r Numerical Experiments in Homogeneous Turbulencerstoll/LES/Handouts/Rogallo_NASA1981.pdf · 2012....

93
K,,, I'i" I, ' " i/ r :L.,. : .::......... NASA Technical Memorandum 81315 _IOMOGEN_OUS "LIBUULhNCJ_ (L_ASA) 9_ p hC A05/t1_ AOI CS_L 23U 1t81-_1308 G J/J4 :_74_J1 Numerical Experiments in Homogeneous Turbulence Robert S. Rogallo September !981 National Aeronautics ancl Space AOm;n_strat_on lr_, _:,. ,: <.% _:\

Transcript of r Numerical Experiments in Homogeneous Turbulencerstoll/LES/Handouts/Rogallo_NASA1981.pdf · 2012....

  • K,,,

    I'i"

    I, ' "

    i/

    r

    • :L.,. : .::.........

    NASA Technical Memorandum 81315

    _IOMOGEN_OUS "LIBUULhNCJ_ (L_ASA) 9_ p

    hC A05/t1_ AOI CS_L 23U

    1t81-_1308

    G J/J4 :_74_J1

    Numerical Experiments inHomogeneous Turbulence

    Robert S. Rogallo

    September !981

    National Aeronautics ancl

    Space AOm;n_strat_on

    lr_, _:,. ,:

  • ,"'_ NASA Technical Memorandum 81315

    Numerical Experiments inHomogeneous Turbulence

    Robert S. Rogallo

    September 1981

    N/EWNaltonal Aeronaul_cs and

    Space Aclnl_nnstrat_on

    IJ

  • i

    !/

    P

    t.

    \

    F

    NUMERICAL EXPERIMENTS IN HOMOGENEOUS TURBULENCE

    Robert S, Rogallo

    Ames Research 3enter

    SUM_I,ARY

    The direct simulation methods developed by Orszag and Patterson (1972) for

    IsotropJc turbulence have been extended to homogeneous turbulence in an

    incom_rL, sslble fluid subjected to unifo_ deformation or rotation. The results of

    simulations for irrotational strain (plane and axisymmetrlc), shear, rotation, and

    relaxation toward isotropy following axisymmetric strain are compared with linear

    theory and experimental data. Emphasis is placed on the shear flow because of its

    importance and because of the availability of accurate and detailed experimental

    data. The computed results are used to assess the accuracy of two popular models

    used in the closure of the Reynolds-stress equations. Data from a variety of the

    computed fields and the details of the numerical methods used in the simulation are

    also presented.

    INTRODUCTION

    The turbulence problem has remained the greatest challenge to fluid dynamiclsts

    since its definition by Reynolds I00 years ago. The nonlinearity of the

    Navier-Stokes equations prevents statistical analysis of the dynamics of energetic

    turbulent fields, and as a result no theory has yet been devised that is devoid of

    assumptions beyond that of the validity of the Navier-Stokes equations themselves.

    Althou_h statistical, tensorial, and dimensional analysis combined with the

    continuity condition provide constraints on the statistics of a turbulent field, our

    knowledge of the statistics themselves has been gained primarily through experiment.

    The turbulent flows of interest in engineering, !;oophysics, and meteorology are

    complex even at the statistical level, but there are interesting flows with

    spatially homogeneous statistics that have been examined both theoretically and

    experimentally. Although these homogeneous flows do not have net diffusion of

    turbulence momentum or energy, they can be a_isotropi¢ and extract energy from the

    mean motion ; therefore, they provide a case for study intermediate in complexity

    between !sotropic flows and general inhomogcneous flow_. Although homogeneous flows

    are mort, difficult to achieve _.x_,erlmen_ ill,,' than luhomogeneous flows, such as Jets,

    wakes, ;_nd pipe flow, they are considerably easier to simul,',te on a computer becauseof the absence of flow boundaries.

    The method of direct numerical simulation of homogeneous turbulence in general

    use today is that of Orszag and Patterson (1972). The turbulence field i_

    represented by the coefficients of a truncated three-dimensional Fourier series, or

  • 'r

    L

    equivalently by spatially periodic discrete values on a uniform mesh in physical

    space. Trans£or_atlon between the two spaces (physlcal and wave) is accomplished byfast Fourier transforu. Differentiation is performed in wave space asmultlpllcstlon by the wave number, and velocity products are carried out In physicalspace to avoid the expensive convolutlon sums required for that operstlon in wave

    space. The field can be tlme-advanced in either space by any algorithm appropriatefor systems of ordln_ry dlff_rentlal equations.

    There are two basic requirements that a direct slmulatlon must meet if it is torepresent turbulence. First, it must represent a solution of the Navler-Stokes

    equations. This means that all scales of motion must be adequately resolved, in thedeterministic sense, by the computatlonal mesh. In partlcular, the Reynolds number

    should be small enough to allow the mesh to accurately capture the viscousdissipation scales. The explicit use of Fourier series then implies a spatlallyperiodic solution of the Navler-Stokes equation. The second requirement is that this

    periodic solution be sufficiently compllcated, that is, it must provide adequate

    statistical resolution (large sample) of the set of all possible fluid motionsallowed by the Navler-Stokes equations. The computatlonal sample of a scale of

    motion is inversely proportional to the volume of the scale. Thus scales of motioncomparable to the computatlonal period have a very small sample (-i), and scalescomparable to the mesh spacing have a large sample (-i05 for a 1283 mesh). The two

    requirements for a turbulence simulation conflict; the sample improves as the energy

    moves to smaller scales but the viscous resolution is degraded.

    The range of scales (the ratio of the wavelength of the fundamental to that ofthe highest wave number carried) in a given direction is M/2, where M is the number

    of nodes in that direction. The largest computers available today allow 128 mesh

    cells in each direction, which limits the useful range of scales to about i0 or so.

    That is, the bulk of the total turbulent energy must be contained within one decade

    of scale. This is a severe constralnt and it limits completely resolved direct

    simulation to very low Reynolds numbers. In practice we usually accept some error in

    order to obtain a higher Reynolds number. In some cases we sacrifice sample and

    shift the computed scale range toward the small scales , and in others we sacrifice

    resolution of the dissipation process and shift the computed range toward the large

    scales. For the current study we are most interested in the anigotropy of the

    Reynolds-stress tensor, and less interested in the details (such as intermlttency) of

    the small scales, and we generally accept incomplete resolution of the dissipation

    scales. It appears, however, that the error in total dissipation is much less

    affected than is its spectral distribution because the total is determined primarilyby energy transfer down-scale within the energetic scales; this in turn depends onhow well the energetlc scales themselves are resolved and not on how well the actual

    dissipative scales are resolved.

    Computation and physical experiment complewent each other rather well for

    homogeneous turbulence. The experimental difficulties are associated with setting up

    the mean motion, achieving a homogeneous turbulence field, and in the actual

    measurement of the various spectra, correlations, etc. There is no doubt that the

    physical experiment produces result8 at all scales in accordance with the

    Nsvler-Stokea equations, although frequency response (in both space and time) Of the

    instrumentation can limit their measurement. The computation on the other hand has

    no dl/flculty settlns up the mean flow or making measurements. The difficulty is

    that because of limited resolution (statistical accuracy at the large scales,nuaerlcal accuracy at the small scales), It is not always simple to relate computed

    quan_itte_ to those of the experiment at much higher Reynolds number. The goal ofthis study is to use experimental data to validate simulated turbulence fields, which

  • 7

    'i

    in turn provide measurements that are not available from experiment. The quantities

    measured here are primarily those volume averages appearing in the Reynolds-stress

    equations,

    In the sections that follow we consider four cases of homogeneous turbulence,

    each being the evolution from an initially Isotropic state caused by a mean velocity

    gradient uniform in space and time. The deformations considered are (I) irrotatlonal

    plane strain, (2) Irrotational axlsymmetric strain, (3) uniform shear, and (4)

    uniform rotation. In the case of axlsymmetrlc strain We allow the turbulence to

    relax back toward Isotropy when the straining ceases. The only theory available to

    describe the evolution of these flows is a linear theory valid in the limit in which

    the time scale of all turbulence scales is much longer than the time scale given by

    the mean velocity gradient. This theory, due originally to Taylor (1935), has been

    developed for each case by various authors and is used, togeth±r with available

    experimental data, to establish (we hope) some credibility for the simulations.

    Then, as an example of how the detailed measurements of the simulated fields might be

    used to aid the turbulence-model maker, we have compared measured values from the

    fields with modeled values following recommendations of Rotta (1951) and Launder,

    Reece, and Rodl (1975).

    Finally, more details are given in the appendixes, Appendix A presents in

    tabular form various raw data measured in each field, including the Reynolds-stress

    budget; Appendix B provides a more detailed exposition of the equations and numerical

    methods used in the simulations.

    PLANE STRAIN

    Nearly Isotroplc turbulence, subjected to a uniform strain in two directions,

    has been investigated experimentally by Townsend (1951) and by Tucker end Reynolds

    (1968) by passing grld-generated turbulence through a channel of changing cross

    section. Townsend imposed a total strain of 4 in directions transverse to the

    stream; Tucker and Reynolds imposed total strains of 6 in two different

    configurations, the first, like that of Townsend, was strained in the transverse

    directions and the second had one strain imposed in the flow dlrectioD. We fo]low

    the nomenclature of Townsend and take the flov direction to be x, imposing positive

    strain in the z direction and negative strain in the y direction. The results of

    Tucker and Reynolds indicate no significant difference between the two types of

    strain. The longitudinal strain does have the advantage, like the axisymmetric

    strain discussed in the next section, that the strain is giwen by direct measurement

    of the variation of mean flow velocity down the channel.

    Results of four computed cases, all evolving from the same isotropic initial

    state are presented. The initial state itself is the rest, It of an isotropic

    simulation so that the spectral transfer is establlshed. The mlcroscale Reynolds

    number q\It/_ of the initial field is -35, and dimensionless strain rates aq2/_ - .5,

    I, 2, and 4 _where a - d_/dz = -d_/dy, q2 = UlUi ' c = 2_Ui,JUl,J)

    are imposed in cases B2DI, B2D2, B2D3, and B2D4, respectively. The total strain

    achieved is 4; higher strains result in inadequate resolution because the

    computational mesh moves with the mean flow and becomes excessively strained. At the

    initial state, the computational cell has Av = 2Az, and at a strain of 4, Az = 2Ay.

  • W

    Three independent dimensionless parameters can be formed from the time t, strain

    rate a, viscosity v, and turbulent velocity and length scales q and L respectively.

    These are taken to be at, aL/q, qL/v, the dimensionless time, ratio of

    turbulence and strain time scales, and a turbulence macroscale Reynolds number. No

    information on macroscales is directly available from the experiments, so we have

    instead estimated L by assumlug ¢ - q3/L in the Isotroplc initial state. The iu!tlal

    conditions are then scaled by the dimensionless groups aq2/c and q_/_u. Estimates

    of the quantities for uhe experiments are as follows:

    o4_v _

    Townsend .5 in. mesh .45 95

    l in. mesh .45 230

    Tucker-Reynolds .3 475

    Present results .5,1,2,4 129

    Here the isotroplc relation e -, 10vq2/A_l has been used. For the Townsend

    experiment, the microscales are given and these are used to estimate c; for the

    Tucker and Reynolds experiment we have estimated _ by fitting a power law, with

    exponent of -1.2, to the plotted energy history; these estimates are very rough

    indeed.

    The linear theory of "sudden distortion" was originated by Taylor (1935) who

    considered the inviscid irrotational strain of a typical Fourier component of the

    velocity field. The effect of viscosity can be included by use of an integrating

    factor (Pearson (1959)). Batchelor and Proudman (1954) extended the inviscld theory

    to determine the effect of rapid irrotatlonal strains on the energy tensor of an

    initially isotroplc turbulence field, and the result is independent of the form of

    the energy spectrum E(k). Although viscosity can in principle be ::_dled exactly,

    the necessary integrals over Fo_rler space contain exponential factors _nd probably

    cannot be evaluated in closed form. The result would depend on the initial, spectrum.

    A comparison of the linear theory, experimental, and computational results is

    presented in figures 1 through 3. The evolution of the normalized energy tensor is

    shown in figure i, and the structur_ parameters introduced by Townsend are shown in

    figures 2 and 3. The computational results approach the linear theory consistently

    with increasing strain rate but, although they follow the trends of the experiment,

    quantitative agreement (particularly for K I and K[ ) is lacking.

    The differences between the two experiments are not consistent with our

    estimates of their dimensionless time scales and Reynolds numbers. At a given level

    of strain, the structure parameter K I should increase with strain rate but decrease

    with increasing Reynolds number. Our estimates of the dimensionless strain rates and

    Reynolds numbers of the experiments would cause us to expect higher K I values from

    the the Townsend experiment than from the Tucker and Reynolds experiment, but that is

    not the case.

  • ,1 ¸

    \

    I'

    AXISY_IETRIC STRAIN

    Turbulence in an axisymmetric strain field is the simplest anisotropic flow.

    Because it occurs often in engineering applicatio,_s, it has been studied i_ a number

    of experiments. We will compare the computational results with the experimental data

    of Uberoi (1956) and Hussain and RamJee (1976), who achieved total strains up to 16

    at a wide range of Reynolds numbers. Unfortunately, _nformatlon concerning the

    dissipation rate and length scales was not presented, and we are unable to determine

    with any confidence the turbulence Reynolds numbers or time scales of the turbulence

    prior to straining.

    Simulations were made with four constant strain rates applied at each of two

    viscosity values. The dimensionless strain rates aq2/¢, where

    a - d_/dx = -2d_/dy = -2d_/dz, were 0.3, 0.6, 1.2, and 2.4, and the £nitial

    Reynolds numbers q4/v_ were 15 and 56. The evolution of the longitudinal and

    transverse component energies, normalized by their initial values for five of the

    eight simulated cases, the inviscid linear theory, and the experimental results of

    Uberoi and Hussaln-RamJee, are shown in figure 4. The computational results approach

    rapld-distortion theory consistently with increasing strain rate and Reynolds number,

    and the differences between computation and experiment seem to indicate a higher

    experimental strain rate. Beyond a strain of 4, the experimental component

    energy u 2 grows because of the redistribution of energy by the pressure-straln

    correlation, and the computational data (appendix A) indicate that _his is a result

    primarily of the growth of the "slow-pressure-strain" term with increasing strain.

    :q

    i!

