Radiomagnetotelluric 2D forward and inverse modelling with ... · 1D forward modelling example...

of 32 /32
Outline Radiomagnetotelluric 2D forward and inverse modelling with displacement currents Thomas Kalscheuer 1 Laust B. Pedersen 2 Weerachai Siripunvaraporn 3 1 Department of Earth Sciences ETH Zürich, Switzerland 2 Department of Earth Sciences Uppsala University, Sweden 3 Department of Physics, Faculty of Science Mahidol University, Thailand 3/9/2009 Kalscheuer et al. Radiomagnetotelluric 2D modelling

Embed Size (px)

Transcript of Radiomagnetotelluric 2D forward and inverse modelling with ... · 1D forward modelling example...

  • Outline

    Radiomagnetotelluric 2D forward and inversemodelling with displacement currents

    Thomas Kalscheuer1 Laust B. Pedersen2

    Weerachai Siripunvaraporn3

    1Department of Earth SciencesETH Zürich, Switzerland

    2Department of Earth SciencesUppsala University, Sweden

    3Department of Physics, Faculty of ScienceMahidol University, Thailand

    3/9/2009

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • Outline

    Introduction

    Goal: Inclusion of displacement currents in a 2D inversescheme of radiomagnetotelluric (RMT) data withsimplifications:

    using vertically incident plane waves andassuming constant dielectric permittivity insubsurface.

    Method: Modification of routines for forward and sensitivitycomputations of an existing 2D inverse code (REBOCC)that utilizes finite-difference approach.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • Outline

    Outline

    1 TheoryRMT Field SetupGoverning equations

    2 Synthetic examples1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    3 Field example from Ävrö, Sweden

    4 Conclusions

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    RMT Field SetupGoverning equations

    RMT Field Setup I

    Surface measurement of electric and magnetic field components.

    Frequency range typically 10 to 300 kHz.

    Primary signal from remote radio transmitters.Hence, plane-wave assumption.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    RMT Field SetupGoverning equations

    RMT Field Setup II

    Ηz ΗxΗy

    air

    Earthstrike parallelto x-direction

    structure with anomalous electrical properties

    z

    xy

    ΕxΕy

    datalogger

    Figure: RMT field setup.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    RMT Field SetupGoverning equations

    Governing equations

    Governing equations:

    In frequency domain:

    ∇× E = −(iωµ0)H Faraday′s law (1)

    ∇× H = (σ + iωǫ) E Ampere′s law (2)

    Conduction currents: σE.Displacement currents: iωǫE.

    So far quasi-static assumption, i.e. displacement currentsnegligible: ωǫ

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    RMT Field SetupGoverning equations

    Responses on 2D Earth for vertical incidence only (!):Impedance tensor Z:

    [

    ExEy

    ]

    =

    [

    0 ZxyZyx 0

    ] [

    HxHy

    ]

    TE − modeTM − mode

    (3)

    givingapparent resistivities ρija =

    1ωµ0

    |Zij |2 and

    phases φij = arg(

    Zij)

    .Vertical magnetic transfer function (VMT) B:

    Hz = B · Hy . (4)

    Given error level of 2 % on elements of Z, a homogeneoushalf-space and vertically incident plane waves, effect ofdisplacement currents on φ is above the error level at e.g.f = 15 kHz and ρ = 10000 Ωm or f = 170 kHz and ρ = 1000 Ωmfor ǫr = 5.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    1D forward modelling example

    8200

    8400

    8600

    8800

    9000

    9200

    9400

    9600

    9800

    10000

    10200

    0 25 50 75 100 125 150 175 200 225 250

    ρ a (

    Ωm

    )

    frequency (kHz)

    apparent resistivity

    1D w/o. disp. curr.1D w. disp. curr.

    2D FDA TM 27.5

    30

    32.5

    35

    37.5

    40

    42.5

    45

    47.5

    0 25 50 75 100 125 150 175 200 225 250φ

    (°)

    frequency (kHz)

    phase

    1D w/o. disp. curr.1D w. disp. curr.

    2D FDA TM

    Figure: Analytic 1D solution and 2D FDA solution of apparent resistivity andphase for the TM-mode on the surface of a homogeneous half-space withρ = 10000 Ωm and ǫr = 5.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    Effect of oblique incidence I

    As only vertically incident plane waves are considered, effect ofoblique incidence needs to be estimated for typical 1D examples.

