Rainer Krebs

download Rainer Krebs

of 46

Transcript of Rainer Krebs

  • 8/14/2019 Rainer Krebs

    1/46

    Siemens AG 2012. All rights reserved.

    Increasing amount of DGs demands for continuous

    protection system audits and new protection schemes

    Always an Eye to Security

    www.siemens.com/siguard

  • 8/14/2019 Rainer Krebs

    2/46

    IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 2

    Siemens AG 2012. All rights reserved.

    Prof. Dr.-Ing. Rainer Krebs

    Principal Expert Power Technologies

    Head of Protection and Control System Studies

    Siemens AG, Infrastructure & Cities Sector

    IC SG SE PTI NC, Erlangen, Germany

    Honorary Professor for System Protection and Control

    Otto-von-Guericke University Magdeburg, Germany

    German Member in working groups of: IEC, CIGRE, IEEE, DKE, T&D Europe

    Board Member of VDE Bavaria

  • 8/14/2019 Rainer Krebs

    3/46

    IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 3

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems andProtection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    4/46

    IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 4

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems andProtection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    5/46

    IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 5

    Electrification of society

    Age of Coal

    Generation and load

    closely coordinated

    Coal

    hydro

    No environmental concerns

    19th Century 20th Century

    Environmental awareness

    Unsustainable energy system

    21st Century

    Transformation of the Electricity System

    Age of Coal

    Sustainable energy system

    * First electrical energy conversion 1866 by Werner v. Siemens

  • 8/14/2019 Rainer Krebs

    6/46

    IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 6

    *) ICT = Information and Communication Technologies

    No environmental concerns

    19th Century 20th Century

    Environmental awareness

    Unsustainable energy system

    The NewElectricity Age

    Electricity will be theenergy

    source with a power grid as

    backbone.

    Integrated energy system

    Load follows generation

    Generation controls load

    Renewable energy sources(solar, wind, hydro, biomass),

    clean coal, gas, nuclear

    21st Century

    Transformation of the Electricity System

    New Electricity Age the Age of Integration

    Sustainable energy system

  • 8/14/2019 Rainer Krebs

    7/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 7

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems andProtection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    8/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 8

    Challenges for Protection Systems of Smart Grids

    From Primary Energy Sources to Consumers

    Windparcs Onshore/OffshoreDouble fed ASMVoltage Source Converters

    Power PlantsLarge GeneratorsLarge Motors

    Auxiliary Systems

    TransmissionShort and long lines,cablesTransformersDiff. Busbar Configs

    FACTS / HVDC

    DistributionVarious Switching SituationsDGs

    Short-circuit Current Limiters

    IndustriesLarge Motors, Generators

    Power ElectronicsDynamic Loads

    Oil and Gas, Harbor-and Special SystemsMVDC-SIPLINK

    LNG

  • 8/14/2019 Rainer Krebs

    9/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 9

    Challenges for Protection Systems of Smart Grids

    Relay Types of Nearly All Eras Must Be Coordinated

    1950 1960 1970 1980 1990 2000 2010

    Analog Relays

    Control

    Numerical Protection Relays

    SIPROTECV1-V3 SIPROTECV4

    Electromechanical Relays

  • 8/14/2019 Rainer Krebs

    10/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 10

    Challenges for Protection Systems of Smart Grids

    Relay Types of All Manufacturers Must Be Coordinated

  • 8/14/2019 Rainer Krebs

    11/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 11

    Short-Circuit ProtectionSystem Protection

    Challenges for Protection Systems of Smart Grids

    System Protection and Short-Circuit Protection

    Short-Circuits

    Normal Operation

    Without DGs,

    No changing SC dir.,

    Stability Reserves

    Short Circuits

    Critical Operation

    High Loads, DGs,Changing Infeeds,

    Stability Limit

    80% of all blackouts and large disturbances

    are in conjunction with wrong or unselective

    short-circuit protection

    Problem area short-circuit can often not

    clearly be confined towards the problem area

    system operation.

    Design of the protection system and equipment

    selection follows standard company rules

    despite of new requirements defined by

    modern power systems.