    HOMOGENEOUS SHEAR

    Homogeneous shear turbulence is the closest structurally to flows of engineering

    interest and has been extensively investigated by experimenters. In a series of

    papers from Johns Hopkins University, Rose (1966), Champagne, Harris and Corrsln

    (1970), Harris, Graham and Corcsln (1977), aud Tavoularis and Corrsin (1981)

    (hereafter TC) have provided extensive documentation of the development of turbulence

    subjected to uniform shear. The results of Mulhearn and Luxton (1975) are in

    substantial agreement with the earlier work of the Johns Hopkins group. On the other

    hand, the linear theory of hoeoge_eous shear turbulence has been worked out by

    Delssler (1961, 1970, 1972), and Fox (1964); their results are consistent with the

    initial stage of development of the experimentally observed turbulence.

    The linear theory can be worked out in a somewhat simplex way than that of

    Delssler, who worked directly with the equations for the spectrum tensor after

    dropping out the triple correlations. Written in a coordinate system moving with the

    mean shear, the ilnear_zod Navier-Stokes equations are

    u t + sV + PK = _(_u

    vt - stpx + py = _v

    Wr + Pz = v_w

    ux - stv.¢ + Vy + w z " 0

  • rI........

    L_

    i!!i

    where

    d_s -- and

    dy @ = T_x2.+ - st + _z--_

    Upon taking the Fourier transform of these equations and solving the remaining

    ordinary differential equations for the time variation, we obtain

    F_ = -Ak3 + B[k3 2 tan-lrl - k12 1"+'-_ }

    i

    F9 = Bk I /k12 + k32 1 + q2

    {F_ = Ak I - Bklk 3 tan-lq + 1 + _2where F is th_ integrating factor

    -_ 3/2(q 1 3)log F = _s (k12 + k32) ": _ q

    k2 - klst

    q =

    Jkl2 + k32

    and A(k), B(k) are determined from the initial conditions. The evolution of the

    spectrum tensor from an iso

  • ....... -7

    the experimental evidence at small times (st < 4)and predicts (surprisingly well)

    the magnitude of the shear stress correlation "_/u'v" and the ordering

    u" > w" > v" of the component energies. It has been determined experimentally,

    however, that the v component eventually grows, gaining energy through the

    pressure-strain correlation caused by the nonlinear transport terms in the

    Navler-Stokee equations; this in turn leads to growth in uv and the energy. The

    ultimate fate of the turbulence is currently a speculative issue, but there is

    evidence of a self-similar evolution. The energy is still growing at the largest

    times observed in both the experiments and computation, and the ratios of component

    energies and integral scales are still varying, although rather slowly. If the

    turbulence approaches a self-slmilar state with slngle velocity scale q and single

    length scale L, its attributes depend only upon t, q, L, s, and u. Dimensional

    analysis then requires

    q

    If the velocity and length scales both grow monotonically at large

    times, sL/q must approach a finite nonzero constant, because if sL/q_=,li-_r

    theory is valid and predicts the ultimate decay of q; similarly, if sL/q÷O, the

    flow approaches isotropy and q decays. With nonzero s the flow can not become

    isotropic in any case because for isotropic flow there is strong experimental

    evidence that L" q3/¢ and q- t-n from which it follows that d(sL/q)/d(st) > O.

    Four _hear flows were simulated, three of them (BSH9, BSHIO, and BSHll) from the

    same initial conditions. The initial energy spectrum for these runs was simply a

    square pulse E(k) - 1 for 16 < k < 32, a wave-number band containing roughly a

    quarter million Fourier modes. The inltial spectrum for the fourth case (BSHI2) was

    a square pulse at I0 < k < 20, the lower wave number allowing a higher Reynolds

    number to be attained.

    The shear rates and viscosity used are as follows:

    Case Spectrum s

    (E(k)-[)

    BSH_ 16

  • w.q__ _¸_¸ ..... ,v,,_..... -.....

    statlsti_al sample, and although the simulation is still a periodic solution of the

    _avier-Stokes equations, it is not representatlve_ at the large scales, of

    turbulence. However the smaller scales still retain a good sample, and stati_tics

    from them (e.g., microscale_) show no anomalous behavior. As shown in figure ii, the

    dissipation scales are adequately sampled throughout the run, but for st~12 the

    spectrum does not decay with wave number rapidly enough to allow complete resolution

    of the dissipation scales. All four cases appear to be adequately resolve_ at

    st - 8; BSH9 and BSHI2 are marginal at st - I0 ; and BSHIO and BSHII are marginal atst - 12.

    The primary dimensionless flow parameters are presented in figures 12 and 13.

    We have used the longitudinal integral scale LII,I in the streamwise direction(x) asthe length scale and q . (_)I/2 as _he velocity scale. The mean shea_ s

    provides the time scale of the shear. In figure 12, the experimental data of TC

    indicate that the growth of velocity and length scales has equilibrated at st-8; this

    is prevented in the computation by the peculiar growth of the integral scale. The

    turbulence Reynolds number shown i_ figure 13 indicates that the experimental data

    are consistent with exponential growth in beth velocity and length scales, having

    roughly the same growth rate as the computation. The expei lmental Reynolds numbers

    are simply not attainable with the available computational resolution but we hope

    that the Reynolds numbers attained are high enough for the statlstics of =he

    energetic scales to achieve nearly asymptotic values. The classical[ mixing length

    (fig. 14) is formed from velocity scales of the turbulence and the (constant for each

    run) time scale of the shear; it appears to grow exponentially at _arller times than

    does q (fig. 5(a)).

    The distribution of energy among the velocity components is presented in figsre

    15; i= suggests the possibility that the component energies approach fiKed ratios.

    If such a structural equilforlum occurs between the tendency of the shear to produce

    anisotropy and the tendency of the turbulence to become '.sotropic, the anisotropy

    measure of the equilibrium should depend on sL/q and (probably weakly)

    on qL/u. This _s shown more clerrly in figure 16 where an adhoc linear scaling

    of the anisotropy is shown which collapses the data reasonably well. The discrepancy

    between computation and experiment could be a Reynolds-number effect similar to tha:

    in the shear-stress torte]scion shown in figure 17. The Reynolds number shown there

    was chosen because it is the only dimensionless group independent of L and t.

    Although it seems physically reasonable to eliminate explicit dependence on time, the

    elimination of L simply allows us to avoid the use of the measured integral scales.

    The rapid rise of the shear-stress correlation from its initial isotropic value of

    zero is evident. The shear-stress correlation is equally well collapsed by

    mlcroscale Reynolds number. The reduction of the shear-stress correlation with

    increasing Reynolds number is primarily due to the fact that the contribution to u-_

    of the small scales increases less rapidly with the increase of small-scale energy

    than does the contribution to the normalizing factor (u'v_); this is because of the

    tendency toward isotropy of small scales. The explicit use of Reynolds-number to

    collapse correlations for medium and large scales was first used by Stewart and

    Townsend (1951) in isotroplc turbulence. In the shear flow, unlike Isotroplc flow,

    we have a direct energy measure, u--v, th_c is rela_Ivel3, Reynolds number insensitive,

    and this can be used to advantage to normalize velocity autocorrelations.

    The_au_ocorrelations presented in flgttre 18 are normalized by t.he sin81e energy

    measure uv, and plotted against the separation, normalized by the _Ingle length scale

    LII,I, the integral scale of Rll(r,O,O). The experimental points are from the

    Tavoularls and Corrsin data at X/H m Ii. If the turbulence were i_ exact structural

    equilibrium this scaling would collapse all of the data, except near r - 0 where

    8

  • i/' --7 ._

    r

    _:!_cous effects appear. At infinite Reynolds number the collapse would be complete.

    Perfect collapse requires that ratios of the component energies and ratios of the

    macroscales be universal constants. This is too much _o expect here, however, for we

    have already s_n that ratios of the component energies in both the experiment and

    computation are still varying slowly with sL/q and qL/v; moreover the

    integral scales of the computation are not as reliable as we would llke because of

    the small sample of the largest energetic scales.

    The mlcroscales measured by TC did not vary after st - 8.65, but the computed

    mlcroscales are growing slowly at st - 8, as shown in figure 19, with the growth rate

    diminishing with increasing Reynolds number.

    TABLE I. - COMPARISON OF EXPERIMENTAL AND COMPUTED TURBULENCE FIELDS

    QuantityTavoularis- Case Case

    Corrsln BSH9 BSHI2

    X/H=11 st=lO st-lO

    Z/q 2 (Component energlee) .535 .508 .485

    Uu__32/q2 .186 .185 .209

    /q2 .279 .307 .306

    -'_/u'v" (Shear-stress .45 .49 .49

    correlation)

    LII,2/LII,I (Integral scale .33 .44 .59

    LII,3/LII,I ratios) .25 .17 .14

    L22,1/LII, I .23 .41 .33

    L33,1/LII, 1 .34 .23 .17

    LI2,1/LII, I .90 .88 .88

    LI2,2/LII, 1 .40 .69 .74

    XI2/AII (Microscale .67 .65 .76

    _13/_ii ratios) .68 .69 .79

    121/_i I .68 .86 .80

    k3]/_l I .79 .88 .85

    Oa/O b (Principal stress 4.3 4.8 4.0

    Oa/O c ratios) 2.1 1.9 1.8

    aa( °) (Principal axis 20 22 24orientation)

    VT/V _ (-Uv)Ivs (Dimensionless 179 16 38

    RI . u'_ll/v measures) 266 76 104

    SLll,i/q 2.83 2.23 1.963581 219 472

    qLll,I/_

    £/Ltl, I = (__-_)/sLll,lv .I16 .167 .174

    A summary of the TC data at X/H = Ii (st-12.6) and of the computational results

    at st = i0 from cases BSH9 and BSHI2 (our highest Reynolds numbers) is presented in

    table I. The results of the computation agree well with the experimental data,

  • !

    except for the integral scale ratios (and quantities containing viscosity

    explicitly). Part of this discrepancy is due to the fact that TC measured the scales

    by integrating to the first zero of the correlations and that we integrated over the

    negative portions as well; but this affects only Lil,3 in the experimental data. The

    main cause of the discrepancy is that the integral scale, as stated by Batchelor

    (_.953), is not as representative of the _cales of motion containing the energy as we

    would llke; it overemphasizes the largest scales where our sample Is poor. In the

    experiment, a large sample of the largest eddies is swept past the probes'by the mean

    flow, but in the computation we move with the mean flow and always observe the same

    large scales.

    There is some evidence in both the computational and experimental results that

    the turbulence approaches a structural equilibrium, with length and velocity scales

    growing exponentially. The experimental evidence, stated by Tavoularis and Corrsln

    themselves, although they seem to expect linear _ather than exponential growth, is

    that the measured downstream transport Dq2/Dt and the production -s_-_ of the

    turbulence are in a fixed ratio, within the experimental error, for 7.5 < X/H < 11.

    This implies that the dissipation rate is also in a fixed ratio to the tra--nsport? and

    this relationship was checked independently by measurement of the velocity derivative

    variances. This is equivalent to the fact that both the shear-stress correlations

    and mlcroscales are constant. The energy growth rate is then proportional to the

    energy, and the growth is exponential. In table 2 we present a check of the

    experimental data for consistency with linear and exponential growth by us%ng the

    data at X/H - 7.5 and X/H - 9.5 to predict the data at X/H = II. Although either

    growth form extrapolated to X/H - ii probably lles within the experimental error, the

    exponential form is consistently closer to the published values. The computations

    clearly indicate that the energy of periodic perturbations of a uniform shear grows

    exponentially, but the turbulence macroscale is bounded by the computational pcrlod.

    Unfortunately, by the time the computational velocity is clearly growing

    exponentially, the integral scales indicate an insufficient sample at the largest

    scales, and the relevance of the exponential growth to turbulence (as opposed to

    periodic solutions of the Navler-Stokes equations) is suspect.

    TABLE 2. - DATA PBEDICTED AT X/H " ii

    BASED ON DATA AT X/H = 7.5 AND X/H - 9.5

    Quantity

    Data predicted at X/H - II

    Measured Linear growth Exponential growth

    u 2 .475 .465 .478

    v___2 .165 .163 .167

    w 2 .248 .242 .247

    q2 .888 .870 .892

    Lll,I 57 56 573.42 3.26 3.35

    10

  • UNIFORM ROTATION

    The decay of turbulence in a region in uniform (solid-body) rotation presents a

    rather special problem to the turbulence modeler because in the Reynolds stress

    equations the net production term (production plus fast-pressure-straln) vanishes

    when the turbulence is isotropic. This is an artificial situation in the sense that

    it is probably impossible physically to generate isot_opic turbulence in a fluid

    rotating as a whole, but mathematically it is simply a matter of specifying isotropicinitial conditions. At the Reynolds-stress level it is not possible to determine

    wh_ther initially isotropic turbulence will remai_ Isotropic. The experimental and

    compatational results indicate that the turbulence does become slightly anlsotropic,

    and this is consistent with the linear theory valid _.t low Rossby number.

    At small Rossby numbers (q/_}L) the mean rotation (_) caoses plane wavesei_'_ to propagate with phase speed 2_.k/k, giving the Fourier modes

    some physical "wave" significance (unlike most turbulent fields in which the wave

    space is purely a mathematical convenience). The nonlinear t_rms can then be viewed

    as direct wave interactions. The billnear convection term in the Navier-Stokes

    equation is interpreted in wave space as the interaction between wave vectors k" and

    k_" to give the convective contribution to the time derivative at wave vecto_ k'+k"

    so that the time derivative at k is determined by the convolution sum over all--wav--e

    vectors _', k" satisfying k'+k"--= _. Taking the y-axis as the axis of rotation, theFourier mode_ at low Rossby number have the form

    This is a classical "two-time-scale" problem at low Rossby numbers; the"long-tlme" is qt/L where q and L are representative of the turbulence and the

    "short-time" is _t. We are interested in the iong-tlme variation of the spectrum

    tensor, and this requires that we integrate the wave interactions over clmes (T)much larger than the short-time scale but much smaller than the long-time scale. The

    correlation over this intermediate time between _(k) and the contribution to its

    tlme-derJvative due to the interaction between O(k') and _(k") is proportional to

    sin _T

    a_Twhere k2

    For very small Rossby numbers, only interactions between waves k', k" havingII I|

    k2/k ± k_/k" _+k2/k

  • //,

    velocity components suffer the reduced energy flow, However the experimental data of

    Wigeland and Nagib (1978) indicate that the energy is redistributed among the

    velocity components with the ratio of energies reaching an equilibrium when the

    transverse ma¢:roscale begins to grow at a faster rate than the longitudinal

    macroscale.