    Typical depth section of later field example:

    ρ1=600Ωm, εr=6

    ρ3=600Ωm, εr=6

    ρ2=30000Ωm, εr=6

    h1=25m

    h2=75m

    x

    z

    yθi

    Figure: 1D model; θi = 0 for vertical incidence.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    Effect of oblique incidence II

    0.984

    0.988

    0.988

    0.992

    0.992

    0.99

    60.996

    0.996

    1.00

    0

    1.0001.0001.000

    1.004

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    angl

    e (°

    )

    104 105

    frequency (Hz)

    (a) relative amplitude

    −0.40

    −0.30

    −0.30

    −0.20−0.20 −0

    .10

    −0.10

    0.00

    0.00

    0.100.10

    0.10

    0.20

    0.20

    0.20

    0.30

    0.30

    0.40

    0.40

    0.50

    0.50

    0.60

    0.70

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    angl

    e (°

    )

    104 105

    frequency (Hz)

    (b) phase difference (◦)

    Figure: Relative amplitude and phase difference of TM-mode impedancew.r.t. case of normal incidence (angle= 0◦) at frequencies between 10 and300 kHz.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    2D forward modelling example

    020406080

    100120140

    z (m

    )

    0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

    y (m)

    200 500 1000 2000 5000 10000 20000 50000ρ(Ω m)

    Figure: Simple 2D model with a conductive block of ρ = 1000 Ωm in ahalf-space with a resistivity of ρ = 10000 Ωm and ǫr = 5 throughout. Receiverpositions are indicated by black triangles.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    ρ a(Ω

    m)

    0 200 400 600 800y (m)

    (a) ρa of TM-mode

    20

    30

    40

    50

    60

    70

    φ(°)

    0 200 400 600 800y (m)

    250.00 kHz100.00 kHz10.00 kHz

    rebocc w. disp.

    250.00 kHz100.00 kHz10.00 kHz

    rebocc w/o. disp.

    (b) φ of TM-mode

    Figure: Comparison of FDA responses of block model with displacementcurrents (symbols) with FDA solution computed in quasi-static approximation(dotted lines with symbols).

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    −0.2

    −0.1

    0.0

    0.1

    0.2

    Re(

    B)

    0.0 200.0 400.0 600.0 800.0y (m)

    (1)

    (2)(6)

    (7)

    (c) Re(B) of VMT

    −0.2

    −0.1

    0.0

    0.1

    0.2

    Im(B

    )0.0 200.0 400.0 600.0 800.0

    y (m)

    250.00 kHz100.00 kHz10.00 kHz

    rebocc w. disp.

    250.00 kHz100.00 kHz10.00 kHz

    rebocc w/o. disp.

    (d) Im(B) of VMT

    Figure: – continued

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    −5.0·10−5+0.0·10+0+5.0·10−5+1.0·10−4+1.5·10−4+2.0·10−4+2.5·10−4+3.0·10−4+3.5·10−4+4.0·10−4+4.5·10−4

    Re(

    j tot/E

    x0)

    (A/V

    m)

    0 100 200 300 400 500 600 700 800

    y (m)

    0

    50

    100

    150

    200

    250

    300

    z (m

    )

    (a) Re (jx) with displacement currents

    −5.0·10−5+0.0·10+0+5.0·10−5+1.0·10−4+1.5·10−4+2.0·10−4+2.5·10−4+3.0·10−4+3.5·10−4+4.0·10−4+4.5·10−4

    Re(

    j con

    d/E

    x0)

    (A/V

    m)

    0 100 200 300 400 500 600 700 800

    y (m)

    0

    50

    100

    150

    200

    250

    300

    z (m

    )

    (b) Re (jx) of quasi-static case

    Figure: Real part of current density jx of the TE-mode at f = 250 kHz for thegeneral case with displacement currents (left) and the quasi-static case(right).

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    air

    Earth

    z

    xy

    current systemlaterallyhomogeneous

    current systemlaterallyhomogeneous

    Hh HhHb

    (1) (2) (3) (4) (5) (6) (7)

    conductiveblock

    −0.20

    −0.10

    0.00

    0.10

    0.20

    0 100 200 300 400 500 600 700 800

    Re(

    B)

    y (m)

    (1) (2)(3)

    (4) (5)(6) (7)

    Figure: Real part of current density jx with real part of the magnetic field H(top) and the real part of the VMT response Re (B) (bottom).

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    2D inverse modelling example

    Simple model with block in a two-layer host.

    Synthetic data for TE- and TM-mode were computed andcontaminated with 5% Gaussian noise on the impedances.

    Results from inversions with and without displacement currentsare compared.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    0

    50

    100

    150

    200

    250

    300

    z (m

    )

    0 50 100 150 200 250 300 350 400

    y (m)

    200

    500

    1000

    2000

    5000

    10000

    20000

    50000ρ(Ω

    m)

    Figure: Model with a buried elongated block of a resistivity of 1000 Ωm in aresistive layer of 10000 Ωm underlain by a half-space of 500 Ωm and ǫr = 5throughout. Receiver positions are indicated by black triangles.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    0

    50

    100

    150

    200

    250

    300

    z (m

    )

    0 50 100 150 200 250 300 350 400

    y (m)

    200

    500

    1000

    2000

    5000

    10000

    20000

    50000

    ρ(Ω m

    )

    Figure: 2D REBOCC inversion result of synthetic data from block model,displacement currents were allowed for; RMS = 1.04.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    0

    50

    100

    150

    200

    250

    300

    z (m

    )

    0 50 100 150 200 250 300 350 400

    y (m)

    200

    500

    1000

    2000

    5000

    10000

    20000

    50000

    ρ(Ω m

    )

    Figure: 2D REBOCC inversion result of synthetic data from block model,displacement currents were not allowed for; RMS = 1.95.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    Field example from Ävrö, Sweden

    RMT profile: 96 Rx and frequencies from 14 to 226 kHz.

