Radiomagnetotelluric 2D forward and inverse modelling with ... · 1D forward modelling example...
Embed Size (px)
Transcript of Radiomagnetotelluric 2D forward and inverse modelling with ... · 1D forward modelling example...
-
Outline
Radiomagnetotelluric 2D forward and inversemodelling with displacement currents
Thomas Kalscheuer1 Laust B. Pedersen2
Weerachai Siripunvaraporn3
1Department of Earth SciencesETH Zürich, Switzerland
2Department of Earth SciencesUppsala University, Sweden
3Department of Physics, Faculty of ScienceMahidol University, Thailand
3/9/2009
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
Outline
Introduction
Goal: Inclusion of displacement currents in a 2D inversescheme of radiomagnetotelluric (RMT) data withsimplifications:
using vertically incident plane waves andassuming constant dielectric permittivity insubsurface.
Method: Modification of routines for forward and sensitivitycomputations of an existing 2D inverse code (REBOCC)that utilizes finite-difference approach.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
Outline
Outline
1 TheoryRMT Field SetupGoverning equations
2 Synthetic examples1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
3 Field example from Ävrö, Sweden
4 Conclusions
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
RMT Field SetupGoverning equations
RMT Field Setup I
Surface measurement of electric and magnetic field components.
Frequency range typically 10 to 300 kHz.
Primary signal from remote radio transmitters.Hence, plane-wave assumption.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
RMT Field SetupGoverning equations
RMT Field Setup II
Ηz ΗxΗy
air
Earthstrike parallelto x-direction
structure with anomalous electrical properties
z
xy
ΕxΕy
datalogger
Figure: RMT field setup.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
RMT Field SetupGoverning equations
Governing equations
Governing equations:
In frequency domain:
∇× E = −(iωµ0)H Faraday′s law (1)
∇× H = (σ + iωǫ) E Ampere′s law (2)
Conduction currents: σE.Displacement currents: iωǫE.
So far quasi-static assumption, i.e. displacement currentsnegligible: ωǫ
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
RMT Field SetupGoverning equations
Responses on 2D Earth for vertical incidence only (!):Impedance tensor Z:
[
ExEy
]
=
[
0 ZxyZyx 0
] [
HxHy
]
TE − modeTM − mode
(3)
givingapparent resistivities ρija =
1ωµ0
|Zij |2 and
phases φij = arg(
Zij)
.Vertical magnetic transfer function (VMT) B:
Hz = B · Hy . (4)
Given error level of 2 % on elements of Z, a homogeneoushalf-space and vertically incident plane waves, effect ofdisplacement currents on φ is above the error level at e.g.f = 15 kHz and ρ = 10000 Ωm or f = 170 kHz and ρ = 1000 Ωmfor ǫr = 5.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
1D forward modelling example
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
0 25 50 75 100 125 150 175 200 225 250
ρ a (
Ωm
)
frequency (kHz)
apparent resistivity
1D w/o. disp. curr.1D w. disp. curr.
2D FDA TM 27.5
30
32.5
35
37.5
40
42.5
45
47.5
0 25 50 75 100 125 150 175 200 225 250φ
(°)
frequency (kHz)
phase
1D w/o. disp. curr.1D w. disp. curr.
2D FDA TM
Figure: Analytic 1D solution and 2D FDA solution of apparent resistivity andphase for the TM-mode on the surface of a homogeneous half-space withρ = 10000 Ωm and ǫr = 5.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
Effect of oblique incidence I
As only vertically incident plane waves are considered, effect ofoblique incidence needs to be estimated for typical 1D examples.
Typical depth section of later field example:
ρ1=600Ωm, εr=6
ρ3=600Ωm, εr=6
ρ2=30000Ωm, εr=6
h1=25m
h2=75m
x
z
yθi
Figure: 1D model; θi = 0 for vertical incidence.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
Effect of oblique incidence II
0.984
0.988
0.988
0.992
0.992
0.99
60.996
0.996
1.00
0
1.0001.0001.000
1.004
0
10
20
30
40
50
60
70
80
90
angl
e (°
)
104 105
frequency (Hz)
(a) relative amplitude
−0.40
−0.30
−0.30
−0.20−0.20 −0
.10
−0.10
0.00
0.00
0.100.10
0.10
0.20
0.20
0.20
0.30
0.30
0.40
0.40
0.50
0.50
0.60
0.70
0
10
20
30
40
50
60
70
80
90
angl
e (°
)
104 105
frequency (Hz)
(b) phase difference (◦)
Figure: Relative amplitude and phase difference of TM-mode impedancew.r.t. case of normal incidence (angle= 0◦) at frequencies between 10 and300 kHz.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
2D forward modelling example
020406080
100120140
z (m
)
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
y (m)
200 500 1000 2000 5000 10000 20000 50000ρ(Ω m)
Figure: Simple 2D model with a conductive block of ρ = 1000 Ωm in ahalf-space with a resistivity of ρ = 10000 Ωm and ǫr = 5 throughout. Receiverpositions are indicated by black triangles.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
2000
4000
6000
8000
10000
12000
14000
ρ a(Ω
m)
0 200 400 600 800y (m)
(a) ρa of TM-mode
20
30
40
50
60
70
φ(°)
0 200 400 600 800y (m)
250.00 kHz100.00 kHz10.00 kHz
rebocc w. disp.