    We have simulated the flow at five rotation rates, but with a microscale

    Reynolds number of only about 3, because of a program input error. As a result,

    dissipation dominates the Reynolds-stress equations. The dissipation rate is

    nevertheless raduced slightly (-25 percent at the highest notation rate) at early

    times, as shown in figure 20. A structure parameter indicating component energy

    anlsotropy is shown in figure 21; the longitudinal component v--Zgalns energy through

    the slow-pressure-straln term. As the tables in appendix A indicate, the

    contribution of the fast-pressure-straln term varies widely in magnitude and takes

    both signs, indicating that it is oscillating. The slow-pressure term, on the other

    hand, varies slowly and alwaTs works to enhance v-_/. The experimental data show

    higher anlsotropy, but this could well be a result of the anlsotroplc _nltlal

    conditions of the experiment or to the Reynolds number disparity.

    In figure 22 the anisotropy at the dissipation scale is also shown to reach an

    equilibrium, and the correlation with _t, rather than _t, indicates tha_ this is

    not entirely a viscous effect.

    TURBULENCE MODELS

    The results of the numerical simulations can be used to aid the construction of

    turbulence models at any level, from simple algebraic models of the Reynolds stresses

    to spectral models such as the quasl-normal approximation. Appendix A contains

    information at the Reynolds-stress level for a sample of the computed fields

    discussed in the previous sections. In this section we illustrate how these data

    might be used to test proposed models or to determine "model constants" for some of

    the modeled terms in the Reynolds-stress equations.

    THE REYNOLDS-STRESS EQUATIONS

    When the turbulence field is homogeneous, the Reynolds-stress equations become

    dd-{. (u-T_f) = -Ui,kUjU k - Uj,kUiU k + 2psij - 2vUi,kUj, k

    production pressure- disslnatlonstrain

    where the mean flow gradient Ui, j depend_ only on time, and slj is the turbulent

    straln-rate tensor sij = (ui,j+uj,_)/2. The over-bar d_:notes an average over physical

    space. Pressure Is decomposed into i_s so-called "fast" and "slow" parts given by

    12

  • I̧ ,,

    i

    V2P (1) " -ul,juj,i

    V2p(2) . _2Ui,ju j,|

    (slow pressure)

    (fast pressure)

    The terms "fast" and "slow" refer to the fact that p(t) depends directly on mean flow

    gradients and can therefore have its time scale Imposed directly by the mean strain

    rate. The slow term, on the other hand, responds indirectly through changes in

    turbulence structure. Fur homogeneous flows we have exactly

    where

    k_k I

    - k

    The sum indicated is over all Fourier modes. The fourth rank tensor _ has the

    ohvlous symmetry

    = [m= _mi

    and the continuity condition, ki_ i = 0, implies

    a mi = 0

    In addition, the contraction a_If - 2ulu m provides a convenient scaling factor,

    and as a factor of the mean deformation rate it emphasizes the close relation between

    the production and fast-pressure-straln terms in the stress equations. In essence,

    the production and fast-pressure terms sum to produce the "net" production. Tables

    of the tensor _, shortened by use of its symmetry, are included for each recordedfield in appendix A, with the budget of the stress equations above.

    In the Reynolds-stress equations only the production term can be computed

    directly from the stress tensor. The dissipation and fast-pressure terms are

    second-order velocity moments like the stress; however, they contain velocity

    derivat Ires and thus depend on the spectral distribution of stress (the spectrum

    tensor) and not merely o_ its average value. They must be modeled along with the

    slow-pressure term, which is a thlrd-order velocity moment.

    We consider first the slow-pressure-strain and dissipation terms, following the

    analysis of Lumley and Newman (1977) who combine thfi slow-pressure-strain tensor with

    13

  • the deviator of the dissipation tensor. Lumley writes

    22P(1)slj - 2vUl,kUJ:k + _ _61J " -_'$1J

    where _ is a traceless tensor and E is the dissipation rate of kinetic energy

    •c = vui,jui, j

    which must be modeled. The approximate.on (Rotta (1951)) that _ depends only on the

    tensor _,

    blj " q2 - _ 6iJ

    and on scalar attributes of the flow, requires for proper tensor invariance

    that _ be an isotropic function of _,

    t II_lj)_ij = Bbij + _(bikbkJ +

    The coefficients 8 and y are functions of scalar invariants of the field such as

    Reynolds number, q4/v_, II, III,

    where-211 = bijbji , 3111 = bljbjkbki

    are the invariants of _ (the third independent invariant, bii is zero by the

    definition of _). Lumley and Newman show that for hlgh Reynolds _umbers , y-_O, if

    slightly anlsotropic flows are to return to isotropy.

    We will retain for our purposes here only the linear term of the model. Some

    information about the coefficient of the linear term 8 can be determined by

    considering limiting cases. In the absence of a mean flow (for example the "return

    to isotropy" following an applied strain), _ > 2 if the anlsotropy is to decay. For

    any anlsotropy _2 as the Reynolds number vanishes since in that case the velocity

    components all decay in proportion to their magnitudes and the anisotropy _ is

    constant. Lumley and Newman fit the slight!y anisotropic data of Comte-Bellot and

    Corrsin (1966) and find that, again, _-_2 as the anisotropy vanishes at high Reynolds

    number in the absence of a mean flow. In later papers, Lumley (1978, 1979) shows

    that in order to force the energy tonsor predicted by the model to be realizable

    (have positive definite component energies in principle axes) 8+2 as a component

    energy vanishes. Lumley found a function of the invarian_s

    14

  • %

    b'_"L

    1 _

    G(_I,HI) = l/g + 3III + II

    that vanishes if and only if a component energy vanishes, and he suggests that this

    function be explicitly included in the model to ensure reallzabillty. For example,

    8 = 2 + _'_(ll,llI)

    where _" is a function of scalar laver/ants.

    The relaxation toward Isotropy of turbulence subjected to axisymmetrlc strain

    has been simulated, zaktng as initial conditions fields at total strains 2 I/3 , 2, and

    4 from the set of axisymmetrlc strain runs discussed earlier. In figure 23 _e show

    the variation of _ and its pressure-straln and dissipation terms with the anlsotropy

    _. In this flow only the normal stresses are significant, and two of them are nearly

    equal, tht deviation being a result of tile fl;_Ite sample. The two families of polnts

    in the pressure-straln plot correspond to the two values of viscosity in _he

    simulat&ons, indicating the Reynolds-number dependence of the coefficient 8. This

    Reynolds-number effect is more apparent in the dissipation and pressure-straln parts

    than in their sum _, indicating the advantage of treating these terms together.

    This is done by default when experi_ental data are used to determine model constants,

    because the dissipation is assumed to be isotroplc in order to find the

    pressure-strain (plus dissipation devlater) from the Reynolds-stress equations, The

    model coefficient _ for each field was found by least-square fitting the

    measured _ to the measured _. The fit is nearly perfect for each field. This is

    exp._cted since _ and _ are _th diagonal, traceless, and axlsymmetrlc and thus can

    be .ulated exactly by a single coefficient. The resulting coefficients for all of

    the fields are plotted against a Reynolds number qq/9_ and G(II,III) in figures 24

    and 25. Although the sca_ter in the coe_flclents is large, the trends are consistent

    with Lumley's predictions. The Rotta model applied to the axlsymmetric strain runs,

    during the straining period, gives essentially the same results.

    In figure 25 we present the data from the plane-straln cases discussed earlier,

    the groups of four points being associated with the four strain rates applied. The

    single degree of freedom of the linear model does not fit the two degrees of freedom

    of the data well, but theflt improves as the strain rate decreases. The nonlinear

    model, having two degrees of freedom, would fit the data exactly.

    The anlsotropy of the shear cases is plotted in figure 27. The fit achieved by

    the Rotta model is shown in figure 28 as a plot of the measured _ for each field

    against the _ predicted for that field by the linear model, using the measured

    and the coefficient _ giving the least-square fit for that field. Although this

    would appear to be a more difficult case than the two-dimensional strain, since four

    elements of the stress tensor are active, the model seems to fit the data fairly

    well. The coefficient grows with Reynolds number (fig. 29) as predicted by Lumley,

    but its variation with C(II,llI) is uu_'r.tai _ (fig. 30).

    The modeled terms for the unlfo[m rotation cases are presented in figure 31.

    The dissipation anlsotropy is correlat_',_ with the stress anisotropy, but _he pressure

    strain is negatively correlated wlch it. The pressure-straln term is evidently the

    source of the anisotropy in this case, contrary to its usual role as the "return to

    Isotropy" mechanism.

    The performance of the R_tta model must be Judged by how well it fits the

    elements of the tensor _ at each field and how well the coefficient for each field

    15

  • k'.,_

    r"

    can be fitted to the scalar lnvariants of the field, With the exception of theplane-strain runs, which seem to be sensitive to strain rate, the linear model

    provides a fairly good fit to the data with coefficients that vary (qualitatively)

    with Reynolds number and anlsotropy level in accordance with Lumley*s predictions.

    The results do suggest, as has Lumley, that the tlme-scale ratio between theturbulence and mean deformation be included in the list of invariants determining theRotta coefficient.

    It would seem that modeling the tensor

    a£j k2 _ _K

    would be an easier task than modeling the slow-pressure term which is a third-order

    velocity moment; however, this has not proved to be the case. The most widely used

    model of the tensor _ is that of Launder, Reece, and Rodl (1975) (LRR hereafter)which has the form

    mi

    where C is a coefficient to be determined (again, a function of Invarlants) and Aand B are fourth-rank tensors of known form that depend linearly on th_

    Reynolds-stress tensor, satisfy the symmetry required of _, and vanish when

    contracted over lJ . The contraction over lJ gives

    mi = 2Tin m Bml = 0Ajj , jj

    When the turbulence is isotropic

    = 2Euiu j " _ u_u£ dij -3- 6ij

    in which case

    mi= 0B£j

    and

    2E

    - _mi61j -

    which gives the exact result for an Isotroplc flow regardless of the value uf C .The model has certain failings, as do all models. Some of these have been pointed

    16

  • V

    _r

    out by Lumley (1978), who shows that the model can not meet the reallzabilitycondition, and by Leslie (1980), who demonstrates that the model is too simple in

    form to represent the general fourth-rank tensors _ that might occur. This latterargument is easily verified by noting that regardless of the coefficient C , themodel produces the following spurious symmetries (no summation implied)

    akj = a i _ J # k

    i£ . aJJaij Ji

    i#jj£ lj

    ajj " aii

    The addition of nonlinear terms (higher-order products of the tensor) would remove

    these spurious symmetries and introduce more coefficients, and as noted by Lumley,

    might allow the model to meet the realizability constraint. The Justification for

    nonlinear dependence on the stress-tensor, when a is linear (formally) in the

    spectrum tensor, is that _ depends also on the distribution of energy over wave

    space, a dependence lost when integrating the spectrum tensor to the stress tensor.

    The idea that the anisotropy of the spectrum tensor with respect to k might be

    expressible in terms of the anisotropy of the stress itself leads to the--possibility

    of nonlinear dependence on the stress tensor, and, as suggested by Lumley, the

    connection might be made using the theory of rapid-distortion. In view of thedifficulties associated with the LRR model, several authors (e.g. Leslie (1980)) have

    suggested modeling the rapid-pressure-straln term, or even the total pressure-strain,

    as a unit. This avoids the detailed constraints on the model imposed by the formal

    definition of _, but the ability tc handle flows with large variations of imposedmean strain would be lost.

    We compare the results of the LRR model with the computational data for the

    shear runs in figure 32. The 36 different elements of the tensor _ are eachnormalized by q2. The constant for each field, found by least-square fit to the

    data, is plotted against Reynolds number in figure 33, and against G(II,II) in figure

    34. The model succeeds rather well in fitting the 36 different elements with a

    single constant for each field, and the constant appears to be related to the

    anisotropy level, if not to the Reynolds number.

    The least-square procedure, which was used simply to illustrate how well the

    models fit the data, indicates that there is room for improvement. The use of the

    data to determine the coefficients of a postulated model can be done in a number of

    ways. For example, rather than finding coefficients for the Rotta and LRR models

    separately, they can be found simultaneously by fitting the sum of the individually

    modeled terms. This is how experimental data are used for the shear flow (Leslie

    (1980)). When this procedure is used on the computed results, model coefficients

    very close to the "recommended values" are found.

    The real value of the data of appendix A how_ver, is not that it allows model

    coefficients to be determined in a more precise way than does experimental data, but

    that it provide# the detail needed to determine the range of validity of a model and,

    it is hoped, to suggest how the model might be modified to increase that range.

    17

  • CONCLUSIONS

    The large-scale direct simulation of homogeneous turbulence begun by Orszag and

    Patterson a decade ago, has advanced wi_h increases in computer power to the point

    where today it is possible to capture the statistics of the energetic scales of

    motion at low Reynolds number for moderate imposed mean deformations. Further

    advances in hardware and method will permit higher resolution in the future, but the

    resolution available today is adequate to allow the extraction of information useful

    to both model builders and "pure" theoreticlans.

    The relevance of the simulation to real turbulence has been established, in this

    author's opinion, to the point that the results can be used to fill in the gaps in

    the experimental database, and it is hoped that the information included for this

    purpose in appendix A will lead to closer scrutiny of the fundamental assumptions

    implicit in turbulence models.

    t8

  • b •/

    iL,

    L

    i

    .......... ----..mmm_Wmm_ -

    APPENDIX A4

    LISTING OF DATA FROM A VARIETY OF COMPUTED TURBULENCE FIELDS

    The "raw data" of a variety of computed turbulence Fields is presented here in

    tabular form. Fields from the following (deform!_g mean) runs are included.

