Ralf Bruyninckx Case 1 Fire Water Network

16
Cdt 3/25/2011 Title goes here 1 Fire Safety Engineering Module 6 Case Study 1 : Fire Water Network EVALUATION OF FIREWATER SUPPLY AND DISTRIBUTION SYSTEM, PETROCHEMICAL PLANT

description

mmnn

Transcript of Ralf Bruyninckx Case 1 Fire Water Network

Page 1: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 1

Fire Safety Engineering

Module 6Case Study 1 : Fire Water Network

EVALUATION OF FIREWATER SUPPLY AND DISTRIBUTION SYSTEM, PETROCHEMICAL PLANT

Page 2: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 2

Objective

Assess the impact of aAssess the impact of a new LLDPE plant

on the firewater network and firewater pumping capacity

of the existing site

Scope of Work New LLDPE plantNew storage sphere of iso-pentaneStorage area of containers of iso-pentaneFire safety at the jetty

Page 3: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 3

Methodology

• Hazard ID • Definition of credible fire scenarios• Heat radiation calc.• Theoretical required firewater demand• Translate theoretical firewater demand into

application rates of fire fighting systemsapplication rates of fire fighting systems • Hydraulic analysis• Recommendations

Methodology - fire scenarios

Pool fires Gas jet fires

Vapor cloud explosion

Page 4: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 4

Methodology – Heat rad. calc.

Methodology – Exposure prot.

• basic fire fighting strategy t t i t d t t→ protect equipment and structures

→ prevent domino effect

• maximum heat flux that equipment can receive without damage

→ threshold damage limit: 12.5 kW/m²

Page 5: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 5

Methodology – Theo. Firew. D.

68

101214161820

w [l

/(min

m²)]

NFPA prescription

NFPA (from explanatory material)

IP - Theoretical 75% loss

DEP - not too windy

DEP - very windy

024

0 20 40 60 80 100 120 140 160 180 200q [kW/m²]

Methodology – Theo. Firew. D.

4

6

8

10

12

w [l

/(min

m²)] + 114 m³/h if flame

impingement of jet fire

0

2

0 10 20 30 40 50 60 70 80 90 100 110 120q [kW/m²]

Page 6: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 6

Methodology – Pract. Firew. D.Translation of Theo Firew Dinto Pract. Fire Fight. Syst.

Methodology - Hydraulic

Piping network

RAW FIREWATER RAW FIREWATER PUMPSPUMPS

SEA FIREWATER SEA FIREWATER PUMPSPUMPS

Page 7: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 7

Methodology – Pump Curve •

Methodology - Hydraulic analysis

Principle of assessment of the firewater network and pumping capacity

1600

200

400

600

800

1000

1200

1400

Pres

sure

at N

ode

[kPa

]

Node pressure in function of node demand

Required pressure 950 kPa

950 kPa

C=100

Main assumptions:

0

200

0 200 400 600 800 1000 1200 1400

Flow demand [m³/h]

1. C = 100

2. pumps curves

3. required pressure = 9.5 bar

Page 8: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 8

Methodology - Hydraulic

Scenarios:• Normal operation• Normal operation,

raw firewater fire pumps and sea firewater fire pumps available

• Raw firewater not available, only sea firewater fire pumps available

• Shut down of the sea firewater intake,only raw firewater fire pumps available

Bl k d• Black day, no raw firewater fire pumps no sea firewater fire pumps available,only a mobile fire pump.

Methodology - Summary

• What is governing scenario for firewater d d?demand?

• What is the quantity of firewater strictly needed?• How can it practically be applied on site?• What quantity of firewater will really

be applied?• Can the firewater piping network & pumping

capacity cope with the demand?

Page 9: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 9

scope of work • New LLDPE plant• New storage sphere of iso-pentane• Storage area of containers of iso-pentane• Fire safety at the jetty for an increased handling of ethylene by ships.

