Raga Gopalakrishnan Caltech CU-Boulder Adam Wierman (Caltech) Jason Marden (CU-Boulder)

20
Raga Gopalakrishnan Caltech CU-Boulder Adam Wierman (Caltech) Jason Marden (CU-Boulder) Potential games are necessary to ensure pure Nash equilibria in cost sharing games

description

Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Raga Gopalakrishnan Caltech CU-Boulder Adam Wierman (Caltech) Jason Marden (CU-Boulder). Network formation. [ Anshelevich et al. 2004 ]. D1. 6. S1. 1. 1. 6. ?+?. 1. 1. S2. 6. D2. - PowerPoint PPT Presentation

Transcript of Raga Gopalakrishnan Caltech CU-Boulder Adam Wierman (Caltech) Jason Marden (CU-Boulder)

Page 1: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Raga GopalakrishnanCaltech CU-Boulder

Adam Wierman (Caltech)Jason Marden (CU-Boulder)

Potential games are necessary to ensure pure Nash equilibria in cost sharing games

Page 2: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

• Model for distributed resource allocation problems.

• Self-interested agents make decisions and share the resulting cost.

cost sharing games

Network formation[ Anshelevich et al. 2004 ]

S1

S2

D1

D2

61 6

1

1

6

1?+?

Page 3: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

cost sharing games

Network formation[ Anshelevich et al. 2004 ]

S1

S2

D1

D2

61 6

1

1

6

13+3

A Nash equilibrium

Also optimal!

1+5

Unique Nash

equilibriumSuboptimal

Page 4: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

cost sharing games

Key feature:Distribution rules

outcome!

Network formation[ Anshelevich et al. 2004 ]

?+?

S1

S2

D1

D2

61 6

1

1

6

1

Can we understand this

better?

Page 5: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

cost sharing games

• Network formation games

• Facility location games

• Congestion games

• Routing games

• Multicast games

• Coverage games

• …

[ Anshelevich et al. 2004 ] [ Corbo and Parkes 2005 ] [ Fiat et al. 2006 ] [ Albers 2009 ][ Chen and Roughgarden 2009 ] [ Epstein, Feldman, and Mansour 2009 ] [ … ]

[ Rosenthal 1973 ] [ Milchtaich 1996 ] [ Christodoulou and Koutsoupias 2005 ][ Suri, Tóth, and Zhou 2007 ] [Bhawalkar, Gairing, and Roughgarden 2010 ] [ … ]

[ Roughgarden and Tardos 2002 ] [ Kontogiannis and Spirakis 2005 ][ Awerbuch, Azar, and Epstein 2005 ] [ Chen, Chen, and Hu 2010 ] [ … ]

[ Marden and Wierman 2008 ][ Panagopoulou and Spirakis 2008 ] [ … ]

[ Vetta 2002 ] [ Hoefer 2006 ] [ Dürr and Thang 2006 ] [ Chekuri et al. 2007 ] [ Hansen and Telelis 2008 ] [ … ]

[ Chekuri et al. 2007 ] [ Cardinal and Hoefer 2010 ][ Bilò et al. 2010 ] [ Buchbinder et al. 2010 ] [ … ]

[ Johari and Tsitsiklis 2004 ][ Panagopoulou and Spirakis 2008 ][ Marden and Effros 2009 ][ Harks and Miller 2011 ][ von Falkenhausen and Harks 2013 ] [ … ]

Key feature:Distribution rules

outcome!

Page 6: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Most prior work studies two distribution rules

Marginal Contribution (MC)[ Wolpert and Tumer 1999 ]

average marginal contribution over player

orderings

Shapley Value (SV)[ Shapley 1953 ]

externality experienced by all other players

Extensions: weighted and generalized weighted versions

parameterized by “weight system”

Page 7: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Most prior work studies two distribution rules

Marginal Contributions (MC+)[ Wolpert and Tumer 1999 ]

average marginal contribution over player

orderings

Shapley Values (SV+)[ Shapley 1953 ]

externality experienced by all other players

Extensions: weighted and generalized weighted versions

parameterized by “weight system”

Both guarantee PNE in all games!