    Run Deformation Rate Viscosity-- (T--=_) (L2T -I )

    B2DI (Plane strain) 4.5 .01/_

    B2D2 _(d_/dy)t 9 .01/4

    B2D3 d_/dz J 18 .01/_B2D4 36 .01/_

    Initial Condition

    (Developed

    isotropie

    field)

    CDII

    CDI2

    CDI3

    CDI4

    CD21

    CD22

    CD23

    CD24

    (Axisymmetriccontraction)

    d_/dx

    -2(d_/dy)

    -2(dw/dz)

    I0 .01/_ (Developed

    20 .01/_ isotropic

    40 .01//2 field)5 .ol/_I0 .02/_ (Developed

    20 .02//2 isotroplc

    40 .02//2 field)

    5 .02/_

    BSH9 (Shear) 20/2 .01//2 (Undeveloped

    BSHI0 20,'_ .02/,_ isotropic field,

    BSHll d_/dy 40_ .02//2 square spectrum)

    BSHI2 20 .005

    BRI (Rotation) 2.5 .01/_'2 (DevelopedBR2 5 .Ol/r_ isotroplc

    BR3 d_/dz I tO .01/_72 field)

    BR4 -(dO/dx) I 20 .01/_BR6 40 .o1/,:_

    Fields from these runs are named using the run name above followed by a letter

    designating the individual field. The plane strain fields are given at nominal

    strains of ,_, 2, 2/2, and 4, with suffixes A, B, C, and D, respectively. The

    axisymmetric-strain fields are given for nominal strains of 3_, 2, and 4, with

    suffixes A, C, and F, respectively. For the shear runs, the suffixes are notconsistent from run to run, but for all runs the fields are given for st = 2, 4, 6,

    g... The rotation fields sre taken more or less evenly in time and are labeled

    sequentially A, B_ C, D, E, and F for each run.

    Ruus named RX... are relaxation-to-isotropy cases for each of which two fields

    are glve_; for example, RX24A2 and RX24A4 are fields from the run using as inltislconditions the turbulence field CD24A but setting the strain rate to zero. Thus the

    data of field CD24A with net production set to zero provide a third field of the

    relaxation run.

    19

    . ¢. ,... ,,t

  • I_

    .Ill.:

    i

    k'

    t

    The following data are presented for each field:

    T = time

    VISC = v

    RII - ulu-----__ q2

    PII " 2Ui,ju--_ (Net production of RII)

    DII = 2e= 2vui,jui, j (Net dissipation of RII)

    _Kinematic viscosity)

    ,(Velocity varianue =

    2*kinetic energy)

    with units [T]

    [L2T -I ]

    [L2T-2]

    II = bijbJi (Invarlant of anisotropy tensor)

    III = biJb_kbki (Invariant of anisotropy tensor)

    MEAN DEFORMATION DU/DX etc. [T-l ]

    INTEGRAL SCALES

    Lll,l = Rll(r,O,O)dr [L]

    MICROSCALES

    Xll " (_u/_x) 2[L]

    (I.]

    (Note the absence of 2's in these length definitions.)

    REYNOLDS-STRESS BUDGET

    IJ = lJ

    RIJ/RII " uiuj_k

    I d (u-_)RArE = 2_ dt

    -iPROD = _ (Ui,kUjU k "" II3,k_).uk )

    P2S = _I (,)sij¢ P

    PIS = i_.p(1)si j

    DISS = -- ui _u_,J k

    Stress component

    Component energy ratio

    Net time rate

    Production

    Fast-pressure-strain

    Slow-pressure-strain

    Dissipation

    20

  • t "FAST" PRESSURE-STRAIN TENSOR

    I_ mi. 2

    a_j/q

    2L

  • ;+_< i

    It _ •

    s_

    K

    I

    • EOOIA ooe l, lo*+toe o*oooo*oo,***I.I**DoI_I eo

    vt$¢ T,o_t t+O)m_1 +,+Jl ]i O_ u o.*00 o,o0 o,o0

    Oil ].?Ol| ii O.O0 O.O0 d+._o

    11 1,01il-O_

    XI_I(;aAL• $1'Ll_ ! RICROI¢'_IIV l

    y_ * 1110_ *oqtl *llll .1157 .0t?$ *0??*• OTO4 *lOll *t|ll * O4141 *Oql)t *l?q*m ,lo_'_ .oil* *11_ ,0417 *OIII ,O_tO

    pl lpI_)_ 0 I- ITRti $ IwC_ l?

    I) AIJ#_II IIATI + * PRO_ * PIt • P&I * 0111l| O*|Ol -O*2lq 0.000 OlOOt "l*O+t "0. Ill

    II O.OQO -o,00l O,000 -o,ouz -0+0_10 0,00l1) -O,OOQ +O.Og_ 0,_0 -01001 -olool *o,09o

    iS -O.OOl *0.000 0.0_0 -0.001 0.002 0.0O03| 0.141 -0.31q -0.111 O.l?l O.Oq) *O.llt

    .list* pltSSu_t-$)mll_ 11m+o_

    _J/nl It II II _2 Z) l)11 0.14oi +.l©ll -.0004 0._010 -.0000 O.l)l+I) -.0007 -.1011 O.OOIO 0.04101 0.0000 - .0001l) -,00oo -,O0©I *,Oil) -,lOll *.004+ 0.0001

    21 0.1011 m.+O12 O.O00I O.l?ii O.OOO+ O.I/ll

    I) 0.0016 ©.¢0CI -.O00+ O.+Ol+ -.Olli -.001_I) +.llq+ o.¢0¢+ -.oo07 O.i++t -.0005 0.00;?

    llllllllllllllll +:_XO IIIIIIIIIUI#IIIIII

    +II+T I*O?I'-O))'OI++'O+ _+i_. _trol_*+l+m m_i!

    o.+o o,oo O,OOell I.1_iI oo

    II l,Ol+l OIIlL ],lilt )1

    lml I.*&L Oti_| i nlgAO_&_IS

    u ,l_ll .Ol+4 .)t_ ,1_4_ ,O?l$ ,1112¥ .O416 .I_II .)$ql . ¢1(I| .ltlO *iO_l

    u ._t: .o_i* ,Oiqt .Ot_l ,O?I_, ,lllq

    II {i. IIl ._+I11 o.o0o _.*++ *o.o1_ -0.)q?),P -o.Oo'J _.OO) -0.O07 +o._oq .),0101 *0,o01IS +o.0oo _.oo2 0._oo -o.oo+ 0.O0_ -o._ot

    +I o.q?• _..i 4_ l.iOq -o. l_q -0. t2l *o. 1_I_il -0.0o+ _.ooi 0.o0o -o.¢o1 3.o00 -0.0o_II _ltll i. _410 -0.t|0 0* ¢II I 0*144 -o,l? _

    • l;+,)l- pIII_VRI-_I*I_ ?(tS_A

    L ll_ql |I II I) _i 2} _)

    I1 o,ll_l ._¢1, -*0_0_ o.*oI_ -.OOil 0.o_I_I_ O.oOZO .11¢I O. ooQ$ o .COPlO ¢10007 -.O©OIi_ *10o|+ .*GO+q o.O_,?? - .(.i)+ ) -.ooot 0 .OP_i|

    ++ O,)ll+ .mOll 0.0001 0.;)_ *.oolll 0-11?)it o*oo++i o,oO+O -*Oo0t 0.00*4 -.0001 0.00olli O.O?Oi 1.000t -.OC_ O.il)_ -.O011 0.0,*_

    l l,llZl ,_; nllm Ollcmil&11( h llltl

    0.0._

    Plt l.?lll _i v 0,0_ -q.O0 O+O0_11 I*)4_I _1 • 0.o0 0.00 O.oOI I l,lm_l- ?:

    u .|I_) .ol)_ ._qI? ,olloo +oiloo .111_

    y .¢_51 ._lll .13_o .O 9_i_ .lOSt .14LI,LTIO .OIOI *lOll .(+_|+ ,o_01 ,lOkl

    i I_.LO$- $TIT$_ l_ca1+

    lJ llollll 1411 • pAIX_ * IIi_ * pll * 015_l| 0.111 .'. gO| Oli_ 01441* -Oil+It -1.4|?10 -0.0o_ - _.lll -0.00r -o._ll O**OO O.IOlI_ 0.0o0 -._.O00 -¢.go0 -o.t.._i o.ool -o.,ue

    • -O.Oe_ o,_O, 0,0o0 -o*_01 O*O0+ -o,_*o

    IFA_I PllI_Ull-_lJllk TIN$OR

    _l_ll 11 I_ l) I+' Zl )lit o.lmll .rOt* .OON _+Ot_ +O_ll O*

  • '_

  • r:+.

    r:".

    ***Ooe6oeeJo**H ¢01|A *e je* *eeelDiIOeeooo

    _,mt-o+ .tx+H_L;CR_++tr_ m_tevise 1,071 I-O}RII *,lgot O0 v Is.o+ +,SO Q.OQ

    PII 6.?|3t O0 y O•_ -_•00 O,QOOil 611}t( 01 w O.O0 O•O0 -5•00II ),qlC_[-OI111 -+V,*_;(-05

    I_I I_JA¢ $_At[$ XlCRO_CILI5

    y_ ,IOI_ , 0_+11 + oOltl loll) + .04113 * 04_11,OYb8 *|122 •Oq_S *O_)? *oIIO .041S• .0751 *O*ll II _.Oql_ •OSI_ •0111 • 0110$

    I1_ItlC£05- $111lSl IIJOll_ 1IJ S|OIRll _lll • LIJI_I_ • P|S • P15 • 0_$$l| 0.|11 -0,4',I oO,Jll O•IIO OoOOT -O.lqll_ -0,000 +•SO0 +,_00 -+•sO+ O.000 +Ill+

    || 0.001 -0•10| -O•QOo 0,_ol -O,_O0 -O,SOLO_ 0.1_? -I,||; O.l*ll -O*IQa -0.0_4 *O*Jt_

    _I -0,000 -+•SOL -0.000 o,_O -0,0_0 -0._1O._tl -+*|Z4 O. _II. -+.It? -0.0'01 *O* |_'_

    L//UI 11 10 I) 12 I1 J)IL O*IO_ -.¢I¢I 1.000_ O._llO -.OUOS +*liltII 0.0000 +.0_I *•alOOf *.000_ 0•00100 +•OOOe

    |] 0•00oi o.oi_l -. O_llT 0100CI 0•00011 - .OOG_Il| O.OIs_ _._+eCO C+OOO+ 0.L401 I*OOC_ 0.|11Gl| O.QOOq -.000_ -+OlO£ -.000_ -.0105 0.+.1003701 O. O_llq - +¢000 0.0101 Q. 131_I -. +003 O. 15©1

    • l+l**l.*•e*_l*l gol_+ Ollllllllllll_l¢ll

    t q*+¢+l.Ot +tOn 01+_mmAtfr* SlOtv|5_ ?10?II'C) W V +mll l.._O+t o+ _J 1+.o0 o.0o +•so

    Pll k.qqOI c; v +•sO -+•so +.SODI/ l.o++; 01 w +.so 0.00 -S.+O

    O*Sl+! OI++|°.,0,.....

    I|_11:'_I_ "'"I , IIIgROI¢ILI_T lu .OOll .o_ 1_I +Ol_S_ +Olt_l .o_BI • oq411

    .|11q +1|I_ +0_4) .I00_ .0771 . O411Y

    V •11It .¢IS_ .I} II .1114 .3117 •O?_

    _[ IPs(L t+$- $ fsl/'S < _.oO f ?IJ l;OIPlJ _ltl * PICO • _.+'_ * Pl$ l _|$I

    It O*|I; .II++ .O._I_I O. 131& _.00q -_. Io._I0 o.ooe .+sOl -O,ooo -O•eOl 0•000 -_,oor_ o,ooi +,,co+ -o._ot o•OoI -O*OOe -+•00¢t_ o,sl_ o,1)4 +,**so .O*OO| .0,040 -O,11t

    10 -o,oot .o¢o .o,ool -o,o_O 0.¢,0| ¢.000

    .P&_l- +IE_aA|-$IAAI_ Ifk_Ull

    l_ -.00_ .oil| -.oo_ +.ocoi *.'oo: .+,st|I olooo_ 4/. coo 70 -.+los @*_G|G O. Q_O 1 . .0*04

    _3 0•00o_ .o¢¢t -.+cO© 0,co1_ +,l_qt o._01_I| O+ 10_Z .+. c0oc o• 0004 _, _ i+/ II -*ooio o. 1140'

    + l,it'lll+/ .lira _l+(l_'_l_t,;_ 1111ViSe ?.011t+ ++ S _ lIll +*lOSt .3 _' IO•++ O, O0 C,+O+ll t.?l_t :l v o.+o -1o•00 +.¢o

    Oil 0.0010 "z ii o.t.+ o.00 -I¢•+OII ++044f :.Ill -X,t+Ot :1

    I +t {..* +to +{lilt II_I++CIL{|

    u ,lo++t ,o_1_ .O_P .i;ml,+ .¢6?0 ,a1_o

    1 o. l+tl , .too o.9;_ o._¢_ 3.00_ -+.Illt -0+o¢¢ .ooo o•O_O -0.oo¢ 1.o¢o o+OOOI1 O,OQI --,OOl -o.o01 o,oo; 3.003 -o.oo|

    -,},o+o ..:ok -%ooo ¢+o_o o,ooo -0.++010•11| ,L15 l+qll ¢,¢o_ o.1o¢ -o, $5;'

    11 -,OOOC . +;+, .if(,+ .)c_;| _._ooo -.olOq

    11 0•0000 •., +30t .O_tO _. ct' _+', o._oo1 ,leo _.1.+ O,/_q . c;l +'•)_¢t ¢.1_g, ..Sack _.t*_*It o.aon_ . ._ -.¢P+_+ -*O(LL' •0_II +.JOt•

    _1111111111 iIIIt ;_ ;I:- t111_1111111t111_1

    Ill _•;10t ¢¢,cj *?,I_ ._s_tl q,l)GI , v o._o t:.ol ,,_:rll 4+31si .. . ,',_: _ "o _:._o

    lit -?.+lel ,

    Iq+t .l+ + hi', +l+t_'++*++st : _ , +

    ..... . ............. ., ,.,+ .....¥ .|61 ..] ( .+;i Pq .Cq_+ ....-+ + +s_l

    i .lq+..._.q .[ic) .(++- .+it? .+iz_l

    IJ nlJ/tl _111 * PI+_ i Pix • Pl_ • +;_+11 +,1;1 ,,l ++•Its 0•+tl +.Ol+ +.1++L; -_.00_ ._O+ 0.¢00 +c•¢_t _.ool +o.o_01_ O.+l?l ._+0¢ -0.00| 0.0_I _I._t _._OL C ,C,_.+ 9_o0¢ +a,++_)1 O.V+l ".1_1 +.+If J,:slt 0.0ll_. o, i," _

    .+I " pl+sI,J*r S11114 +l_+_m

    I) O,ooO' . .+. • -.+Zc* c.._.+. _,+_1 O•++OL;Z +.Io0_ "..'¢I _.+oI_ c.I+_+ -.o+t_ +_._ql+