11LDPE2 LDPE2 ––New LLDPENew LLDPE

ir Dirk Smeets15 mei 2009

Pressure Temperature Leak Frequency Fire typeBarg °C (mm) (Per year)

LLDPE-1Ethylene Pipe supply Gaseous

800 10 (to

LDPE2) 2.11E-3Jet

LLDPE-2Ethylene Pipe supply Gaseous

800 35 (to

LDPE2) 5.34E-4Jet

Ethylene Pipe supply Gaseous 0 35 (to Jet

Scenario n°

Product Location State

LLDPE – LDPE2 – Scenario selection

LLDPE-2Ethylene Pipe supply Gaseous

800 35 (to

LLDPE) 5.34E-4Jet

LLDPE-3Ethylene C2109 Gaseous

33100 35 (to

LDPE2) 5.2E-5Jet

LLDPE-5Ethylene C2109 Gaseous

33100 100 (to

LDPE2) 9.7E-6Jet

LLDPE-6 Butene C1008 Gaseous 4.6 48.4 100 9.7E-6 Jet

LLDPE-7 Butene C1007 Liquid 4.8 50.2 35 5.2E-5 Jet

LLDPE-8 Butene C1007 Liquid 4.8 50.2 100 9.7E-6 Jet

LLDPE-9 Butene C1004 Liquid 30 43 35 5.2E-5 Jet

LLDPE-10 Butene C1004 Liquid 30 43 100 9.7E-6 Jet

LLDPE-11 Butene C1004 Liquid 30 43 rupture 9.7E-6 Pool

LLDPE-12 N-pentane C1421 Liquid 2.46 55 35 5.2E-5 Jet

LLDPE-13 N-pentane C1421 Liquid 2.46 55 100 9.7E-6 Jet

LLDPE-14 N-pentane C1419 Liquid 30 43 35 5.2E-5 Jet

LLDPE 15 N pentane C1419 Liquid 30 43 100 9 7E 6 JetLLDPE-15 N-pentane C1419 Liquid 30 43 100 9.7E-6 Jet

LDPE2-1 Ethylene (E8101) Gaseous 80 0 35 5.34 E-4 Jet

LDPE2-2 Ethylene V8101 Gaseous 66 40 35 5.20 E-5 Jet

LDPE2-3 Ethylene V8101 Gaseous 66 40 100 9.70 E-6 Jet

LDPE2-4 Ethylene K8103 Gaseous 280 35 35 7.60 E-4 Jet

LDPE2-5Ethylene Final

processGaseous

900250 20

-Jet

LDPE2-6 Propane V8407 Liquid 17 50 Pool

LDPE2-7 Xylene P-8404 Liquid 200 40 35 - Jet

LDPE2-8 Xylene P-8404 Liquid 200 40 100 - JetLDPE2-9 Xylene V8409 Liquid 0.1 40 - Pool

Page 10: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 10

• 4 selected scenarios:LLDPE l fi

LLDPE – LDPE2 – Scenario selection

– LLDPE - pool fire – LLDPE - jet fire – LDPE2 - pool fire – LDPE2 - jet fire

LLDPE – LDPE2 – Scenario selection

• Jet fire with Dleak = 100 mm – Huge size– Short expected fire duration (few sec.)

• Most water demanding firesMost water demanding fireswith Dleak = 35 mm

Page 11: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 11

LLDPE – LDPE2 – 4 scenarios for WD

Scenario LLDPE-11b

Pool fire

Liquid butene

C1004C1004

30barg – 43°C

LLDPE – LDPE2 – 4 scenarios for WD

Scenario LLDPE-14

Jet fire

Liquid N-pentane

C 1419C-1419

30barg – 43°C

Page 12: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 12

LLDPE – LDPE2 – 4 scenarios for WD

Scenario LDPE2-6

Pool fire

Liquid propane

V-8407

17barg – 50°C

LLDPE – LDPE2 – 4 scenarios for WD

Scenario LDPE2-6

Jet

Liquid Xylene

P-8404

200barg – 40°C

Page 13: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 13

LLDPE – LDPE2 – 4 scenarios for WDGround area Mean heat flux Exposed area Water density TOT water TOT water

Unit m² kw/m² % l/min/m² l/min m³/hBlending 325 < 12,5 0 0 0 0Purging/pelleting 1820 engulfed by flame 10 10,2 1856 111

60 15 4 1092 6640 15 2,67 728 4420 40 2 1456 87

Scenario LLDPE-14

Jet fire

Liquid N-pentane

C 1419

20 40 2 1456 87Reaction 1290 engulfed by flame 30 10,2 3947 237

60 10 4 516 3140 20 2,67 688 4120 40 2 1032 62

T2 60 < 12,5 0 0 0 0Pit 80 < 12,5 0 0 0 0Purification 660 20 10 2 132 8Vent recovery 650 60 5 4 130 8

