Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

14
Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken

Transcript of Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Page 1: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

QuasirandomRumor Spreading

Tobias Friedrich

Max-Planck-Institut für Informatik Saarbrücken

Page 2: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Rumor Spreading

Rumor Spreading

Rumor Spreading

Outline

Page 3: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Randomized Rumor Spreading

Deterministic Rumor Spreading

Quasirandom Rumor Spreading

Outline

Page 4: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Randomized Rumor Spreading

Model (on a graph G):– Start: One node is informed– Each round, each informed node informs a neighbor chosen

uniformly at random– Broadcast time T(G): Number of rounds necessary to inform all

nodes (maximum taken over all starting nodes)

Round 0: Starting node is informedRound 1: Starting node informs random nodeRound 2: Each informed node informs a random nodeRound 3: Each informed node informs a random nodeRound 4: Each informed node informs a random nodeRound 5: Let‘s hope the remaining two get informed...

Page 5: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Randomized Rumor Spreading

Model (on a graph G):– Start: One node is informed– Each round, each informed node informs a neighbor chosen

uniformly at random– Broadcast time T(G): Number of rounds necessary to inform all

nodes (maximum taken over all starting nodes)

Application:– Broadcasting updates in distributed databases

simple robust self-organized

Page 6: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Randomized Rumor Spreading

Model (on a graph G):– Start: One node is informed– Each round, each informed node informs a neighbor chosen

uniformly at random– Broadcast time T(G): Number of rounds necessary to inform all

nodes (maximum taken over all starting nodes)

Results [n: Number of nodes]:– T(G) ≥ log(n) for all graphs G

– T(Kn) = O(log(n)) w.h.p. [Frieze, Grimmet’85]

– T({0,1}d) = O(log(n)) w.h.p. [Feige, Peleg, Raghavan, Upfal’90]

– T(Gn,p) = O(log(n)) w.h.p., p > (1+ε) log(n)/n [Feige et al.’90]

Page 7: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Deterministic Rumor Spreading?

As above, but now with Propp-Machine:– Each node has a list of its neighbors.– Informed nodes inform their neighbors in the order of

this list.

Problem: Might take long...

Here: n-1 rounds .

1 3 4 5 62

List: 2 3 4 5 6 3 4 5 6 1 4 5 6 1 2 5 6 1 2 3 6 1 2 3 4 1 2 3 4 5

Page 8: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading

As above except:– Each node has a list of its neighbors.– Informed nodes inform their neighbors in the order of

this list, but start at a random position in the list

Page 9: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading

As above except:– Each node has a list of its neighbors.– Informed nodes inform their neighbors in the order of

this list, but start at a random position in the list

Results:

Page 10: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading

As above except:– Each node has a list of its neighbors.– Informed nodes inform their neighbors in the order of

this list, but start at a random position in the list

Results: The log(n) bounds for – complete graphs,

– random graphs Gn,p, p ≥ (1+ε) log(n)/n,

– hypercubes

still hold...

Page 11: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading

As above except:– Each node has a list of its neighbors.– Informed nodes inform their neighbors in the order of

this list, but start at a random position in the list

Results: The log(n) bounds for – complete graphs,

– random graphs Gn,p, p ≥ (1+ε) log(n)/n,

– hypercubes

still hold independent from the structure of the lists[Doerr, F., Sauerwald ‘08]

Page 12: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading

Results (cont.):– Random graphs Gn,p, p = (log(n)+log(log(n)))/n:

fully randomized: T(Gn,p) = Θ(log(n)2)

quasirandom: T(Gn,p) = Θ(log(n))

– Complete k-regular trees: fully randomized: T(G) = Θ(k log(n)) quasirandom: T(G) = Θ(k log(n)/log(k))

Algorithm Engineering Perspective:– need fewer random bits– easy to implement: Any implicitly existing permutation of

the neighbors can be used for the lists

Page 13: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Quasirandom Rumor Spreading Proof ingredients:

– Forward Approximation: O(log n) nodes quickly informed O(log n) phases with a constant number of rounds

– set of newly informed nodes is independent– number of informed nodes doubles per phase

afterwards constant fraction informed

– Backward Approximation: if there is one uninformed vertex at time t, then there are at

least Ω(log n) vertices uninformed O(log n) time steps before

– Coupling w.h.p. one of the Ω(n) informed vertices informes one of the

O(log n) uninformed vertices within a single step

Page 14: Quasirandom Rumor Spreading Tobias Friedrich Max-Planck-Institut für Informatik Saarbrücken.

Tobias Friedrich

Summary

Quasirandomness: – Simulate a particular aspect of a random object

Surprising results:– Quasirandom walks (see Talk 61, Sat 13:45)– Quasirandom rumor spreading

For future research:– Good news: Quasirandomness can be analyzed– Many open problems– “What is the right dose of randomness?”

Thank you!!