    ,d , +' '_''00 ' + " _ _ _ t _' +'J_ +''+; _ ' ' '' " + " + + + '+ + +. ,'++5 {. +q,'+ .as _'_ 0.1+15

    ****llllllllll** (Oils **el*lllll*lllllll

    ? +.*14l-¢I •tam LIImAIIII_ +Sit

    VIIC /.OTII-OI p t Z

    *11 ),)_o+ O0 . lo.oo 0•00 0.0OPIt 1.1 }++ 41 v +.oo -+.00 O.nOOil +*q/t( 01 • +,O0 0,04 -+,0+II /.+Ill-O?

    i|l -I.IIIP¢I

    ImtlO+it 01 ikl_ ISlOmC_+._+ [$x t x L

    y_ .LOIO ,O_?I •oils •o116 ,Oikl ,044q.LO_I .|ZZZ .OPal .0,10 ,0_ •04SO• 1017 ,OlO++ •I11o .0611 ,04% .O?+XZ

    0fqfaCLOS- |1Rf55 OVO;[I

    IJ RIJ/R|I _11_ • PSOO * P|5 •ilI. O • Ol_$It 0•it+ -0.1_ -0,9Z_ O.lS) 0.¢_1_ -O,I_I11 -d•_OO 0,001 0,_00 -0,o0_ 0o

  • eOe_lO_otee_eJoo CDI)A qJqo_epeo*IpoeoomJ

    I _*O_+O*++ _1t_ +OrClIXITICk nATIV+I¢ T.OI1t--O) X V Z

    OIl _._)+_ O0 U *OoO0 0.00 0._0OIl O.+ZSt ++ V O.O0 -IO.OG 0.0+011 0.+01! O_ M 0*00 0.00 ol0.00

    111 *+.O0_E-_

    X Y X T lW ,IO_ *OO0_ *O_LO ,0Q74 +0416 *_+0

    _ .0Y44 .IC_ .0101 ,O_ZT ,0_¢0 ._t*071+ ,0_00 ,10)4 .O010 .0._1 *OV_O

    _I_OI-+?JI+O O_,'000TII RIA/_II AAt! o O000 * P_$ * 0+$ * 01SS

    L+ O,+l+ ,O*O+i -L,llO 0.?+4 °Oo_I -O*IOT_l -O*_O -O*O0+ 0.000 -O,OpJ 0.000 O._e+L) O*_I -0*000 "0.00_ 0*00| -0.000 "O,O0|

    il 0.)_1 O*IO0 0.000 -O*+ql O,O0_ -0,|06

    _ -0,+_0 -_1_01 -O,0_O 0.000 O.OOQ -0,+0_O*_+ O,_O? O.qlO -O,4O+ +.O0/ -O.Iql

    nFA01. )_IS_UOI-ITOalk 11MS00Llfnl LI 1+ II ZZ J_ 13|1 _+1_46 -*_O+L 0,00+_ O,_ZO| -.OO01 O*ll*)11 "*0+++ .*O0+I °*+O+O -*O00Z 0.0_0 -.OOOq

    |_ OI_ O*OO0+ +*O+)I 0,l_00 O,0001 -,0_0)+_ + +IO_' 0._+++ 0.0+C4 O,|_O0 0.00+1 0.|4_)_10.OO0_ .,0¢¢1 0,0000 -,_OZ "*O08S Oo_OOZ

    ,I O, OIOS -,_++# 0.00(0 O,J*l_ -*0002 0,+_1)

    YISO )*¢_)t-O) I ¥ 1

    kll O*O01( O+ _ *O,O0 O.0O 0 oO0PII l.S_t Ot V O,00 -IO,O0 0.00

    w O,_ O*O0 -IO,O+OIl |*tL?[ OZII l._+Z+toOt

    III 'ol,qZI:-O)

    U ,oelo ,+_1_ ¸ ,0_47 ,+0+$ ,o)e_ ,o|o)

    _ ,1077 ,+o_l ,0109 .1031 ,O0)O ,o)t_,1_** ,+L*O ,+q_o ,L036.0)O0 .O)_L

    II_O)-.OTOIS5 _UOOITI_ tl_/_ll _1II • O01_ * p_$ * p_$ * +1551L O, IO0 -O./_+ -0,4_4 O,lOq 0.041 -0._0

    I1 -0,_¢ -O,0O0 O.O_ -O,O+; O.OO0 O.O00l) 0._ OoOOL -+*00L O,O0_ O,OO0 -O.00_

    15 -O,0_L ++.O0_ -+,OOL O,O_+ -O,_O0 *O.O01++ 0,,_3 O,+_q O,q/I -O*L¢_ -0,03_ -0.4_O

    LJ/_I 11 ;I 1_ _t Z) 11|10,O))_ -,+OCZ O,0001 O.LO)6 0,00¢) 0,L0_1ll -,O0_L -,OLd? -.O+O_ -.0000 -.0_ -.00LO

    IO 0,0_1 _,00_) -,01._ _,00¢1 0,0001 0,0001O_ O,Oq_* _,00_0 0,0+¢+ O,ZOIO *,00+) 0,_++4+l 0,000_ -.0¢+1 +,00+0 ¢.©0+1 -.llq30*O00_

    )) 0,00_ +,O00L O, O00) 0._371 *,OOLL O¢l_l_

    _LI ),+o_t +o _ _.+O _.oo o,o_Ptl +.4L_ :O , o.o0 -a,_o 0.000l! 4.L7_ _X . _.00 0.O0 -+.00l! ).eL)t++3

    III +q.434E*C+

    xlmll++lL+ +¢l+t_ I +IGlOO+ALl+• 1

    .|L0_ .0371 +OIO0 .010_ .000& .OSOI

    IJ I|J/tJl Ii|l • O)I + FI$ _ _l_ * 015|

    L| 01101 -0*371 "OIOL? 0.L_* 0*++_ -0*|11II -_* _I) 0 g*001 0*0_0 -+*O0O 0.go+ 0.000I) +*0_L -O*DOI -O.0_O 0.000 .0.000 +0.001

    11 ).)St "C.+i0 O.L)+ "+.+tZ -0.00I "0.+$+10 -0.000 -0+00t "0._0 O.0O0 ++.(_0 -0*000|O 0*OIL "0*ll) 0.|)O -0.0tO *0.001 "0.)Ol

    IFI+T" +llO+un|-ol_aLk tlm$Ol_+rml |L II LJ ++ ++ ))LL +*L0ql +,¢0++ O.+O©) O*+)+m -.0001 0.1311LI +.H0+ .+o+)i -.0003 -.+000 *.004_0 -.0001

    II O.l_! 0.00CO -.0J+o +*+Ol+ 0._01 -,000+II O*l+l_ ¢.©q0+ 0.0004 0.|417 -.000L 0.]Omtl] +.0OL/ +.¢¢L0 ".000+ -_0L ".0+0L 0.0_0+

    )1 0*l+ll +,OtOi 0*000) C,)+9+ -.III01 0.|*IP

    llllllllllltllll _01_ 111411111111111111

    l +.lOll-++ pllm Ct_+l,ItZtm n,?lvlSC 1,OFII+:_ , + Z

    nil ;,_tm( ao u +,co O,OO O.+0+II )*Itq| c_ • 0.¢o ++.+o 0.+0011 +,)111 Po m O.co +.++ -+.++II G.LIOI-'+

    lll -0. tO?I-++

    Imt++_+_ )

  • ilieoee•eeellOl•ee I_0_ ill eeeeee&*eeleoeeeo6

    t i.it_E-OI _iJN_ OefC_*TIC, R_ttVii(- |.41'I?-02nil I.?llt ¢© u IO.O0 O.QO 0.00

    Pif _,LiOt 00 _ O,O_ -o._a 0.00

    Dgl 4.3 Lil OI x O,O_ g,Go -_*O0II _,ttll-li

    liJ -i.I II/-00

    I_t f_mlL SCIL _S MICIO_ALFIV O Y l

    , |_+06 .09_0 .010q r|O06 .16_1 *lOll,001_ *l_ll ,all| ,GIt¢ .OOi6 ,0151

    14 ,0_3 +0_II .|Ill ,lilt *Q_ql ,01111

    91_CLOI-I?I[_S OuOll?l# OLJ/PI I _A|| • ill0 • Ills • _L5 • OIS_I| O, ibl +l,Oli -O,_*L O.:Ot O,O¢6 -o, te_

    |l O,001 I,OOL -O,OO0 O.O_O O.O_l O.O_O

    l) O*O01 -O*OI)I -O,O00 O.O_I 0.0_0 -O.OI|II O*llll ;*I.2_ O.IIO -O.¢q* -0.001 -0.I_Ii! *O*OO0 -0.¢01 -ll.Oi.¢¢t] O*O¢t+ O.++II -.OOOt O.19i|

    III illlllllllill (+P+O llllllllilllllllll

    ....... : ": ...... :...... t"¥l+( J.4111+ _Oll l.li*l + _I ;+.+_ ;+.OO O,OO+il 1.11•+ +i + +.++i .l+,,,o re.co

    O.O+ +.+O +|O.O0Oll _.lO*+ "iII I +GI l-+i

    • *_|_I .CLOG *i$6q .i*ql ._G_ .ci14

    II RII/RI ! _l?l • OIO_ • _l_ * Pil • l[_

    1| l,tOO -o.lq_ o._I e.L++o O.OI_ -O.iOIl_ O._O -¢*001 -O._O0 -(..fOl 0._01 -0.000L| O.O_i -o._il -01001 -1 ,(c +_ "O*vli -O.lOii_ O.l_l_ l.OS.l O.l_l -lhCi_ -O.Oii -0.4_

    _I -O.OOL -O.O0| .0.00 | - ;.0_0 +O.gO_ - l. illi? O*_,q* O.0Pl oh%? +:l,¢tl -O,OIO -O,,l•q

    • ll%tl Pnllis_l+-iilllm SlalOm

    iI/ll IL II II II li ilit l,Olli ,_¢¢i -.lOll _.lOll O,'lllt l.illo

    11 I,HII -,till -.lOll O,IOI -,lOll -.ill+

    I O.000t _,_cll -.Olll 0,0.lll_ O,._00I loql_lo,a_.:_ ,g:i_ ,OL¢I 0,C0_5 - 13tq I,IO01

    llllllllllll*lll -.:.i iii lllllll*lllllil

    + , e+¢t-,_; .+J+ pfllJl+tl(+ lit|I%+ i,•l•l+O+ i y |

    OIl ,,_l! )¢ . ;m.+o o.+o O.O0

    +Ii +.+++I II _ I.O0 .|I.O0 O*O0011 *,o++[ oi ¢.o0 o.oO -|O*O0II hO¢II-OI

    iq?l&llL $(1_( _ _|_R¢5_AklSI • | x • • i

    • tOll ,@9It ,¢1•_ ,Is)o ,Ot_| .0¢)11

    ¥ .+ttgl ,lllq3 .+.+_ ql ,|ell .0_9_ ,0¢197• ._1!¶ .¢II| .i)_ ,lOtO .lllqt .OllO

    II fill.05- $III II l.._+J_I I

    I| _I@II +O, lll -0,III O,090 O,II? -I+¢?I

    i# O._O ._.Oil -O.000 +0.001 O*OOi -O+_OiII 0.001 -O.O01 -_.O00 O.OO0 .I,ogg .O,O

  • p... -

    L i

    _:i̧?

    r.

    +}

    3:

    + . + .... •/ ...................

    eeeee oe*eee*e*ee {01)6 eoelooeoeeeeoeeeoo

    1, I,IlliC+D! _llN _IF¢OMIItlCh AAtfVIle I,_141+0/,, l,,.t @o ,, +o_+o ov,o i

    +.00Ill 1.0131 01 Y ++0_ +I0*QO O.0CO13 O.bill +3 n +.OO l*m .lO.ll.l3| ?.4111-01

    113 +I+ICJI-IIi

    lhil¢ll+k SCILI_ t II,I_CILI+ l1 I

    *i0qo .Oil! .061| .l_l) |o . +IllS IlSl.0_tl .Jill .06,1 *ILL_ .odll ooq_i

    W .o91_ .ol)l . I )lll .lll_ .o_ll .+SOl

    3l R lJ/ll l I Itll It . PIOQ * p_$ _ iii$ • OII$|i O. aLI - II. IIIIII -J.l_l g+11_ II lid) -O*_Ig

    II O.0O_ +.ill -ll.ooe o.1101 - d.igi g*_*O|I O, OOi O+OOL - If.OIl O.Ol) o._01 u.On3Ii O._k5 II. LI| II. llg) +0,1¢1 ° O+ .r._+l og. l_o

    |_ OI )_*l I11 |11 II.I|} - c. l+._ -0._0| -o, )ok,"

    -141i|- _illll|4/_(.illll_ yl_iiOll

    11 110911. • ,gO1+ ?. lllll Q+IIII T -. llgQl o. _

  • _+:'

  • 15 • .

    ._+

    I"

    I_¸,

    bl

    eaeJ*oooooleeeta )$Jq0H eoeoeeeeoOSlOeaooe

    V#K l.$1_l-0a _ V Z

    011 4._¢_1 _¢ U 0.00 le.t| o.¢0

    Ill |.*,61 ¢1 v o.oo o.oo o.oo011 *o_t_l It w o.oo 0.0O o.o0II I._lelO|III ***_TI ol

    mlkttvlJ_ $¢6Lt_ x plCSOJ_*_tSt I

    _ • _l_ .l_al .0.¢_ .riot .otll .|otlolq)O .11_ .It_l .Iq)$ .|_e .Q)le

    _ .O01O .¢I)1 .O?OZ .lI|! .or4) .tleq

    S(_NC_OI-IInlI) I_G(!IJ OIO/Pll POll . PS':O . PZ$ * $11 * 01_

    11 oO.ItL -0.4)I -0._50 _*Z*O O.t¢! O.O)_|) -O*O0/ O.OII O.OgO -¢*¢¢0 -0.¢._¢ q.O0__a O.t_l a.QI4 O*OgO *0.050 O.iI! -o. It]I) -O.O00 I_.Q_ 0._4 -O.O0_ O.OOq -O.O0101 O.I_* O.C*t O.O00 0.1)t O.OIP -O.IZ)

    _a/nl It IO _) I_ 1) 1)

    t_ - .01_) ..¢C1_ 0._!¢_ -.©0.o o.0000 -.:_.