    No consideration of system emergency

    situations during settings calculation

    No consideration of system changes and

    extensionsno continuous settings update

  • 8/14/2019 Rainer Krebs

    12/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 12

    Challenges for Protection Systems of Smart Grids

    RENEWABLES

    Bulk wind farmsonshore and offshore arefeeding transmission grids

    Smal ler wind farm sand large PV plantsare feeding distribution grids

    Small roof PV plantsfeeding LV grid

    Energy infeed is predictable, Power infeedis not predictable

    Energy TRADE

    Energy market is deregulated

    TRANSMISSION SYSTEM EXPANSION

    Reduction of spinning reserve

    The transmission grids with a clear power

    transmission task are actually transformed

    into power exchange platforms

  • 8/14/2019 Rainer Krebs

    13/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 13

    Source: IfR, TU-Braunschweig,

    Vattenfall Europe Transmission, Feb. 2008

    Windpower infeedLoad

    12000

    03/020

    8000

    4000

    10/02 17/02 24/02

    Power

    in MW

    Wind Power forecast

    Challenges for Protection Systems of Smart Grids

    Predictability and Dynamics of Wind Power

    Example: Vattenfall Europe Transmission, Feb. 2008

    Error: -60%

    Error: +280%

  • 8/14/2019 Rainer Krebs

    14/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 14

    Challenges for Protection Systems of Smart Grids

    Predictability and Dynamics of Solar Power

    Source: Michael Weinhold & friends

    Sunny Day, April: 1,9 MWh

    Cloudy Day, April: 1,2 MWh

  • 8/14/2019 Rainer Krebs

    15/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 15

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems andProtection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    16/46IC SG SE PTI

    Siemens AG 2012. All rights reserved.2012-11 Rainer KrebsPage 16

    Protection System Audits with SIGUARDPSA

    Protection System Fingerprint

  • 8/14/2019 Rainer Krebs

    17/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 17

    Protection System Audits with SIGUARDPSA

    Today: Use of Graphical Documentation of Relay Settings

  • 8/14/2019 Rainer Krebs

    18/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 18

    Protection System Audits with SIGUARDPSA

    Today: Use of Graphical Documentation of Relay Settings

  • 8/14/2019 Rainer Krebs

    19/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 19

    Protection System Audits with SIGUARDPSA

    Protection Security Assessment

    ScanningSystem

    Finger-printsNetwork and ProtectionSystem

    Magnetic Resonance

    Imaging

  • 8/14/2019 Rainer Krebs

    20/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 20

    Protection System Audits with SIGUARDPSA

    Protection System Improvement

    Magnetic Resonance

    Imaging

    Doctor makes

    analysis acc. to

    his experienceand defined measures

    Finger-prints

    expert system

    orgenetic algorithm

    or protection expert

    AdaptiveSettings

  • 8/14/2019 Rainer Krebs

    21/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 21

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2.5 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2.4 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2.3 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2.2 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2.1 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 2 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.9 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.8 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.7 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.6 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.5 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.4 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.3 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.2 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1.1 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 1 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.9 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.8 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.7 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.6 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.5 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.4 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.3 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.2 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0.1 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    Protection System Audits with SIGUARDPSA

    Protection System Fingerprint

    1 21 41 61 81 99

    L-Nord-Ble

    L-Nord-Heide

    L-Nord-Uni

    L-Ost-Ble

    L-Ost-Mitte

    L-Ost-Oberwald

    L-Ost-Uni

    L-Sd-Oberwald

    L-West-Heide

    L-West-StoraEnso

    L-West-Mitte

    L-Grnwinkel-Sd

    L-West-Grnwinkel

    Ik1E.dat - Fehlerwiderstand 0 Ohm

    relative Lnge in % (Fehlerort)

    Leitungen

    < 0,0 Ohm< 0,1 Ohm< 0,2 Ohm< 0,3 Ohm

    < 0,4 Ohm< 0,5 Ohm< 0,6 Ohm< 0,7 Ohm< 0,8 Ohm< 0,9 Ohm< 1,0 Ohm< 1,1 Ohm< 1,2 Ohm< 1,3 Ohm< 1,4 Ohm

    < 1,5 Ohm< 1,6 Ohm< 1,7 Ohm< 1,8 Ohm< 1,9 Ohm< 2,0 Ohm< 2,1 Ohm< 2,2 Ohm< 2,3 Ohm< 2,4 Ohm< 2,5 Ohm

    Fault Resistance

    mindestens ein Schutzgert an dem zu schtzenden Betriebsmittel lstnicht aus (Unterfunktion)

    bei einem Fehler auf dem zu schtzenden Betriebsmittel lst mindestens

    ein nachgeordnetes Schutzgert mit aus (berfunktion)

    Schutzgerte an dem zu schtzenden Betriebsmittel lsen erst in derdritten Zone, oder einer hheren Zone, aus

    Schutzgerte an dem zu schtzenden Betriebsmittel sollten in der zweitenZone auslsen, lsen ab bereits in der ersten Zone aus - und umgekehrt

    Schutzgerte an dem zu schtzenden Betriebsmittel lsen korrekt aus

    mindestens ein Schutzgert an dem zu schtzenden Betriebsmittel lstnicht aus (Unterfunktion)

    bei einem Fehler auf dem zu schtzenden Betriebsmittel lst mindestens

    ein nachgeordnetes Schutzgert mit aus (berfunktion)

