ∈ Rd×D whose entries are independent Gaussian samples, andeach row is normalized to unit length. These row vectors are called d Randomfaces in RD .

Properties of Randomfaces (Universal Projection?)

1 Domain independent!

2 Data independent!

3 Fast to generate and compute!

High accuracy?

Not necessary: May underperform.

Condition 1: Signal is sparse.

Condition 2: `1-Minimization.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 24: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 25: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 26: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`0-Minimization

1 Underdetermined system y = Ax0 ∈ Rd : A ∈ Rd×n.Ask for the sparsest solution.

2 `0-Minimizationx0 = arg min

x‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

3 `0-Ball

Optimization over `0-ball iscombinatorial.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 27: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 28: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 29: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1/`0 Equivalence

1 If x0 is sparse enough, program (P0) is equivalent to

(P1) min ‖x‖1 s.t. y = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.2 `1-Ball

`1-Minimization is linear (matchingpursuit, basis pursuit)

Solution equal to `0-minimization.

3 Equivalence conditionSpark condition (sufficient): [Donoho 2002]Equivalence breakdown point (asymptotic): [Donoho 2004].k-neighborlyness (iff): [Donoho preprint].

Given y = Ax0, there exists ρ(A), if ‖x0‖0 < ρ,

(1) `1-solution is unique, (2) x1 = x0.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 30: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 31: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 32: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

`1-Minimization for Noisy Case

1 Introduce noise in the data

y = Ax0 + z ∈ Rd , where ‖z‖2 < ε.

2 `1-Norm near solution(P′1) min ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε.

3 `1-Ball

`1-Minimization is quadratic

Stability: bounded data noise givesbounded estimation error ‖x1 − x0‖2

With large probability, there exist ρ(A) and ζ > 0, if ‖x0‖0 < ρ,

‖x1 − x0‖2 ≤ ζε.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 33: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 34: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 35: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Classification via Sparse Representation

1 Given an estimated ε, solve (P′1)⇒ x1.

2 Project x1 onto face subspaces:

δ1(x1) =

α10

...0

, δ2(x1) =

0α2

...0

, · · · , δK (x1) =

00

...αK

. (1)

3 Define residual ri = ‖y − Aδi (x1)‖2 for Subject i :

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 36: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Outlier Rejection

`1-Coefficients for invalid images

Outlier Rejection

When `1-solution is not sparse or concentrated to one subspace, the test sample is invalid.

Sparsity Concentration Index: SCI(x).

=K ·maxi ‖δi (x)‖1/‖x‖1 − 1

K − 1∈ [0, 1].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 37: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Outlier Rejection

`1-Coefficients for invalid images

Outlier Rejection

When `1-solution is not sparse or concentrated to one subspace, the test sample is invalid.

Sparsity Concentration Index: SCI(x).

=K ·maxi ‖δi (x)‖1/‖x‖1 − 1

K − 1∈ [0, 1].

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 38: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomface Ensembles

1 Blessing of dimensionality

When D is large for RD , with overwhelmingprobability, the row vectors in R ∈ Rd×D areindependent.

Subspace structures and sample membership arepreserved.

2 Randomface ensemble (For a particular random matrix R, the choice could be bad):Generate multiple projections: R1,R2, · · · ,Rl .For each Rj , solve

min ‖x‖1 s.t. ‖Rj y − RjAx‖2 ≤ εCompute an averaged residual function

ri = mean{r1i , r

2i , · · · , r

li }.

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 39: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Randomface Ensembles

1 Blessing of dimensionality

When D is large for RD , with overwhelmingprobability, the row vectors in R ∈ Rd×D areindependent.

Subspace structures and sample membership arepreserved.