40 15 2,67 260 1620 50 2 650 39

Instrument Marshaling 140 30 25 2 70 4Electrical sub-station 500 < 12,5 0 0 0 0

C-1419

30barg – 43°CPipe rack 1 700 engulfed by flame 15 14,2 1491 89

60 5 4 140 840 15 2,67 280 1720 25 2 350 21

Pipe rack 2 300 < 12,5 0 0 0 0FLAME IMPIGMENT 1900 114

16719 l/min 1003 m³/hTotal theoretical firewater demand =

LLDPE–LDPE2 – Theo. Firewater demand

Scen

ario

Prod

uct

Loca

tion

Stat

e

THEO

RET

ICA

L FI

REW

ATE

R

DEM

AN

D

P T Leak

Fire

type

Barg °C mm m³/h

LLDPE-11b Butene C1004 Liquid 30 43 - Pool 638 LLDPE-14 N-pentane C1419 Liquid 30 43 35 Jet 1003LDPE2-6 Propane V8407 Liquid 17 50 - Pool 587LDPE2-7 Xylene P-8404 Liquid 200 40 35 Jet 926

S P L S T F DP T L F

Page 14: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 14

LLDPE–LDPE2 – Pract. Firewater demand

LLDPE-14: jet fireStrategy

Fixed/mobile monitors

Practical firewater demand:

Fixed/mobile monitors

→ Very flexibleFixed waterspray system for piperack

→ Not easilly accessible

• 1 section of the waterspray of the piperack 150 m³/h• 6 fixed monitors 6 x 150 = 900 m³/h• 2 mobile monitors 2 x 150 = 300 m³/h• TOTAL PRACTICAL FIREWATER DEMAND 1350 m³/h

LLDPE–LDPE2 – Hydraulic assessmentLDPE2 - LLDPE

1 raw water pump - 2 raw water pumps - 1 sea water pump - 2 sea water pumps

1400

1600

C=100

400

600

800

1000

1200

Pres

sure

at J

-043

[kPa

]

2 sea water pumps - No impairment1 sea water pump - No impairment1 sea water pump - Impairment X3 pipe P-0021 sea water pump - Impairment X4 pipe P-0082 raw water pumps - No impairment2 raw water pumps - Impairment X2 pipe P-019

950 kPa

0

200

400

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Flow demand [m³/h]

2 raw water pumps - Impairment X2 pipe P-0192 raw water pumps - Impairment X1 pipe P-0211 raw water pump - No impairment1 raw water pump - Impairment X2 pipe P-0191 raw water pump - Impairment X1 pipe P-021Required pressure 950 kPaMaximum practical firewater demand Maximum theoretical firewater demand

Page 15: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 15

Hydraulic – Friction loss coef.LDPE2 - LLDPE

2 raw water pumps

1400

1600

400

600

800

1000

1200

Pres

sure

at J

-043

[kPa

]

Required pressure 950 kPa

Maximum theoretical firewater demand

Maximum practical firewater demand

950 kPa

C = 80

C = 100

0

200

0 200 400 600 800 1000 1200 1400 1600 1800

Flow demand [m³/h]

C=100 - 2 raw water pumps - Impairment X1 pipe P-021

C=80 - 2 raw water pumps - Impairment X1 pipe P-021

Conclusions & Recommendations

FIRE WATER PUMPING CAPACITYLLDPE plant & sphere area

• 2 raw FW pumps are required• 1 (out of the two) sea FW pumps are sufficient to cope with the

demand

• Black day– 1 raw FW pump CANNOT cope with the demand– 1 or 2 tugboat(s) should be available on site

• The previous conclusions are only valid if:– The characteristic pump curves are realistic

→ Provide pump test facility→ Conduct pump performance test (actual flow/pressure curves)

Page 16: Ralf Bruyninckx Case 1 Fire Water Network

Cdt 3/25/2011

Title goes here 16

Conclusions & Recommendations

• Raw firewater tank capacity– Firewater available for at least 7.4 h

• Firewater networkOK if C > 80– OK if C > 80

– Flow test to verify actual condition & C factor