    I) 0.0_ -.O0_I -.0,6_ -.O_:_ O.O_Iq O.OOIOOI 0.*)I¢ -.oila -.OLO_ _.O*** o.oo_* o.l_t

    )s o**_*i .zlla .QO)I o.I)** o.ooce O.l*t_

    nil t.e*gt ot v O.oo /e.|e o.ooell t.*)ll ol v o.oo o.oo _.o0011 _._tot ot w u.o_ o.oo o.o0

    II I.;?tl-clII1 t.oI41.o;

    x t _ i • 1

    .ZO*O .1111 .00_3 ._L_i .1_15 .1005• .150q .¢lt_ .tO_ *_L_I .OIOI .1_¢1

    It_¢LOS+St_)) lUO+;LI

    IJ tlJ/tl; _111 •PttO * _:_ * P|_ * _IS5It 0.61¢ ._.ml_ hl_9 -C._I_ -_.);I -o._e_

    IJ -o.1_ ¸ ._.to) .0.)9. o./-a o. sl* o.o$1t) -o.oo) o.ot_ _+_ o.olz o._os o.oot

    #_ o.to_ o.tll o.oo¢ o.c_) o.)cl .o.t_z

    "F.S1* *ll$)vm_-_l_l+_ lth$_LJt"i _S I_ It ZZ al _

    tl -._1. -._C_e O*OvL* " .O_I O.¢OOS -.J)_lI) -.O0)t I+.OtZl "*O_) ..O_at_ O*O_Z O.O_SI1 o.*e_3 -.(tl_ -oOO*) o.o*mo o.¢oo* o.t_zo

    1) -.o_;_ o.co¢) o.I)oo o.¢¢¢1 -.o_6w o.o_z|$ O.o*_ -..1,1 oooolo o.l+el -.OCZl q.|]_i

    ! t.O*tl-_l pll_ _(t_m_ltltk Illt

    Vllt l.i_*r+o: I _ zIll _.*))t _L u 0._ _m._ O.O0• 11 _.00_! O_ • O.O_ O.O0 O.O0

    II t*ZOIl-Ot

    U *t|_ .llI_ .O)*I .t¢_¢ *O**l .Ot¢_V .tl*5 *|1_ *07_ *11+* *Ol?¢ -O_tl

    la nlaZ_ll *l_l • PSCO * P_) * PlS * _lS.|L 0._)_ _..?t t.J)O -0.3)I -_.t*_ -;._q*II -o.t*l .u._)_ -O.O0_ O.ZI_ =.:1_ o. oe*

    I_ O.l_t _.¢Z¢ O._O¢ -0.O.5 O.I_I -o.l_e_) O.O_O -_.O0$ _ 700 -o.00_ o.ool -O.OOO

    • p_ss* pot_Suae-Slnllx V_SO0

    It _.totz -._i_6 -.octt O._tt¢ .O)Ot O.LIO!

    _1 a._ll -.O0¢9 -.O_I O.O_OO O.05t_ O.OOt¢#) o.)e_q -.¢19m +.oo1_ o.og_t o.ooot 0.)_¢1

    v15¢ t._tmt-_: | T !

    I!1 1.0ovl-_

    II -o.tot .o.to* lO.|q_ :.tIl O.I*L o._61t) O._OO o.¢1_ 1.0Ol -o.Jt/ -o.o_ O.OOg

    tz o.tt_ o.l_ d.000 -o.¢*q O.)_e -o.t_t) lO.OOO +o._) _.oo¢ o.¢_ _.ot* -o.ooo)_ o.Je_ .'..';_ a.ol_ o._l: _.otl -O. JLI

    _1.1 It i; t$ II :_ tt

    I1 0.*1¢* -.¢*_5 0._11 O.¢eI_ ._t O.lt*¢

    )1 a.._i .;;_l +.o¢). _.1_¢¢ _.oo1. O.t*;+

    eoeiieeeo0oeooI* O_M_QJ eeee0*0$*eeo0oe0e*

    011VI+C I.I+01|'*|41"OaOI + O_00 11111 0.00|

    + 0.tO 0.O0 O.00+II t*Ol)l Ol011 1,1Oit bt . +,0o 0.o0 O.0_II 1.9+01-+t

    III I.Io+I+OI

    I + l

    + ,)++1 .It)+ .:+oi .;+SO ,0+9+ .tOOl• .+*|+ .Is++ .toot .Ol)i .|iql .COOl

    • .|I11 .0*+1 .©oi+ .lO$1 .Olql .I*1_

    @llm+L¢_-+Imt$l l+O+IIl+ ml+/,ll .*II • P*+o .Pl) * PSI * O1)+

    It o Oil O+Ill t++01%114 -o*l+o -+,+toII -o.lq* -O.OO* 0.IQ0 O*IZI O.lOl O*I)OI) *0.m+ 0.0©q O.O0! O.mZ -O*001 O,OO*II 0*I+I O.Cqt +,oOo -o.¢+_ 0.|01 -)*litIS *O.OOL 0.00t 0.UO0 O.+Ot ").)It 0.000

    )1 ).Oil 0,re( O.Oo0 ).)to 0*_* -O.I+I

    .14411 FKl)5+mt.+Inlll tlm++n)JIll II |+ I| 0+ tl l), 0.0It+ -.00++ 1.+0|) +.OqI* 0.0001 0.)+SO1, -.01it .,¢¢1z o.o¢tm -.O0** 0.0¢ I -dOS*

    It u_*_t o.OO01 -.0Ill +.0Oil O.OtlZ O.OOOP• +..*+v -.Ol*Z .+ltq m.Oo*l 0.0OO* 0.lit0

    -.0514 *.0010¢.OO_J..001I+t + +.+IS) c.O+_) ).|It! -.0¢i+ O.t|_+

    • . .. lomj. & llllllllglllllllll

    ).)lot-o+ tam Oli(mm&llCm moll• " l._|qt-;+ l + !

    ,_ +.e,)t ot + :..qo )l.ql O.oO

    .|i /.q+it OI V O,_ +, O.O_ 0.o0)ll +.1++! o+ 0._ O.o0 0.00

    t.IlII-O+

    I.'III-OI

    i_ItONi_ ILILI_ RI_I_)CILI$L m r t

    .t_q_ rl_1 ._$IO *lO)) .U)tq *0540v .0_Oo .II:q ,o711 .rile

    II O.141 0.(_I 0.O01 -0._ql *O*t_ -0.Jl)i_ -o.l_q -_.0_ -0.Ill 0.141 O*|l_ 0.t0$I$ o*_* c._11 0.©O) O.001 0.O0q -O.O_t

    _? O./_I ¢._1_ O, eo( -)lOll O,|II -O.I_|I) -O*OCL -O.CC_ 3.000 -O*_G_ -O.OO_ O.0_O)1 O*N4 -_*(4} _,OOU O*|)k -0.Of| -O.111

    IJA_t" _l_u_,}1!ktl |IkSOI

    iJInl it I_ l_ |O _1 )3|| /.||qq *)Ill _*_11_ O*tl|_ -,oOoY O.Iq_q14 -.O1|4 *Oil) .10t_ -,_Oll o,00o1 **t0II

    |_ -,0oo¢ o,o0t_ .o|?* -.))IS ).0oil -.lOt)44 o.¢n_ -.coil 0.o04_ O.tOlo -.OO0$ 1,_900

    O) o,o_)] *1¢|l) o,OISt o,O_OI -,Oll_ o,OOI_)I o.lq_$ -.4Ill _.O0)_ O*_41t -,O0_I O.l$_q_

    1111141111UI_IUI I_1_ 1_!1111_4'ii111"4_

    ! I.IlII-0t II1_ GII[RX&IlC_ RAIl

    v'$( l.ml_l-0t x _ IIII $.t$;I Ot b O,_O $t._? O.ooIll _+f_l o) v o.O0 0.oO O.oo011 t._Of _4 • 0.O0 O.OO O*OO

    II t.))_-¢)tl| l.tll_-0|

    + .+t)q .l+4_ .O+lI .tl)4.0iq/ ,OP$1• .;q?+ .+Cq+ .0q15 *till .Ill) .0Ill

    . .+oil .c_IS .Olm .tIqC .0_G .Olql

    ml+Sp+;$-_lIl$I Iv©Oil

    + ml+_mll lilt * +AcO * Pl$ * Pts * )+Isl o.+s_ ¢.+_I l._s+ -o.)$Z -+.)Of *0.St)I+ o.tlX -4.¢?c o,+++ O*lql O.lSl 0.091It +.+o_ o,ctt ).Oct o,O¢+ o.0o* -0.00o

    PI O.L*+ 0,¢)) ).coo 0,09t o+41) -o, ts&II ).+el -0.+¢* o.ooo -o.00t -o._1 to.00)1+ +,?+1 ¢.{II +,_oo _.tlO 0,041 r0. Jlq

    • *aS+" +nPs+onl-SVamlm Ilm+O*

    tilll ii II l_ 44 +_ $III o,OqIl ....+e .-I + ..+in) .ooc* +.tOO)II -.Olll -.+_lt -*gO++ -*(0IO g*0Oq_4 *.tOt+tl -,O+II o.+CCq -.alto -.+o©q o.olzl -.))is

    _ ),mill *tilt ,0010 0,©_*0 .aO+* O*)*!*-,O.+So ,%:.'c, ".t_* (.¢¢¢# .._**1 0.+Ol_s) ¢..lna ,,; +:.Ou+; o,;_+s .+0It o.tSOI

    IIii$$1111&II141 +_+_I llllllllllllllllll

    • /,t_$I-¢; mllm ¢lltanlll_ 1411vl_{ t.ttIl++P I • l

    I|1 t.qllT :t +++49 q+.qP o,++Oil t. PI+I _++ , O*+O +,vO O,OOOil m.*l+l 9+ O.O+ _..P£ o.0¢

    II +, It4l-+tlit l.l_II-+t

    Imtl+llL S+I.I_ mlrm++l ILl+m . p m • t

    ++13q *lOll .,,19n .lit+ .al%q .0It).llll ,+_+l .*+it .ILl* ._I34 .¢11*• Oqll *{lit ,++Sl .t4)+ .+l+q .l+l+

    I+ al_l, ll a*tl * PI_+ I Pl% e #1*, I ItS+

    1) o.$$0 ¢.mt+ ;.! q .g._1+ t q_+ 0.411t4 +.lmt .)*t_* ",+_ O.*+t +.sma l._)It 0.6_+ 0,+¢+ _.+IP Q,¢O4 O,o04 +.OOO

    z4 0.lit o. I14 o_'+g o,o*| Jll+q -+.+q+"

    4) -0.3_1 P+O+I O.i*lO I.POI -J._S 4,lOtIt O./|t n.pil +._.¢c _*q+6 J._?l -1.111

    "elr_" llttllt-$+lllt .Im_:a

    +.+Iml ;, . tl +; 11 _IIt 3,OlqO 1*tim ,),'P+ ).OlqO ,aGOl O,tOlP ,:P -.CO++ .:l.i '.1' -.4PI! .).+or+ -+|illIS ,celt ,:.o: _ • ,l• .¢+0+ },_I1+ -,O+t¢

    11 J*I+ll .+I +I .' +l J+;Tlq ")+I+ 041£|I+a +.¢.++# 1.+,,,.I ,,;_¢ o.¢¢;+ .:it) O.00t)_+ +._IlI -+.ill ' _t_ 0.tI'I .atOll O.II/I

    *l*ll*lll*llIll* I)e|OL 1111111111111111111

    | e./I)l-ol mlm gt_o_flilllm 0&11vise t*OtOl'Ol i v |

    Ill hOOll O| u g,o0 ll*_l g.O0

    011 ?.*_0101 M o._ ).go O.O0

    II l*Illl-OlII! l.lOll+01

    l_tt+mt_ $(o_1_ _IC,OKILIS) t l*_431 .tl4l ,01tO .fOil *LO/O ,ITS|._t_ ,|t$o .tlql *llql .t/O_ ,O010

    M ,l|qq ,O?_I .OqlO ,4|74 ,0144 ,t$)l

    *t_k_CO)-ItllSS O_oltI_ _IJl_ll n&T! • onto ¢ P$S * Pt_ * 0151

    14 O.t/l 0._(I be)0 *0.tO? -o.]It -0.)q_1_ -o.t+4 -O.tOt -¢.I$I o.441 O.tOl O.OI$t_ -0.005 -).OIl -O.OIO O*OIt -0.001 -O.OOI

    I_ O. tl) 0*0It O._q_0 -0.Oil 0._0_ *0.$$0I_ 0*OOZ +¢._I O.O_0 -0.0_ -0.0It 0.000

    _) 0.41) ¢*44) 0.004 o,tt) 0.051 -).IT4

    "IA_+" I'I$+WPI'SIA+tk 1tm)om

    L+/ml It l0 l0 II I$ I)11 0.0415 -,o1¢1 -.Q+)I 0,+S01 OmO0_$ O.044)t4 *.gO1) -.c¢$4 0.0014 -.O¢)4 -.O0t+ -.O0++I) g.¢0+l -.0¢0_ -.0154 -._OI O.O)+t O.00qlpC o,+O_) -*01|I -,ooql o.moq O.O001 o.$014

    41 o.g+l¢ -.)0or o.t)oz -.+0ol -.0111 -.oo4?I| 0.OSll -.Ztlq -.0¢I+ O.t|lJ o.O00q 0.t001

    Itlllllllllllill Imlll llllllllllllllllll

    r ?.O?tl-OZ nlO# OtFOO_IIItk )054Vl)C I._II_+00 I V ¢

    _It I*)|IE 0| U O.00 _*0_ 0*00_IE _*_0_! 01 V 0.O0 0.00 0*00OJE ).O?_I 0| • e.O0 0*00 0*00

    El t,t$$1-¢tIll t.ltlI-0$

    IIm11+_lL+ $+kkr_ m mI_U)CA_I$+ I

    v *0?_t ,li$1 .0?It .010| .0_oq ,0)$1• ,o)le *040| ,Oq_k ,O0?I .0q_O .OOO)

    mt_c_oo-IIn[t_ ovooeltJ RIJ/AII IAll • PR_O • POS • F|$ • ot$$II o*_qt 0*tl| l.t0/l -0.J$$ *Ot¢¢q -0.4)4II -0*L04 -0.;|| *o*_qt O*)01 O*t_O 0*t0q

    || 0.00_ -0._|i -0*O01 *g.O0$ -0.OOq *0.o__I 0.1I_ -0.go) g*_q_0 -O*O01 0.|q_ *0.12_0) ¢*000 0*000 O.O_O -O.QO0 O.O01 *O.O0t