Question: Are there other such distribution rules?Short answer: NO!

for any fixed cost functions

Page 8: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

don‘t guarantee PNE in

all games

guarantee PNE in

all games

SV+

don‘t guarantee PNE in

all games

guarantee PNE in

all games

MC+

all distribution rules

SV+

MC+

guarantee potential

game

1

2

don‘t guarantee PNE in

all games

guarantee PNE in

all games?

Page 9: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

𝑮=(𝑵 ,𝑹 , {𝓐𝒊 }𝒊∈𝑵 , {𝑾 𝒓 }𝒓∈𝑹 , { 𝒇𝑾 }𝑾 ∈ {𝑾 𝒓 })

set of players

set of resources

action set of player

local welfare function distribution rule

S1

S2

D1

D2

Example:

Formal model

𝟏

𝟐𝟒

𝟕

𝟑

𝟓

𝟔𝑾 𝟒 ( {𝟏 ,𝟐} )

𝓤𝒊 (𝒂)=∑𝒓∈𝒂 𝒊

𝒇𝑾 𝒓 (𝒊 , {𝒂 }𝒓 )𝓤𝟏 (𝒂)𝒇𝑾 𝟒 (𝟏 , {𝟏 ,𝟐} )

“welfare” = revenue / negative cost

player 1’s share of

Page 10: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

𝑮=(𝑵 ,𝑹 , {𝓐𝒊 }𝒊∈𝑵 , {𝑾 𝒓 }𝒓∈𝑹 , { 𝒇𝑾 }𝑾 ∈ {𝑾 𝒓 })𝑮=¿

Shapley Values (SV+)(parameterized by weight system )

𝑮=¿

Marginal Contributions (MC+)(parameterized by weight system )

Distribution rules:

0+0

S1

S2

D1

D2

61 6

1

1

6

13+3

𝒇𝑺𝑽+¿𝑾 [𝝎 ] ( 𝒊 ,𝑺)=∑

𝝅ℙ𝝎 (𝝅 ) ⋅ (𝑾 (𝑷 𝒊

𝝅∪ {𝒊 })−𝑾 (𝑷 𝒊𝝅 )) ¿

𝒇 𝑺𝑽+¿𝑾 [(𝟏 ,𝟏) ] (𝟏, {𝟏 ,𝟐 })=𝟑¿

𝒇 𝑺𝑽+¿𝑾 [(𝟓 ,𝟏) ] (𝟏, {𝟏 ,𝟐 })=𝟏¿1+5

𝒇 𝑴𝑪+¿𝑾 [(𝟏 ,𝟏) ] (𝟏 ,{𝟏 ,𝟐 })=𝟎 ¿

𝒇 𝑴𝑪+¿𝑾 [(𝟓 ,𝟏) ] (𝟏 ,{𝟏 ,𝟐 })=𝟎 ¿

𝒇𝑴𝑪+¿𝑾 [𝝎 ] (𝒊 ,𝑺 )=𝝎 𝒊 (𝑾 (𝑺 )−𝑾 (𝑺− {𝒊 }) )¿

Page 11: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

𝑮=(𝑵 ,𝑹 , {𝓐𝒊 }𝒊∈𝑵 , {𝑾 𝒓 }𝒓∈𝑹 , { 𝒇𝑾 }𝑾 ∈ {𝑾 𝒓 })

“all games”

𝑾 𝒓∈𝕎 𝒇𝑾∈ 𝒇 𝕎

𝓖 (𝑵 ,𝕎 , 𝒇𝕎 )

S1

S2

D1

D2

61 6

1

1

6

1

𝓖 ( {𝟏 ,𝟐 }, {𝑾 𝟏 ,𝑾 𝟐 } , {𝒇 𝑾 𝟏 , 𝒇𝑾 𝟐 })

6 1

D1

D2

11

1

6 6

6 6

61

1

Page 12: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑺𝑽+¿𝕎

[𝝎 ] ¿

The inspiration for our work[ Chen, Roughgarden, and Valiant 2010 ]

budget-balancedguarantee potential

game

There exists :

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇 𝑺𝑽 +¿𝕎[𝝎 ] ¿

Our characterizationFor any :

?