2 Randomface ensemble (For a particular random matrix R, the choice could be bad):Generate multiple projections: R1,R2, · · · ,Rl .For each Rj , solve

min ‖x‖1 s.t. ‖Rj y − RjAx‖2 ≤ εCompute an averaged residual function

ri = mean{r1i , r

2i , · · · , r

li }.

id(y) = arg mini=1,··· ,K{ri}

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 40: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Extended Yale B 38 Subjects (Illumination Variance)

Table: Nearest Neighbor (Left) and Nearest Subspace (Right).

Dimension 30 56 120 504

Eigen [%] 74.3 81.4 85.5 88.4Laplacian [%] 77.1 83.5 87.2 90.7Random [%] 70.3 75.6 78.8 79Down [%] 51.7 62.6 71.6 78Fisher [%] 87.6 N/A N/A N/A

Dimension 30 56 120 504

Eigen [%] 89.9 91.1 92.5 93.2Laplacian [%] 89 90.4 91.9 93.4Random [%] 87.3 91.5 93.9 94.1Down [%] 80.8 88.2 91.1 93.4Fisher [%] 81.9 N/A N/A N/A

Table: `1-Minimization

Dimension 30 56 120 504

Eigen [%] 86.5 91.6 94 96.8Laplacian [%] 87.5 91.7 94 96.5Random [%] 82.6 91.5 95.5 98.1Down [%] 74.6 86.2 92.1 97.1Fisher [%] 86.9 N/A N/A N/A

Ensemble [%] 90.7 94.1 96.4 98.3

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 41: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

AR Database 100 Subjects (Illumination and Expression Variance)

Table: Nearest Neighbor (Left) and Nearest Subspace (Right).

Dimension 30 54 130 540

Eigen [%] 68.1 74.8 79.3 80.5Laplacian [%] 73.1 77.1 83.8 89.7Random [%] 56.7 63.7 71.4 75Down [%] 51.7 60.9 69.2 73.7Fisher [%] 83.4 86.8 N/A N/A

Dimension 30 54 130 540

Eigen [%] 64.1 77.1 82 85.1Laplacian [%] 66 77.5 84.3 90.3Random [%] 59.2 68.2 80 83.3Down [%] 56.2 67.7 77 82.1Fisher [%] 80.3 85.8 N/A N/A

Table: `1-Minimization.

Dimension 30 54 130 540

Eigen [%] 71.1 80 85.7 92Laplacian [%] 73.7 84.7 91 94.3Random [%] 57.8 75.5 87.6 94.7Down [%] 46.8 67 84.6 93.9Fisher [%] 87 92.3 N/A N/A

Ensemble [%] 78.5 85.8 91.2 95

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 42: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Partial Features

Features Nose Right Eye Mouth & ChinDimension 4,270 5,040 12,936

`1-Minimization [%] 87.3 93.7 98.3NS [%] 83.7 78.6 94.4NN [%] 49.2 68.8 72.7

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 43: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

ROC Curves on AR database

Figure: ROC curve on Eigenfaces and AR database.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition

Page 44: Random Feature Selection for Robust Face Recognitionyang/presentation/Yang-HSN.pdf · Random Feature Selection for Robust Face Recognition Allen Y. Yang

Motivation Problem Formulation `1-Minimization Classification Experiments Future Directions

Future Directions

1 Facial occlusion.

2 Pose variations.

3 Action segmentation and recognition.

References

1 Face recognition

http://www.eecs.berkeley.edu/~yang/software/face_recognition/

Feature selection in face recognition: A sparse representation perspective. UC Berkeley Tech ReportUCB/EECS-2007-99.

2 Compressed sensing

Candes, Compressive sampling, 2006.Donoho, For most large underdetermined systems of equations, the minimal `1-norm near-solution approximates thesparsest near-solution, 2004.Donoho, Neighborly polytopes and sparse solution of underdetermined linear equations, 2004.

3 Random projections of smooth manifolds

Baraniuk & Wakin, Random projection of smooth manifolds, 2006.Baraniuk et al., The Johnson-Lindenstrauss lemma meets compressed sensing, 2007.

Allen Y. Yang <[email protected]> Random Feature Selection for Robust Face Recognition