    Linde and Pedersen [2004] restricted data for inversion to lowerfrequencies up to 56 kHz.

    Only determinant inversion due to 3D effects at ends of profile.

    Comparison of models from inversions in quasi-staticapproximation and with displacement currents (with ǫr = 6throughout) for both data set restricted to lower frequencies andfull data set.

    Comparison of models with seismic reflectors C and D by Juhlinand Palm [1999] and a normal-resistivity log of borehole KAV01by Gentzschein et al. [1987].

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    0

    50

    100

    150

    200

    250

    300

    350

    400

    z (m

    )

    0 100 200 300 400 500 600 700 800 900

    y (m)

    CD

    100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)

    Figure: Model QL for low-frequency data set w/o. disp. curr.; RMS = 1.56.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    0

    50

    100

    150

    200

    250

    300

    350

    400

    z (m

    )

    0 100 200 300 400 500 600 700 800 900

    y (m)

    CD

    KAV01

    100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)

    Figure: Model DL for low-frequency data set w. disp. curr.; RMS = 2.03.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    0

    50

    100

    150

    200

    250

    300

    350

    400

    z (m

    )

    0 100 200 300 400 500 600 700 800 900

    y (m)

    100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)

    Figure: Model QF for full set of frequencies w/o. disp. curr.; RMS = 3.16.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    0

    50

    100

    150

    200

    250

    300

    350

    400

    z (m

    )

    0 100 200 300 400 500 600 700 800 900

    y (m)

    CD

    KAV01

    100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)

    Figure: Model DF for full set of frequencies w. disp. curr.; RMS = 2.60.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • TheorySynthetic examples

    Field example from Ävrö, SwedenConclusions

    Conclusions

    1 If displacement currents are present,apparent resistivity and phase responses are smaller than inquasi-static approximation,tipper responses can show more distinct sign reversals, andquasi-static inverse models are prone to artefactual structures.

    2 If displacement currents are accounted for, field example showsbetter agreement with

    seismic reflectors anda normal-resistivity borehole log.

    3 Even if restricted to lower frequencies quasi-static inversion mightgive strongly distorted models.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • References

    References I

    B. Gentzschein, G. Nilsson, and L. Steinberg. Preliminaryinvestigations of fracture zones at Ävrö - Results from investigationsperformed July 1986 - May 1987. SKB Progress Report 25-87-16,SKB, 1987.

    C. Juhlin and H. Palm. 3-D structure below Ävrö island fromhigh-resolution reflection seismic studies, southeastern Sweden.Geophysics, 64(3):662–667, 1999.

    N. Linde and L. B. Pedersen. Characterization of a fractured graniteusing radio magnetotelluric (RMT) data. Geophysics, 69(5):1155–1165, 2004.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    A dark chapter ...

    ... with figures that should not be shown to a critical audience ...

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    Fit of model QF I

    104

    105

    freq

    uenc

    y (H

    z)

    0 100 200 300 400 500 600 700 800 900profile (m)

    −11

    −9

    −7

    −5

    −3

    −1

    1

    3

    5

    7

    9

    11

    rel. err. ρapp (%

    /100)

    Figure: Data fit of model QF to apparent resistivity of determinant.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    Fit of model QF II

    104

    105

    Per

    iod

    (s)

    0 100 200 300 400 500 600 700 800 900Profile (m)

    −11

    −9

    −7

    −5

    −3

    −1

    1

    3

    5

    7

    9

    11

    rel. err. φ (%/100)

    Figure: Data fit of model QF to phase of determinant.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    Fit of model DF I

    Model DF fits

    apparent resistivity rather well at all frequencies, some 3D effectsare visible at the beginning and end of profile and

    phase quite badly at high frequencies, might be an effect of localsources (nuclear power plant), i.e. strong near-field effects inphase.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    Fit of model DF II

    104

    105

    freq

    uenc

    y (H

    z)

    0 100 200 300 400 500 600 700 800 900profile (m)

    −11

    −9

    −7

    −5

    −3

    −1

    1

    3

    5

    7

    9

    11

    rel. err. ρapp (%

    /100)

    Figure: Data fit of model DF to apparent resistivity of determinant.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

  • AppendixFit of model QFFit of model DF

    Fit of model DF III

    104

    105

    Per

    iod

    (s)

    0 100 200 300 400 500 600 700 800 900Profile (m)

    −11

    −9

    −7

    −5

    −3

    −1

    1

    3

    5

    7

    9

    11

    rel. err. φ (%/100)

    Figure: Data fit of model DF to phase of determinant.

    Kalscheuer et al. Radiomagnetotelluric 2D modelling

    OutlineMain TalkTheoryRMT Field SetupGoverning equations

    Synthetic examples1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example

    Field example from Ävrö, SwedenConclusions

    ReferencesReferences

    AppendixAppendixFit of model QFFit of model DF