Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. ·...

33
RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 31

Transcript of Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. ·...

Page 1: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 31

Page 2: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

I. Introduction

1 EM waves and propagation

2 Influence of frequency

3 Propagation mechanisms

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 2 / 31

Page 3: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

II. EM Waves and propagation

All of us are familiar with use of EM waves for informationtransmission

All systems have three generalized components:

Transmitter: information carrying circuit level signal generated andconverted to EM wavePropagation: EM wave travels from transmitter to receiver throughexternal environmentReceiver: EM wave converted to circuit signals and informationextracted

Environmental effects can have large influence on propagationcomponent

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 3 / 31

Page 4: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 4 / 31

Page 5: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Use of EM waves eliminates need for wires: first predicted in 1865 byMaxwell

Maxwell’s predictions verified experimentally by Hertz in 1880’s

Demonstrated by Marconi in 1901 with wireless communicationsacross the Atlantic

Since then many studies of propagation have been conducted so thereis a vast amount of experience and information available

The complexity of most propagation environments makes exactpredictions impossible, so usually only simple physical modelscombined with empirical data are available

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31

Page 6: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

III. Influence of frequency

Current technology exists to transmit and receive electromagneticwaves over a large range of frequencies: from 10 kHz to 1015 Hz!

A basic rule of thumb: EM waves tend to be affected most bystructures comparable to or larger than one wavelength

From this, we can see that since the Earth environment has structureson a wide range of scales, we should expect propagation phenomenato vary with frequency

Example Earth scales: atmospheric particles, vegetation and forests,mountains, Earth curvature!

Because of this, frequency plays a large role in propagation effects,and names have been provided to specific frequency bands toillustrate this

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 6 / 31

Page 7: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Band name Abbreviation Frequencies

Very-low frequency VLF 3 to 30 kHzLow frequency LF 30 to 300 kHz

Medium frequency MF 300 kHz to 3 MHzHigh frequency HF 3 MHz to 30 MHz

Very-high frequency VHF 30 MHz to 300 MHzUltra-high frequency UHF 300 MHz to 3 GHzSuper-high frequency SHF 3 GHz to 30 GHz

Extremely-high frequency EHF 30 GHz to 300 GHz

Table: IEEE Frequency Band Designations

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 7 / 31

Page 8: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Band name Frequencies (GHz) Wavelengths (cm)

L 1.0-2.0 15-30S 2.0-4.0 7.5-15C 4.0-8.0 3.75-7.5X 8.0-12.0 2.5-3.75Ku 12.0-18.0 1.67-2.5K 18.0-27.0 1.11-1.67Ka 27.0-40.0 0.75-1.11V 40.0-75.0 0.40-0.75W 75.0-110 0.27-0.40

Table: Microwave Frequency Band Designations

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 8 / 31

Page 9: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

III. Propagation mechanisms

Direct transmission - Ch 5

Atmospheric refraction - Ch 6

Ducting - Ch 6

Direct plus ground reflections - Ch 7

Terrain diffraction - Ch 7

Empirical path loss and fading models - Ch 8

Groundwave - Ch 9

Ionospheric reflections - Ch 10-11

Others - Ch 12

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 9 / 31

Page 10: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 10 / 31

Page 11: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 11 / 31

Page 12: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 12 / 31

Page 13: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 13 / 31

Page 14: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Propagation Mechanisms and Applications

Page 15: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Propagation Mechanisms by Frequency

Page 16: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Characterization of Propagation Media

1 Information resources

2 Maxwell’s equations

3 Constitutive relations

4 Types of dielectric media

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 14 / 31

Page 17: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

II. Information resources

International Telecommunication Union (ITU): Regulatescommunications internationally. Holds an international meeting every4 years, issues reports and recommendations

Institute for Telecommunications Sciences (ITS): Branch of U.S.Dept. of Commerce, National Telecommunications and InformationAdministration (NTIA)

Naval Command, Control, and Ocean Surveillance Center (NCCOSC)

Federal Communications Commission

World Wide Web

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 15 / 31

Page 18: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

III. Maxwell’s Equations

∇× H =∂D

∂t+ J (1)

∇× E = −∂B

∂t(2)

∇ · D = ρ (3)

∇ · B = 0 (4)

Eight scalar equations for twelve scalar unknown functions, not allindependent

∇ · J = −∂ρ∂t

(5)

∇ · JS = −∂ρS

∂t(6)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 16 / 31

Page 19: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

III. Maxwell’s Equations (cont’d)

n̂ ×(H2 − H1

)= JS (7)

n̂ ×(E 2 − E 1

)= 0 (8)

n̂ ·(D2 − D1

)= ρS (9)

n̂ ·(B2 − B1

)= 0 (10)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 17 / 31

Page 20: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Region 1

Region 2

n

n

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 18 / 31

Page 21: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

IV. Constitutive relations

A relationship between D and E and between B and H is required to makeMaxwell’s equations solvable; these are the constitutive relations

The simplest possible consitutive relations:

D = εE (11)

B = µH (12)

but these are not always applicable!