250.00 kHz100.00 kHz10.00 kHz
rebocc w/o. disp.
(b) φ of TM-mode
Figure: Comparison of FDA responses of block model with displacementcurrents (symbols) with FDA solution computed in quasi-static approximation(dotted lines with symbols).
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
−0.2
−0.1
0.0
0.1
0.2
Re(
B)
0.0 200.0 400.0 600.0 800.0y (m)
(1)
(2)(6)
(7)
(c) Re(B) of VMT
−0.2
−0.1
0.0
0.1
0.2
Im(B
)0.0 200.0 400.0 600.0 800.0
y (m)
250.00 kHz100.00 kHz10.00 kHz
rebocc w. disp.
250.00 kHz100.00 kHz10.00 kHz
rebocc w/o. disp.
(d) Im(B) of VMT
Figure: – continued
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
−5.0·10−5+0.0·10+0+5.0·10−5+1.0·10−4+1.5·10−4+2.0·10−4+2.5·10−4+3.0·10−4+3.5·10−4+4.0·10−4+4.5·10−4
Re(
j tot/E
x0)
(A/V
m)
0 100 200 300 400 500 600 700 800
y (m)
0
50
100
150
200
250
300
z (m
)
(a) Re (jx) with displacement currents
−5.0·10−5+0.0·10+0+5.0·10−5+1.0·10−4+1.5·10−4+2.0·10−4+2.5·10−4+3.0·10−4+3.5·10−4+4.0·10−4+4.5·10−4
Re(
j con
d/E
x0)
(A/V
m)
0 100 200 300 400 500 600 700 800
y (m)
0
50
100
150
200
250
300
z (m
)
(b) Re (jx) of quasi-static case
Figure: Real part of current density jx of the TE-mode at f = 250 kHz for thegeneral case with displacement currents (left) and the quasi-static case(right).
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
air
Earth
z
xy
current systemlaterallyhomogeneous
current systemlaterallyhomogeneous
Hh HhHb
(1) (2) (3) (4) (5) (6) (7)
conductiveblock
−0.20
−0.10
0.00
0.10
0.20
0 100 200 300 400 500 600 700 800
Re(
B)
y (m)
(1) (2)(3)
(4) (5)(6) (7)
Figure: Real part of current density jx with real part of the magnetic field H(top) and the real part of the VMT response Re (B) (bottom).
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
2D inverse modelling example
Simple model with block in a two-layer host.
Synthetic data for TE- and TM-mode were computed andcontaminated with 5% Gaussian noise on the impedances.
Results from inversions with and without displacement currentsare compared.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
0
50
100
150
200
250
300
z (m
)
0 50 100 150 200 250 300 350 400
y (m)
200
500
1000
2000
5000
10000
20000
50000ρ(Ω
m)
Figure: Model with a buried elongated block of a resistivity of 1000 Ωm in aresistive layer of 10000 Ωm underlain by a half-space of 500 Ωm and ǫr = 5throughout. Receiver positions are indicated by black triangles.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
0
50
100
150
200
250
300
z (m
)
0 50 100 150 200 250 300 350 400
y (m)
200
500
1000
2000
5000
10000
20000
50000
ρ(Ω m
)
Figure: 2D REBOCC inversion result of synthetic data from block model,displacement currents were allowed for; RMS = 1.04.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
0
50
100
150
200
250
300
z (m
)
0 50 100 150 200 250 300 350 400
y (m)
200
500
1000
2000
5000
10000
20000
50000
ρ(Ω m
)
Figure: 2D REBOCC inversion result of synthetic data from block model,displacement currents were not allowed for; RMS = 1.95.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
Field example from Ävrö, Sweden
RMT profile: 96 Rx and frequencies from 14 to 226 kHz.