    Schutzgerte an dem zu schtzenden Betriebsmittel lsen erst in derdritten Zone, oder einer hheren Zone, aus

    Schutzgerte an dem zu schtzenden Betriebsmittel sollten in der zweitenZone auslsen, lsen ab bereits in der ersten Zone aus - und umgekehrt

    Schutzgerte an dem zu schtzenden Betriebsmittel lsen korrekt aus

    Lin

    es

    L1-E Fault

    Rel. line length / %

    Protection relays trip correctly

    Protection relays operate accelerated

    Protection relays operate delayed

    Protection relays overfunction

    Protection relays underfunction

  • 8/14/2019 Rainer Krebs

    22/46

  • 8/14/2019 Rainer Krebs

    23/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 23

    Protection System Audits with SIGUARDPSA

    Zooming into the FingerPrint

    Detailed information

    about protection

    device operation(device name,

    tripping zone,

    tripping time)

    Columns with the

    name and length of

    the line

    Fault location

    (% of the line length)

    Color of the fields

    depends on the

    efficiency of the fault

    clearing (see below)

    selective trip

    unselective trip(overfunction)

    no trip (underfunction)

  • 8/14/2019 Rainer Krebs

    24/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 24

    Protection System Audits with SIGUARDPSA

    Relay Error Rate for all 294 relays at 1-phase fault

  • 8/14/2019 Rainer Krebs

    25/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 25

    SIGUARD

    The Family of Power System Security Solutions

    The perfect supervision

    of your power system

    SIGUARD PDP

    Phasor data processor for gathering,archiving and analyzing PMU datameasurement

    SIGUARD DSA

    Dynamic security assessment of the impactof contingencies in actual and future systemstates

    SIGUARD PSA

    Protection security assessment of theselectivity, sensitivity and speed of theoverall system and generator protection

  • 8/14/2019 Rainer Krebs

    26/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 26IGUARDDSA Cockpit

    Contingencies

    SIGUARDPSA

    Protection

    Selector

    Visualization &Reporting

    START

    ComputationComputation

    Engine

    Protection

    Database

    Automatic

    Contingencies &

    Settings

    Scenarios

    Steady-State Network

    Database

    SCADA

    Snapshot

    SCADA

    Monitoring

    Result

    Database

    SCADA

    RDC

    Contingencies

    Interface

    Adaptive

    Settingst, I>, I>>

    Protection Simulator

    Selectivity, Speed, Security

    Protection

    Index Selection

    Search Algorithm

    p th

    Fault Pattern

    Analysis andEvaluation

    http://localhost/var/www/apps/conversion/tmp/scratch_9/4_ProtectionSelector.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/4_ProtectionSelector.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/3_ProtectionDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/3_ProtectionDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/1_NetworkDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/1_NetworkDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/8_Result%20data.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/8_Result%20data.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/8_Result%20data.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/Under%20Construction.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/Under%20Construction.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/7_ProtectionIndex.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/7_ProtectionIndex.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/2_Searchalgorithmus.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/2_Searchalgorithmus.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/7_ProtectionIndex.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/Under%20Construction.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/8_Result%20data.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/1_NetworkDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/3_ProtectionDatabase.pptxhttp://localhost/var/www/apps/conversion/tmp/scratch_9/4_ProtectionSelector.pptx
  • 8/14/2019 Rainer Krebs

    27/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 27

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems and

    Protection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    28/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 28

    Distribution System of a Small City

    No DG Installed, Radial System with Single Infeed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0st>0.9s

    t>1.2s

    t>0.6s

    t>>0s

    t>0.0s

    City network 7 MW

    I>

    t>0.6s

    I>

    t>0.6s

    Protection selectivity by use of simple non-directional oc relays

    - Unique short-circuit direction,

    - Current / time grading with def. or IDMTL characteristics

    Grading from load to infeed with increasing tripping times

    I>t>1,5s

  • 8/14/2019 Rainer Krebs

    29/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 29

    Distribution System of a Small City

    No DG Installed, Radial System with Single Infeed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0st>0.9s

    t>1.2s

    t>0.6s

    t>>0s

    t>0.0s

    City network 7 MW

    I>

    t>0.6s

    I>

    t>0.6sI>

    t>1,5s

    Protection selectivity by use of simple non-directional oc relays

    - Unique short-circuit direction,

    - Current / time grading with def. or IDMTL characteristics

    Grading from load to infeed with increasing tripping times

  • 8/14/2019 Rainer Krebs

    30/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 30

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    I>

    40 MVA I>

    I>>

    I>

    t>0.6s t>0.3s t>0.0st>0.9s

    t>1.2s

    t>0.6s

    t>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>

    t> 0.6s

    I>

    t> 0.6sI>

    t>1,5s

    It>0.6s

    I>

    t>1.2s

    New protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    Non-directional OC-Protection