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 19 / 31

Page 22: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

IV. Constitutive relations (cont’d)

Model: fields in a material are those in free space plus fields produced byinduced dipole moments in material

D(r , t) = ε0E (r , t) + P(r , t) (13)

where P is the induced dipole moment per unit volume in the material.Note we still need a relationship between P and E !

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 20 / 31

Page 23: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

V. Types of dielectric media

Relationship between applied field E and induced dipole moment density Pwill depend of the properties of the medium. There are many possiblemedium properties:

Nonlinearity - P proportional to powers of E other than first

Anisotropy - P depends on direction of E

Dispersion - P depends on the frequency of E

Inhomogeneity - P depends on r

Time dependence - P depends on t

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 21 / 31

Page 24: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

V. Types of dielectric media (cont’d)

The simplest medium has none of the aforementioned properties, so

P(r , t) = χε0E (r , t) (14)

and

D(r , t) = ε0 (1 + χ) E (r , t) = ε0εrE (r , t) = εE (r , t) (15)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 22 / 31

Page 25: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Inhomogeneous and time-varying media can be handled through

D(r , t) = ε(r , t)E (r , t) (16)

Anisotropic media can be handled through a tensor-valued permittivity

εxx εxy εxzεyx εyy εyzεzx εzy εzz

(17)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 23 / 31

Page 26: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Dispersion results due to time response of medium

P(r , t) = ε0

∫ t

−∞E (r , t ′)f (t − t ′)dt ′ (18)

or

P(r , t) = Re

[ε0E 0(r)e jωt

∫ ∞0

e−jωuf (u)du

](19)

for the sinusoidal steady state.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 24 / 31

Page 27: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

A relationship between phasors P0 and E 0 is thus

P0(r) = χ(ω)ε0E 0(r) (20)

for dispersive media, where

χ(ω) =

∫ ∞0

e−jωuf (u)du (21)

The last equation defines the complex susceptibility, χ(ω), and

D0(r) = ε(ω)E 0(r) (22)

Imaginary part of ε indicates dielectric losses. Power lost in “frictional”motion of particles. Note that D(r , t) and E (r , t) may not be in the samedirection!

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 25 / 31

Page 28: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

103

106

109

1012

1015

1018

Frequency (Hz)

Die

lectr

ic c

onsta

nt

RealImaginary

Molecular Orientational

Atomic Rotations/Vibrations(Molecular Spectra)

Electronic Transitions(Atomic Spectra)

Interfacial

1

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 26 / 31

Page 29: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

10−4

10−3

10−2

10−1

100

101

102

103

0

20

40

60

80

(a) Distilled water, 25 C

Frequency (GHz)

Die

lectr

ic C

on

sta

nt

RealImaginary

10−4

10−3

10−2

10−1

100

101

102

103

0

1

2

3

4(b) Carbon Tetrachloride, 25 C

Frequency (GHz)

Die

lectr

ic C

on

sta

nt

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 27 / 31

Page 30: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Conductive media can be handled through Ohm’s law,

J(r , t) = σE (r , t) (23)

and the phasor form of Ampere’s law,

∇× H0(r) = J0(r) + jωD0(r) (24)

to get

∇× H0(r) = (σ + jωε) E 0(r) (25)

= jω (ε− jσ/ω) E 0(r) (26)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 28 / 31

Page 31: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

If one separates out the real and imaginary parts of the dielectric constant

ε = εR − jεI (27)

and rearranges the terms slightly, the result is

∇× H0(r) = jω [εR − j (εI + σ/ω)] E 0(r) (28)

showing that conduction and dielectric losses effects can be combined intoa single imaginary part of the permittivity or into an ”effective”conductivity. Be careful when using tables! We will define

εe = εR − j (εI + σ/ω) (29)

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 29 / 31

Page 32: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

D01-sc

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 30 / 31

Page 33: Radiowave Propagation: Physics and Applicationsjohnson/5010/ch2vuframe.pdf · 2018. 8. 24. · Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 5 / 31. III.

Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 31 / 31