    )) O,|O| O*gO$ 0.000 0.43t 1,014 -O*_Oq

    kJ/ll II |_ |_ _4 0J J)It O,tlJE -*OqO_ O, OOO0 0.|0_I •.0004 0.ts1q

    t| +.O411 -.0tit -.00t0 -*0E0t -*0_0E ".lqtqtl O.0_|P -.O0tl -.tOl_ C.Cq_0t 0*01q? 0.000tII O,I)t_ -.011_ O.O041 0.gltO 0.0_PJ 0.)II0OE 0.0014 -.O011 0.||)O 0.00C_ +.0101 0.)0tO)| 0._445 -,4)?? -.O0C$ O.IEII 0.OO0q 0._tI

    e*ee***e*e*.e*e* l_llk ll*e*oe*_***4*****

    VlS_ t.lt*l+04 x • I

    RII ).ql_t OI b O.Oo _t._? 0.Oo_II _./e:l o_ v o.oo o.O0 0,0oOIE _*I)ql 04 x o.oo o.o) O*o0El t.*_OE.Ot

    III l.llil-Oi

    XINII0111T )(Ik|_ I gI_R0$CI_)$• ¢

    u ./I)¢ .l_ql ._i_9 ,E$$t *0?)3 .goalv .|I_) .4111.0lqL *tlq_ .01SO .0141• .0111 .04¢? +07/I *tlqq .Oqqt *t0q|

    *I+_C_C$-I101S+ PWDGII

    IJ nz_/mll IIEI * Plm * P05 * +41 * 0115Et O.qll +,+?q t,lI¢ -O,)&? -O, M6 -0.+01tl -o t*+ .+.to? -O.TI* +.0kS 0._0S 0.044tJ 0.0(+4 o.¢ci 0,001 o._o+ ).OIl -o.00]+1 O. lqI '%10q 0,00¢ -o.04¢ +.11a oO.ll)

    1) -o,oot ,+,OOS O,O00 O.¢OS O.O01 -O.OO0)_ O.tl0 ).is) O.000 0.a09 0.0_) -¢._|0

    "_s+" enltsu_t+)ta*1_ _tasoa

    4Jlal II I_ &) _Z ¢) ))tE ¢,o*ot -+¢_*_ 0*00It O,O_,t .ooze 0.o11)t4 -.o*ol -.01¢1 -.00t_ -.co,) ¢.OCOl -.t01_

    |_ ,OOlS o.coo_ -.OMS 0,0¢41 O*O*OI -,oot__Z _***Is ..¢o14 o.Oo)_ o.o;*s -.O001 o.)zlr

    J_ O,O0_s .o¢1S _.ILI¢ G.C_¢I -.0ill ).00toI+ 0.*o•I ..z413 o,o0_o _.;_+t ._019 O.tls¢

    Iiiii*ii*Iiiiiii _i_Ig iiiiiiiii*IIiiiiii

    I 1.000I._I nl4N OIF_A?I(k A&rl

    *II hlO_l :I _. _. i.l.P¢ o.o?PII hOq41 ;_ _ 0,¢o _,_g o*ooOli 1,141f 34 i O._o _,o_ O,oJ

    II i.*¢IE-e?I11 I.tqlE _$

    t .t?_l .tE[q *0_oq ,_Oql ,oltt *0_qli .)ill .t_*I .)el) .¢Y_O .0_00 .0q_l

    ._)?) .0511 .t0¢¢ .0IX* .011P .0/01

    IJ IIi/III tlll• PAO0 * _15 1 Pt) * OE$_it O*I04 _.044 O*4_Q *0*)tL _4.1_| -O.$I_14 -)*IS0 -_.otq -0._i 4*tlq 3.0_q 0._I_ -O. O0S +e.0¢l -0.col -o._l -0.00_ O.O4O

    +o o,_*_ o +oa o.ooo -o.o*) +,lel -o.o_+, 0.+041 +_,eO$ 0._0 0.001 0,001 -O*_Eli o.$II ¢*¢$t 0.40) O.SIq ).Oil -o.lq*

    -plt1* I,II)_I-S?O*'. +In+_kJ+Xl +_ 10 +1 11 t)II +.t481 -.)all -.O01_ o.+ + **0040 O*]001

    II -.ml +.)oil ).gel0 +.o¢i+ **ms -.llmL1 +*0_44 +.o0m/ -.OI_I -.Oo|l O,g$11 O*00tqII 0.,I19 • ,Cqll ++Oil+ O*It/q ".Meg I./qo+

    II -.O01! O.0¢/0 O.mql -.gOOE -.0_*+ -.0or))I 3.)I0_ .EIll +,++11 0.Zq0+ O,O01+ I*t$0q

    2_

  • ille,ll,,Iooel,+, oil+Ill l.loulo.lltlle,oo_

    1 Z.OOCL 01 iiij_ OIFmNA_ICk PA?i

    Jtl I./Olt OI Q OQ t_.O0 _ O0P_I t.OTOL =1 V O.¢a 0.00 0.00

    011 1._L1! OI _ O.Oa 0.00 0.00I1 _._0|1+01I il -q.lt;l-05

    I_t (_JJL StArt SX _I_nCS[ALI_ ZX _ Z

    V *;'+*? .llql .LO_ *01_6.0?*a .O_Z_

    L++ _.ql_ Q.OI4 O.e*e -O.S*: -_.lt¢ -O.)*+X_

    +el,, l,l.iel.l_l IS_IZl ll.******lelll***l

    VI_( _.C001"O; Y

    Pll 1. l_t _l _ g,g+) 0._0 0.00011 q._l_! Ol _ 0.0o o.0+) g.g+)It ?, ?l'll_- OZIII 1.0101+0+

    It + II Zu ,ill+ *|143 . O§'to .1211 .0?O| . 011_PV +It++ .lltz .tOlf .C111 .0100 .0+++

    • .m++ .01_C .10+4 .QIII .O+?f *0111

    I I_mP.LOS- Sf mf St kmll+J ,IJ/+ll mitt • ;_l(p_ . +IS + PtS + Of SS

    t| o+453 c.111 L.l?4 -¢*111 -0.+t+ -O.iq2II ++).ilq -0.0|6 -0.I+)] O*l.++ 0. II0 0.O?iLI -+).o,oi -O.OOl -o.OOl 0.+)0+ -+).0Of +).0oozi o.+|i o.ccJ +.00o -0.0|t +),/qq *+). I14tJ +).0+)t 0.¢¢1 +._P© +) .+)I:+ 0.00l +).0o+

    ++ o.)++ O.C++ +.c+)0 +)....Z++ -+).Of) *0._.'.

    • r,st- emtssVptlSltll_ tluSOlk+J/ml 11 11 II il +3 $3

    It ).lit+) -.OMI 0+c)3 0.|_++ o.OOll O.+Itlll_ -.+)Ill -*+)Ill +,+)Cot -.ram+ -+0o0+ -.;+o+;) +.oolO -.OO¢_ -.0+o¢ o.oo;I O.05tO 0.O001tl +)*+ill - *gl)l -.o+If _+*++_ f -.OOO; O.10/+

    _! +.OOi4 - ,C+|i _)._)+¢_ +.+0Oq +.0slqt -.g0+)t. +.t?o) - *_m;Pq ,+,JfC t ,),lOst *. O+)0l 0* |l+g

    lllll t+ll+lll+ll ssml+m -- llll+lll+I/lllllll

    ? I,.oo

  • ili ¸"

    i¸',¸i

    eieeeeleioi eoeei Nil oe6elelieieeoe6*eo

    I.llil 00 0._ 0.00 I*10Pll 0.0_ V 0.0© 0._ 0.H

    II l.lQIlo_llit -|.0gll-01

    mlN_t_llv K6LI_ I NiCM01C*_I$• t

    _ ,|;_1 .011_ .Jell ooe_i .l_e_ .16eo.lle_ ,lilt .1_1_ .eill +0_li ,O,lltm •ill5 .1111 ,i_s .credo ,0_,wo ,_11

    nt_L01* liJlll I_fl?IA nl_sptl n611 • en_ + pl$ * P)$ , Dtlsi) 0•|1¢ -o,llt i.leo -i.ool -i.N0 -o.ll)II *o,_ o,1¢1 Q,Ogl *¢.oqt i.o¢) -I.141

    )l -Ibl0¢ -+,ill ¢,ogl +o,v01 *l,_) -0,_II o,lll • _,11. o.ooo .O,lOl t._) -o,1_I) -e,¢_l o,lql -Oo1_0 o,oQI l,_l I.ll_|| i.lll -c,]l/ -o,_l o.oil -o,_) -o,)l#

    • i151. ml$1_ml-$11A/_ Ii_$olLJ/_I 1; II |1 Zl II )!li O.|lSe o,011¢ -,0Q©l o,llil -.OOll o./illI| -,_0q -,Itlt iI+0o0q -,QOlO o,o0ol -,oo1_

    tl o.1_o* -.ooll -._io o,©oll o.g0|o t.o_JI o.l_i o,¢oi? o,_i 0,1|ll -,ool) o,lltm|l o,_@1 o,ool, o,o¢ll ¢,O¢Ol +._t$ o,oot4

    |1 o,lll_ -,oils +.ooc| o,zt_l -,_t_! o,llll

    • ,,,*******•*,** illo ****,*******1.****

    z

    mil ).Jill o) _ o._o o,oo _.topll o.o_o • o.0¢ o,_ o.ooOll |,ll_l _o • -;.qo _.oo o.oo

    Ill ,i,o_le-ol

    u ,ill) .)ill .ll_l *l*_* ,i0_ ol011V *10_* ,l©l) ,l_i .1011 *l_ll ,)01_m .101_ ,liT1 *ill) *l_lQ *t0_) *)_l

    IJ IIJ/mll _11! * Pm_0 * _Z_ * P|l * 01)S

    tl -1,1I_0 ',e0/ -0.{_1 0.C_l 0,001 0,0_||l -0,000 :.0Q_ 0,01t 0,_¢) -_*00/ i.0_+

    It t.))| '.ill 0._¢0 0,_t 0*001 -_,li:

    lJ/Xl |) II tl _' Zl I1I) 0.)l_l _.0Clq -,00_! 0,_*l'_ _,00Zl 0._itl

    II 0*00#I ,0011 -*_ 0._'0¢10,_l) ,.=001II O. llql ,_,_©)e .,0_1_1 o.tll_ -,0o0_ 0.tttl

    l io0_t ,_Cli o,o0(l 0,o011 -._s* 0.+o0!I 0,zllt ,('ell • 1,00111 0,Zl,_'_ 0*0_l 0.11)_

    il)L l._'ll ,_1 I T i

    nil I,tll( :_ u o._o _,oo _,g¢

    II l,t_qt

    , its,' ,_tll ,Qi|a .CqTq .QII) ,_I_

    ¥ .+?st +L llIO .ll_l +_t_| * O_I _10 . 01101

    LI l.l|l ,%l_s O. gilt -l.00) .I.iol -G. tlJt_ -I,000 o,oet O.e_l O.Olt 1. _41 1 +4.1Ol_j ¢,O¢0 ,',_ol O.OlJ _._l_ -0.o¢1 -o,nooi_ i,i)l e,)_l 1.©00 ¢,000 _i, Oa* +O.I)*

    II -It O'Ol _'. +it ) 3.Olo l.clJ 1. _q31 4.1o41|_ i, _l) i - ,',It) tl,Oll _,_t + I. o_ 1 ._. ))+,

    II -,ills ,cote o,otle -.O¢11 o,o_)ol -,_.1,

    I) l.lt, I e._'(tl iI.o10_ o.15_t +._?lltl +Ills+

    I_ ,%/Tie ,,0_ .*_Oc* a,:**l ,,oat l._ll)l

    llle e,lie el e_lle el i 1Io le•lo|ilileeeeelee

    vI_Lf t,O?lll'lloll-cI_' II I II11 +'t pci'lm4t I(ll li_t|

    I_ll l,tQql ,,_. k _. _t,, o,o_ 0,61II 1.141it ¢*

    Ih ),114I-,I

    li ,1111 .lilt .ill +t_lt ,llil .lilt• ,11tl ,i1oi ,till ,till ,llil ,t_l_

    • ,_•II ,1111 .lll_ ,l(+l I ,ill) *lit I

    el _ICL_I-lillII it ,'_ itI_ Ill#lit loll * ll_l * #ii • lIll * _lll11 I.I/! I1, +11 ++,lQ l I,l¢l 1. _lll +v, ill

    il I,ll ,,,_I 1,111 _1,illlt I,tll -t,lkliII _*It 1 ,_'ll l,li ! i .l" Ill #*/_11 -0.I@tII I,l+* ',111 I,III I.l_l )*ill -0,111

    li l*lli ,',rOt -I,IOi t.1_¢1 _,105 -_,ll"tII l,)li ,'.Ill _,lie 0,¢¢_ _.Oll -0+11'0

    Ili_l, IIIll_ii Ilttll lllltl

    i_'_i li ;I II II l) 11II #,till ,¢_ #.#ill i,llil 1,_l_ll @,lllqtl +Ill L_*t+ ,Oiil ",_(1 " *l_lll "'dill)1 '+Oil ,l.'lOl 'Oltl l,i_;t ,1,0oll I,,llll

    II +,1t0t ,_,e¢ll ',+Ill 0,110e _,ilkO• I,IlliIt i+OIl_ ,,',_i i ,!,#_11 _,4_(t .l_llt ll,_lO#l

    I O,i_ll ..'_*li ,l.@711 O,llll ,111 O,ll*l

    • * *_e * I•il *eeee*eeeeeee*_.**

    vll_ 1,0?)l-+_ i&ll I,_l,_t- oi v _oOO @,ll loloPI I 0,o11 v o,_ 0,1_ o,el

    I1 l_e41 ioi_Iii I,il•l+Oq

    ttll;ll_ icier i I tilllil{liil ll Vu .loll .dill .till ,ill] ,ill oOlllv ,Oil* .)lit .lOll ,llll *lilt ,0/11

    v ,Olll6 ,lilt .till ,0",,ll ,lti) .1111

    li_llll*llilll Illll

    li Illllll llil • llll t tll *-otll.oi • Illsil O,)ll -0,111 I,l¢l .I,Oi_' I -i,lil

