R. N. Hoffman , C. Grassotti, J. M. Henderson, S. M. Leidner, G. Modica, and T. Nehrkorn

45
RICC, June 2005 Controlling the Evolution of a Simulated Hurricane through Optimal Perturbations: Initial Experiments Using a 4-D Variational Analysis System R. N. Hoffman , C. Grassotti, J. M. Henderson, S. M. Leidner, G. Modica, and T. Nehrkorn Atmospheric and Environmental Research Lexington, MA

description

Controlling the Evolution of a Simulated Hurricane through Optimal Perturbations: Initial Experiments Using a 4-D Variational Analysis System. R. N. Hoffman , C. Grassotti, J. M. Henderson, S. M. Leidner, G. Modica, and T. Nehrkorn Atmospheric and Environmental Research Lexington, MA. - PowerPoint PPT Presentation

Transcript of R. N. Hoffman , C. Grassotti, J. M. Henderson, S. M. Leidner, G. Modica, and T. Nehrkorn

Page 1: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Controlling the Evolution of a Simulated Hurricane through

Optimal Perturbations: Initial Experiments Using a 4-D

Variational Analysis SystemR. N. Hoffman, C. Grassotti, J. M.

Henderson, S. M. Leidner, G. Modica, and T. Nehrkorn

Atmospheric and Environmental Research

Lexington, MA

Page 2: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Thanks• Supported by

NIAC

– NASA Institute for Advanced Concepts

• Tools & data

– MM5/4d-VAR

– NCAR/NCEP gridded data

H. Iniki 1992 (NWS image)

Page 3: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Today’s talk

• Experiments to control hurricanes

• A different approach to weather control–not just hurricanes

• Based on the sensitivity of the atmosphere

• The same reason why it is so difficult to predict the weather!

Page 4: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Theoretical basis

• The earth’s atmosphere is chaotic

• Chaos implies a finite predictability time limit no matter how well the atmosphere is observed and modeled

• Chaos also implies sensitivity to small perturbations

• A series of small but precise perturbations might control the evolution of the atmosphere

Page 5: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Objectives of our project• Develop a method to calculate

the atmospheric perturbations needed to control a hurricane

• Quantify the size of the perturbations needed to do this

• Estimate the requirements of a weather control system

Page 6: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Current NWP operational practice

• NWP centers have developed forecast techniques that capitalize on the sensitivity of the atmosphere

1. 4D variational data assimilation

2. Generation of ensembles

3. Adaptive observations

Page 7: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Current Practice 1: 4D variational data assimilation• 4D-Var fits all available observations

during a time window (6 or 12 hours) with a model forecast

• The fit to the observations is balanced against the fit to the a priori or first guess from a previous forecast

• We use a variant of 4D-Var in our experiments

Page 8: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Why hurricanes?

• Public interest: Threat to life and property

• History: Project Stormfury (1963)

• Sensitive to initial conditions

• MM5/4d-VAR: Available tools

Page 9: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Our Case Study Hurricane Iniki (1992)• Landfall at Kauai at 0130 UTC

12 September

• Hurricane Iniki from 0600 UTC 11 September to 1200 UTC 12 September 1992 is shown in the following movie

Page 10: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Iniki Simulation

750-hPa Relative Humidity

Page 11: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Determination of perturbations

• Optimal control theory

• 4d-Var methodology baseline

• Modified control vector: temperature only

• Refined cost function: property damage

Page 12: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Mesoscale model• The MM5 computation grid is 200 by

200, with a 20 km grid spacing, and ten layers in the vertical

• Physics are either– Simplified parameterizations of the

boundary layer, cumulus convection, stratiform cloud, and radiative transfer; or

– Enhanced parameterizations of these physical processes and a multi-layer soil model

Page 13: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

4D variational data assimilation• 4D-Var adjusts initial conditions

to fit all available observations during a 6 or 12 hour time window

• The fit to the observations is balanced against the fit to the a priori or first guess from a previous forecast

• We use a variant of 4D-Var in our experiments

Page 14: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Standard 4D-Var cost function

• J is the cost function

• P is the perturbed forecast

• G is the goal

– G is the target at t=T and the initial unperturbed state at t=0

• S is a set of scales

– S depends only on variable and level

• x is temperature or a wind component

• i, j, and k range over all the grid points

J = ∑xijkt [(Pxijk(t)–Gxijk(t))/Sxk]2

Page 15: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

• Optimal is defined as simultaneously minimizing both the goal mismatch and the size of the initial perturbation as measured by the sum of squared differences