𝕎 ′=𝕎

actual welfare

distributed

?

Page 13: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑴𝑪+¿𝕎

′ ′

[𝝎 ]¿

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑺𝑽+¿𝕎

[𝝎 ] ¿

The inspiration for our work[ Chen, Roughgarden, and Valiant 2010 ]

budget-balancedguarantee potential

game

There exists :

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇 𝑺𝑽 +¿𝕎[𝝎 ] ¿

Our characterizationsFor any :

𝒉(⋅)

Page 14: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Tractability

Consequences

Efficiency

Incentive compatibili

ty

• If budget-balance is required, set . Just optimize over .

• Theorem: If budget-balance is not required, weights () don’t matter! Just optimize over .

Budget-balance

Four other important properties:

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑺𝑽+¿𝕎

[𝝎 ] ¿

Page 15: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Tractability

Consequences

Efficiency

Incentive compatibili

ty

Budget-balance

Four other important properties:

Easier to control budget-balance

More tractable

“preprocessing”

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑴𝑪+¿𝕎

′ ′

[𝝎 ]¿

don‘t guarantee PNE in

all games

guarantee PNE in

all games

𝒇𝑺𝑽+¿𝕎

[𝝎 ] ¿

exponential time!

𝒉(⋅)

Page 16: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Tractability

Consequences

Efficiency

Incentive compatibili

ty

Budget-balance

Four other important properties:

𝓤𝒊 (𝒂)=𝒗 𝒊 (𝒂)+ ∑𝒓 ∈𝒂𝒊

𝒇𝑾 𝒓 (𝒊 , {𝒂 }𝒓 )

private values

Future work: Design incentive compatible cost sharing mechanisms for a

noncooperative setting

𝓤𝒊 (𝒂)=∑𝒓∈𝒂 𝒊

𝒇𝑾 𝒓 (𝒊 , {𝒂 }𝒓 )

Page 17: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Basis representation: Any can be written as

“coalition”“contributio

n of the coalition”

Proof sketchRestrict to the case where where is arbitrary

Restrict to the case of characterizing only budget-balanced

𝑾= ∑𝑻⊆𝑵

𝒒𝑻𝑾𝑾 𝑻

𝑾𝑻 (𝑺 )={𝟏 , 𝑻 ⊆𝑺𝟎 , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Technique: Establish a series of necessary conditions on

[ Shapley 1953 ]

Inclusion functions: Special welfare functions :

is said to be a “contributing” coalition in if

Page 18: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Proof sketch

How much of should get?

Does contain a contributing

coalition of that contains ?

no

yes

𝒇𝑾 (𝒊 ,𝑺 )=𝟎

should not depend on the “noncontributi

ng” players

𝒇𝑾≔ ∑𝑻⊆𝑵

𝒒𝑻𝑾 𝒇𝑾𝑻

DECOMPOSITON

Proof: Establish a “fairness” condition on

1

Page 19: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Proof sketch

𝒇𝑾≔ ∑𝑻⊆𝑵

𝒒𝑻𝑾 𝒇 𝑻

DECOMPOSITON

Proof: Establish a “fairness” condition

1

𝒇𝑾≔ ∑𝑻⊆𝑵

𝒒𝑻𝑾 𝒇 𝑺𝑽 +¿𝑻 [𝝎𝑻 ]¿

𝒇𝑾≔ ∑𝑻⊆𝑵

𝒒𝑻𝑾 𝒇 𝑺𝑽 +¿𝑻 [𝝎∗] ¿

𝒇𝑾≔ 𝒇 𝑺𝑽+¿𝑾 [𝝎∗] ¿

CONSISTENCY

Proof: Construct a “universal” equivalent

to all

2

Page 20: Raga  Gopalakrishnan Caltech   CU-Boulder Adam  Wierman  (Caltech) Jason  Marden  (CU-Boulder)

Ragavendran GopalakrishnanCaltech CU-Boulder

Adam Wierman (Caltech)Jason Marden (CU-Boulder)

Potential games are necessary to ensure pure Nash equilibria in cost sharing games