  • 8/14/2019 Rainer Krebs

    31/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 31

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    I>

    40 MVA I>

    I>>

    I>

    t>0.6s t>0.3s t>0.0st>0.9s

    t>1.2s

    t>0.6s

    t>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>

    t> 0.6s

    I>

    t> 0.6sI>

    t>1,5s

    It>0.6s

    I>

    t>1.2s

    New protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    Non-directional OC-Protection

  • 8/14/2019 Rainer Krebs

    32/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 32

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    I>

    40 MVA I>

    I>>

    I>

    t>0.6s t>0.3s t>0.0st>0.9s

    t>1.2s

    t>0.6s

    t>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>

    t> 0.6s

    I>

    t> 0.6sI>

    t>1,5s

    It>0.6s

    Islanding of System not allowed!

    -No frequency control

    -No resynchronizationNew protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    I>

    t>1.2s

    Non-directional OC-Protection

  • 8/14/2019 Rainer Krebs

    33/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 33

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0s

    t>1.2s

    t>0.3s

    t>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>t>1,5s

    It>0.9s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.9s

    I>

    t>1.2s

    New protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    Directional OC-Protection

  • 8/14/2019 Rainer Krebs

    34/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 34

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0s

    t>1.2s

    t>0.3s

    t>>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>t>1,5s

    It>0.9s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.9s

    I>

    t>1.2s

    New protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    Directional OC-Protection

  • 8/14/2019 Rainer Krebs

    35/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 35

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry10 MW

    Biomass-plant25 MW

    I

    I>

    t> 0.0s

    Housing area0.5 MW

    M

    Industry3 MW

    40 MVA

    t> 0.05s

    I>>

    t>>0s

    I>

    t> 0.0s

    City network 7 MW

    I> I>

    I> I>

    I> I>

    I>

    I>

    t> 0.05s

    I>

    U

    Decouplingdevice

    I>

    t>0.3s

    New protection concepts necessary

    Supposed that sc currents of both infeeds are in same range

    No selectivity with non-directional OC protection

    Long fault clearing times

    Islanding of not-allowed areas

    OC-Protection with directional comparison

    and fast U-Q decoupling

    I>

    t>0.3s

  • 8/14/2019 Rainer Krebs

    36/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 36

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0s

    t>1.2s

    t>0.3s

    t>>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>t>1,5s

    It>0.9s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.9s

    I>

    t>1.2s

    Islanding of System not allowed!

    -No frequency control

    -No resynchronization

    Anti-islanding logic

    PMU-installation for island detection

    Anti-islanding protection necessary

    Anti-islanding

    logic

  • 8/14/2019 Rainer Krebs

    37/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 37

    Distribution System of a Small City

    Large DG Installed

    Utility

    110 kV

    20 kV

    M

    Industry

    10 MW

    I

    I> I>

    Housing area

    0.5 MW

    M

    Industry

    3 MW

    I>

    40 MVA I>

    I>>

    I>

    t>0.3s t>0.0s

    t>1.2s

    t>0.3s

    t>>0s

    t>0.0s

    City network 7 MW

    Biomass

    -plant

    25 MW

    I>t>1,5s

    It>0.9s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.6s

    It>0.9s

    I>

    t>1.2s

    Islanding of System not allowed!

    -No frequency control

    -No resynchronization

    Anti-islanding logic

    PMU-installation for island detection

    Anti-islanding protection necessary

    GPS Signal

    Phase

    comparison

  • 8/14/2019 Rainer Krebs

    38/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 38

    Transformation of the Electricity System

    Challenges for Protection Systems of Smart Grids

    Continuous Analysis of Protection Systems and

    Protection system audits with SIGUARDPSA

    Adaption of the Protection Schemes if DGs Lead

    to Unselectivities Which Cannot be Covered by

    Changes of Settings

    Underfrequency Loadshedding without and with

    DGs

    Summary

    Contents

    Siemens AG 2012. All rights reserved.

  • 8/14/2019 Rainer Krebs

    39/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 39

    Underfrequency Loadshedding without and with DGs

    Operational Handbookentso-e

    P5Policy 5: Emergency Operations

    Source: AppendixPolicy 5: Emergency Operations

    Load rejection at 49,0Hz, better at 49,2Hz

    tAUS (inkl. CB op.-time)

  • 8/14/2019 Rainer Krebs

    40/46

    IC SG SE PTI Siemens AG 2012. All rights reserved.

    2012-11 Rainer KrebsPage 40

    Underfrequency Loadshedding without and with DGs

    Actual Installations and Common Practice

    f