‘Optimal’ Defined

Page 16: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Modified control vector

• Control vector can be restricted by variable and by geographic region

– Temperature only

– Locations far from the eye wall

Page 17: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Refined cost function

• JD = ∑ijt Dij(t) Cij

• C is the replacement cost

• D is the fractional wind damage– D = 0.5 [1 + cos(π(V1-V)/(V1-V0))]

•D=0 for V<V0 = 25 m/s

•D=1 for V>V1 = 90 m/s

– Evaluated every 15 min. for hours 4–6

Page 18: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Minimization

Page 19: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Experiments• Hurricane Andrew MM5 simulations

starting at 00 UTC 24 Aug 1992

• Initial conditions from an earlier 6 h forecast; NCEP reanalysis; bogus vortex

• 4d-Var over 6 h (ending 06 UTC 24 Aug); 20 km grid; temperature increments only; simple physics

• Simulations for unperturbed vs. controlled; 20 km simple physics vs. 7 km enhanced physics

Page 20: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Initial conditionsProperty values

Page 21: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Temperature perturbations

Page 22: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Surface wind field evolution

Page 23: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Control vector sensitivity

Page 24: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Temperature increments

Page 25: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Temperature perturbations(controlled minus unperturbed)

Page 26: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Time evolutionof perturbations

Page 27: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Surface wind field evolution

Unperturbed

Controlled

Page 28: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Time evolution 00 UTC

Page 29: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Time evolution 06 UTC

Page 30: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Time evolution 12 UTC

Page 31: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Time evolution 18 UTC

Page 32: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

High resolution

Page 33: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Summary

• Perturbations calculated by 4d-Var

• Control path, intensity of simulated hurricane

• Power requirements are huge– Higher resolution, longer lead times

may help

– Very large scale SSP could meet the requirements

Page 34: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Use in Forecasting

• 4dVAR can assess the likelihood of a specific event that requires immediate action, such as damaging winds along the Hudson Valley

• Exigent, adj:

– 1 : requiring immediate aid or action

– 2 : requiring or calling for much

Page 35: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Background cost function• Exigent forecasting: Normal

NWP Jb should be used. Related to the probability of the initial conditions.

• Weather control: Jb should be replaced with the cost in terms of available resources of generating the perturbations.

Page 36: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Hurricane WxMod

• Energetics

– Biodegradable oil

– Pump cold water up to the surface

• Dynamic perturbations

– Stormfury: cloud seeding

– Space based heating

Page 37: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Space based heating

• Solar reflectors: bright spots on the night side and shadows on the day side

• Space solar power (SSP): microwave downlink could provide a tunable atmospheric heat source

Page 38: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005 Space solar power

NASA artwork by Pat Rawlings/SAIC

Page 39: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Microwave spectrum

• Water and oxygen are the main gaseous absorbers– H2O lines at 22, 183 GHz

– H2O continuum

– O2 lines at 60, 118 GHz

• Frequency and bandwidth control the heating profile

Page 40: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Microwave heating rates

Page 41: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Power requirements

• Heating rates calculated for 1500 W/m2

• Equal to 6 GW/(2 km)2

• Current experiments require similar heating rates over an area 100s times larger

• Longer lead times, higher resolution will reduce these requirements significantly.

• By changing the storm’s environment at longer lead times can we prevent its forming, track, or intensity.

Page 42: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

The future• More realistic experiments:

resolution, physics, perturbations

• Future advances in several disciplines will lead to weather control capabilities– The first experiments will not be space

based control of landfalling hurricanes!

• Can legal and ethical questions be answered

Page 43: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

More complicating factors• The control must be effected at

significant time lags

• The difficulty of effecting control

• The problem of defining “optimal”

– For inhabitants of New Orleans, eliminating a hurricane threat to that city may take precedence over all else

Page 44: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

Future WxMod

• Improved models, observations, and assimilation systems will advance to the point where forecasts are:– much improved, and

– include an estimate of uncertainty

• Thus allowing advance knowledge that a change should be detectable in particular cases

Page 45: R. N. Hoffman , C. Grassotti, J. M. Henderson,   S. M. Leidner, G. Modica, and T. Nehrkorn

RICC, June 2005

end

• Contact: – rhoffman at aer dot com

– www.niac.usra.edu

• Background: – R. N. Hoffman. Controlling the global

weather. Bull. Am. Meteorol. Soc., 83(2):241--248, Feb. 2002.