Linde and Pedersen [2004] restricted data for inversion to lowerfrequencies up to 56 kHz.
Only determinant inversion due to 3D effects at ends of profile.
Comparison of models from inversions in quasi-staticapproximation and with displacement currents (with ǫr = 6throughout) for both data set restricted to lower frequencies andfull data set.
Comparison of models with seismic reflectors C and D by Juhlinand Palm [1999] and a normal-resistivity log of borehole KAV01by Gentzschein et al. [1987].
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
0
50
100
150
200
250
300
350
400
z (m
)
0 100 200 300 400 500 600 700 800 900
y (m)
CD
100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)
Figure: Model QL for low-frequency data set w/o. disp. curr.; RMS = 1.56.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
0
50
100
150
200
250
300
350
400
z (m
)
0 100 200 300 400 500 600 700 800 900
y (m)
CD
KAV01
100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)
Figure: Model DL for low-frequency data set w. disp. curr.; RMS = 2.03.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
0
50
100
150
200
250
300
350
400
z (m
)
0 100 200 300 400 500 600 700 800 900
y (m)
100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)
Figure: Model QF for full set of frequencies w/o. disp. curr.; RMS = 3.16.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
0
50
100
150
200
250
300
350
400
z (m
)
0 100 200 300 400 500 600 700 800 900
y (m)
CD
KAV01
100 200 500 1000 2000 5000 10000 20000 50000 100000ρ(Ω m)
Figure: Model DF for full set of frequencies w. disp. curr.; RMS = 2.60.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
TheorySynthetic examples
Field example from Ävrö, SwedenConclusions
Conclusions
1 If displacement currents are present,apparent resistivity and phase responses are smaller than inquasi-static approximation,tipper responses can show more distinct sign reversals, andquasi-static inverse models are prone to artefactual structures.
2 If displacement currents are accounted for, field example showsbetter agreement with
seismic reflectors anda normal-resistivity borehole log.
3 Even if restricted to lower frequencies quasi-static inversion mightgive strongly distorted models.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
References
References I
B. Gentzschein, G. Nilsson, and L. Steinberg. Preliminaryinvestigations of fracture zones at Ävrö - Results from investigationsperformed July 1986 - May 1987. SKB Progress Report 25-87-16,SKB, 1987.
C. Juhlin and H. Palm. 3-D structure below Ävrö island fromhigh-resolution reflection seismic studies, southeastern Sweden.Geophysics, 64(3):662–667, 1999.
N. Linde and L. B. Pedersen. Characterization of a fractured graniteusing radio magnetotelluric (RMT) data. Geophysics, 69(5):1155–1165, 2004.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
A dark chapter ...
... with figures that should not be shown to a critical audience ...
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
Fit of model QF I
104
105
freq
uenc
y (H
z)
0 100 200 300 400 500 600 700 800 900profile (m)
−11
−9
−7
−5
−3
−1
1
3
5
7
9
11
rel. err. ρapp (%
/100)
Figure: Data fit of model QF to apparent resistivity of determinant.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
Fit of model QF II
104
105
Per
iod
(s)
0 100 200 300 400 500 600 700 800 900Profile (m)
−11
−9
−7
−5
−3
−1
1
3
5
7
9
11
rel. err. φ (%/100)
Figure: Data fit of model QF to phase of determinant.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
Fit of model DF I
Model DF fits
apparent resistivity rather well at all frequencies, some 3D effectsare visible at the beginning and end of profile and
phase quite badly at high frequencies, might be an effect of localsources (nuclear power plant), i.e. strong near-field effects inphase.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
Fit of model DF II
104
105
freq
uenc
y (H
z)
0 100 200 300 400 500 600 700 800 900profile (m)
−11
−9
−7
−5
−3
−1
1
3
5
7
9
11
rel. err. ρapp (%
/100)
Figure: Data fit of model DF to apparent resistivity of determinant.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
-
AppendixFit of model QFFit of model DF
Fit of model DF III
104
105
Per
iod
(s)
0 100 200 300 400 500 600 700 800 900Profile (m)
−11
−9
−7
−5
−3
−1
1
3
5
7
9
11
rel. err. φ (%/100)
Figure: Data fit of model DF to phase of determinant.
Kalscheuer et al. Radiomagnetotelluric 2D modelling
OutlineMain TalkTheoryRMT Field SetupGoverning equations
Synthetic examples1D forward modelling exampleEffect of oblique incidence2D forward modelling example2D inverse modelling example
Field example from Ävrö, SwedenConclusions
ReferencesReferences
AppendixAppendixFit of model QFFit of model DF