    II 10.NO -i.O_i O.001 i.lli -i.lli -i.O¢Ili -tell -i*li I OlOll 14,044 -0111 -Oil 0

    l) O.)ll -villi O,IIl 0,,141 O.Ogt -O,l+l

    II >O.li) 0.101 -O.iil i.OIL i.0_l i.i0iII 0,111 -O•lll "O,OOl l,lll -I,m; "l, ill

    _Filt I /llli+l*$1milt llk$l_I

    Illll || ii I) 11 II I_li @,till o,llcl) -*lIi_ I,l••) -,lOOt i.il#i)l +,olltl -.llil ¢o1105 -*till I,lml -,lOllII O,O01l +,i_tl ,+ill l.Oil* Q,gill -.tOOlil l.llll _.¢ll) ,It i.lli/ -,lOll O,llll

    II _.IO@l -,._©i• O,lllfq O.gill "._ill i.ililII o. llll *,l)'l) ,.q_ii O,llli -,Ogii ioill_

    1 t.illl-'ll it'll OI_O_III(I I_llrill l.O?ll-fi lIII +.ITql .it I# l.GQ O._'IO 111@

    Pl I + +,_O+ + O,Oo o,oo 0.tOOt I l.il+l-0t • i.+O o.OO i.OGII I.III)-01III I.i+14-_l

    Iql till+ st Ik[_ II I(pt_')( &L | S

    _1 ,_|_1 ,lIO) ,llql ,lit) ,ltl_ , |it+'

    ¥ . ! llll .lOll _ . LlliO .|llO .)4_I .I|_I *lkl P .141t ,l_ol ,)t ,+ dill .lliT

    II II_,_ll mitt • Pie• • _l) • Ptl • tills

    |) ilt)l +O+)li 1Q.cl_ -c.0_l -_1.10) -l.)il1_ -+_._I q*Oal +0.¢01 .%0_a -I.0_ 0.I0+L| 0,0%11 _*_I o,1g| g,_ -o.+c_ -+.Oae

    _ +), |I_ o,?i_ e,g_l 1.oii _._.ll -+*tqlII o,ialt -0.011 -0.o0i g,_ll_ -1.o01 -_.oleit 0. I_1 -0.11_ O*Ci_ *O.e01 [email protected] -_, Ill

    • Ft_l I Pmtl_klll-_l_mlll |t#l$_ll

    kJ/•J I1 II i) 11 I) ||It _l, 1141111,00_0 . Ol_¢ ' _,_ll ll.0Oll ill) tl_

    l .01_q .14111 - .Oli_ . flit I 0,00_? ..01_Id,oo_l - ,1Oil *,_,1110,0110 _,01|_ - ,_d_l

    lZ _+l_• O._cll 1,o11_ O.llll 0.OOil O+_tq)

    _s _._:l ,eo_l o,o©e! +,leel -,_1Ol +,till

    i!*111.l.lltl*ll ii;_ iiiiiii1_1111.i!1_

    rvl_t I,tllt-ll _ll_ Otl_llqllt(k lilll

    _ll I*+l )ll "1| u O. O0 o,+{ I II. +hi_11 i.oo¢ _ _.oo o._ i,o¢Oll q*•111 10 i ,_,o@ 0,00 0+oo

    i Ii1 _l;lt_ %(I1f5 PIll Afltllf$I _ z i • i

    • ,om_t .rl_ ,1511 ,(y_! .0114 ,)l_ I

    Iltfkkit_ Itlll$ Illilllil

    Ii IIJ#lll Illl • lt_ * I11 • ,•1% • _15lII l.llt -I,)lt i,ill I,itl -I,O

  • le*eH,e,o*B**** IRII ,+le*_***e**l*****

    lv !.0151+01 _lJh Olaf,*illS slltISC t.otl 1o01 x _ l

    III |.Zl_ O0 u O.OO o.e_ 10.0tPll O.O0O v O.OQ O.00 0.00OIl q.)tzt 0t w -IO.OO 0.1_ O.01

    II l.)_oe-oIIII -I .Ioqt-o|

    Jilt t_OaLv IIJ_1_ I nlCOg$c_IISt l

    .ore* ollrl .t_ol .¢toq .0tOl .Otl_w oO)_a .else .|f_ .01_1.0)Ol .ootl

    Jl_LO$-$tll$$ 1_t_! t

    _ IIJ/Jll mlll• OOm * Pll , PlS * OlSiO.J)_ -O.ilq 0.0tl o0.00) -O.l_t -0.111

    LI _.1_0 0.O05 0.0tll -O.00k O.I_O -O._O11 -0._0 -0.01_ 0._ -0.0|1 -O.OIO *0.100II O.J)_ -0.1)) O.OOO O.001 O.OLI -O.I)qI) -0.011 O.O0_ O.O_ O.OOI 0.001 O.O01

    15 O. IIl -0.|)1 -0.001 0.011 -0._¢ O. 0)O

    • **_tl nl$$wlq-$tlA£_ tl_s_

    I| 0.1_¢_ O.00_ -.001S O._le -.OO&) O.it)*

    &l -.001o -.or61 1.00t_ -.oO_| O.0901 -._o_II O.O_q -.0001 -._II o.10kt O.o_t O.O001I) O.Itlt o.¢111 ¢._eo I.I)_) *.oo¢_ 0.10_0!| 0.0_ -.0010 ¢.111_. O.110O_ -.O1111 O.OO0)

    )1 O.)Y)% .¢¢t) -.0011 o.)_et -.O00) O.l|lt

    vl$_ t.O?lt-O) x • Z

    nil ._.t_tt ol _ 0.1O 0. O0 10.00PII o.oog v o.io 0.10 0.00OIl I.l)ol oo • +$ _1.;10 o.00 O.00

    t.)l_t-oqLI.........

    • t_10 _1_ o_1_ o_Ol_ ._ o|__ ._0|1 _)1 _)_| ._)_ ._00_ _

    _) 1_ _._1_ _)_ _0_|_ 0.01_ -O.O_

    t_ 1o_ _. _._ _._Ol _.o_.0 O.O)_ _0_)_I_ o_.10_ _¢_ _ -_.o_ _O.O0_ 0.0_

    _ 0_)_ _¢o_ _O_ _| _o_ O_IO_

    10 _0_0_ ._Ol_ _l _o_ o.00_l _.__l O_01_ ._o_ o_0_ _¢0_ O.00_ O.O010_1 _._ _¢_¢1 -_0101 0.|I_ _01)1 O.I)|_

    I_ _OO|_ • _¢_ _ _C01_ _l_ 0.00_)) 0.))_ _¢_ _OOO_ 0_)_ _O_:_ O._

    viler ¢.Yt*_-.)._T.OIII.O) ,tAh_ OtFOa_AUaCb J_rt

    o.oo o,oo ++o.ooIII bill! CO uPll O.oCo v @.Go 0.0o 0.00

    II1 *.tlbt+ 11

    v .or_ .I)¢_ .olo) .¢._i .loll .o._i• .otll .oi$I ,kto., .01,_,'_ ._'+)t .0_I_

    IJ I11011 t _II • plOO • p_* 4 pl_ i i_I*_

    _I 0.111 [email protected] *O.I_ 0.00_ -0.000 -I.I)_II 0.000 a.010 O.001 -O.o_l O.001 -I._00I) 0. me -o.Iom 0.01) -0.011 0.OIl -I.0Q0tl @.his o.)¢l 0._+ -0.000 1.0_ -1.)_I

    +J -0+000 o.103 0.10) 0.¢0_ -+.001 1.0001} 0.101 ++.||¢ 0.101 -0,00) ++.Oil -0+}Is

    •flit. _11$1ul1-11llt_ tlmlt+_

    t.ilml II l) |l +I II I)II 0+1100 +.+Ct+ 0.3011 0.111_ +.000+ O.11|4l) -.0011 -.011) -.000_ -.0311 *.0_4_9 *.0OO+I) -.00_+ .*00O+ -._11 O.00II +.o014 o.0oo+

    II +.lilt +.lit0 -._011 o.1110 .@@of 0.Islol_ 0.00+_ . .+Or+ ¢.00_9 0.+++_ +._4. O.000+|1 0.+_| .Ictl o.010. @.+}im- .OOOt O, + }+.+

    illlllllllllllll Oit ,it', llllllllllllllllll

    I 1.1141.:x +ll_ _+lP_m4ll_m till

    • 1'¢ ?.O+il, l • |Ill *.41+l. 'l .. 0.+¢ +.00 +O+OO

    411 O++ + + O.O0 O.Om 0+00+It l.t+}l "0 • *;+,+0 +.too +:,+4

    II _.. ?•+ I ,:+III l.lqll ++

    lqll+ltk l[l_11 II_ nO_" Ik II

    l + £ I v Zu *ill+ :I*+ .lkm .ll_: .I11_ .1011

    • .lit+ .,)IS .)+Xl .I_10 .XllI .lOll

    i .01¢+ .i'll .IOl+ *l+++ .It01 , lilY?

    lI qmt'_+'l+ II II _ Ik1+l Y

    IJ lla/lll llTl • PII.'O • OIl e Ill • 01_S

    || l. lll :.)11 -I.O+I .0,0+4 -o.Oll -0. ill

    II 0.0el .+.011 0.10I O.ntl -O.01.1 0.0of|| 1.100 -_+.Cll -0.*+If 0.oll -+.001 o._OIt 0.1l+ +.Ill 0.t0_+ @.OIl O.OIP II, )seII -0.010 - ..011 O.Oll 0.0_l -O.0_I O.0OO

    tl 1.11! - +'11ii O.llt 0.¢l$ 10.Otm -+.01?

    • +I_.- mlllvlt-stilt+ tfm+.ll

    ka_ll It l+ II ++ 11 II.l +.1101 O.+(t+ d,Ol¢+ 1.ilil J.o+il O./l_Sil +.I_01 -.++l_ 1.0_I *.OOl? - .+lrl _ *.0011II O.l_l_l .t.+_t -.@+lq O,toIm -.00I_ 1.1001

    _ +.1|I; *_+++ O+OOlX @.lOtS .00IX O.}})X-.100t +._ +IS O.0I|+ O.+Q+I -•0111 0.0Of0sl o+lrts _+._+i* -._11 k).+l*l • *00041 O.II_I

    l.. ii Ill)Ill)Oil 1Oil lllOelllll IIIIII I I.

    t I,IiOI-IZ _llm +llmslvltl O+tlVllC T,Olil-l) l V I

    011 1.T011"11 U 0.m 0.O0 IO*OOOIl _*010 V Q+Oo O.0_ O.0rl011 4.0OIl O0 • + _0,00 O.O0 O,O+

    II 1.41_I-0+III }.(1141 "OT

    I m+IOIAI. 1(Jtl_ ll_Amgl_I0

    .0_01 .I_II .1_1_ .(_¢0 .It01 .01_1

    .01*i .I¢11 .111_ .l_¢_ .@eel .lll_

    IJ 1 IJl411 IA',( • pltk_ i PII + @_S t 0151|I o.)11 -O.lll -1.101 o.101 -0.I|1 -0.lI_

    _I 4•O_k

  • •_- • _+2/ _ • . ?-

    • • ***** • • ** iqDe* 0114,+ • ille*ell t _** *ol.i *l,t

    _ *._L)I+oz meJ_ OIP_,sTI(_ _ TeT.OTZO*O) X T

    I.))40 _ L) 0._ 0.0

  • +

    ! l.tl*t-OI lqlJs OlrlXLs_Itm JAIlTI)C t.OtlI-OI _ ? lill l*qtll +O V 0.00 O*+O 0.O0Pll O.OO0 V 0._0 O.eg +.+0011 I.+Z_I OI W O.

  • ' :!r

    J/ >

    k

    p\l

    • ee* +!eloa***e,l_**ll, IIIIll*l eeeee **e*e •

    ! I,S?lf-I| nlA_ ©II_lTl_n mMIt11¢ i,*14t-00 I Y I_JI I.|i_l 00 I, 0,00 0.00 0.00

    P|0 0.o0_ ¥ 0,04 0,0g 0.10011 1,14qt 0! v 0*00 0,0_ I*tt_il e.Ss4_-01Ill -|,?*T_04

    xi"tt_A_i _Lt_ t tt_nn_*Ltl z

    • L_04 ,0SOL .0S01 ,ill4 .0O0J ,0lCk• i0l) *|III .0_I +©SOl ,£JP? ,0It0

    Ii *L04L IQTOfl ,ii_J *0411 .00LI +ills

    Pl _il_.0S* S11t S5 l_ilI_ ROt/All lJ?l - PA01 * 9aS * PlS * 0155

    II 0*J0q -01_$? 0i0a0 010_0 0.0_S -0,|IfII 0,10X 0,0¢¢ 0,010 O*OH 0,001 -0,011L) 0+I01 -Oelll 0,01O 0,000 O.100 -I,O)ZII i,14q -O,lll O,01+ 011410 -O.Oli -o, ill

    II *0,001 0,010 o.mg 0,000 O,011 -O.OtoII 0*STT -0.$15 O,liO O.092 -0,+14 -0,211

    "0101 + f,tSSt_.l-itn.ls ill+lOllLJPNI II It l) i+ l) +)

    II 0*10SS Go00(+ 0,Pi|O 0,114'. +*0gLg 0,+I@1il I*_101 "*01Jl "*i001 -*_lll ",00gl *,r+011IS 0,O0Ol 0*+Oil "*Oiil ©,+¢0T +,il0gT -,llg+II d,lH1 0.m000 O,0001 O,IIll -,000* O*iSTO

    11 0,0_11 -,00il ",0Oil C,00¢1 -*0%+ O,0ii+|l 0,tqq0 U*0010 0,00t? 0*ills -*0014 0.1q?i

    ieill*lllllll*ll tIOGA4 illlllll llllllllll

    S )*10Sl-Qi *tim +llm+ItlCm m,+lviii i,+l+t+O+ I l ZIII i**ill-Ol u _.f+ 0.8o 0,04

    Ill o ,,)Ill v ,.so o.oo 0,01III I,T_I-_I _ 0.o¢ O+00 #+OOII 1.10tl- _1II1 -I*lili-++

    illil(_llli _'ill • llClliCi_lSy I.liql .l_)_ *$$T_ +_??T .|Hi .i141+ISIS *_Tli *ill| *Oil? +_001 .ilk?

    I .lJ|I *i_?l *|i|t *1}1t .iNL • 1O0_l

    _F_CLO$* ST_Iil I_¢II III lllllll _Itl * _l_q_ * _zi * lOS • 015S

    i