Quantum quenches in the thermodynamic limithawk.fisica.uminho.pt/cccqs/PDFS/Rigol_Evora2014.pdf ·...

54
Quantum quenches in the thermodynamic limit Marcos Rigol Department of Physics The Pennsylvania State University Correlations, criticality, and coherence in quantum systems Evora, Portugal October 9, 2014 Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 1 / 34

Transcript of Quantum quenches in the thermodynamic limithawk.fisica.uminho.pt/cccqs/PDFS/Rigol_Evora2014.pdf ·...

  • Quantum quenches in the thermodynamic limit

    Marcos Rigol

    Department of PhysicsThe Pennsylvania State University

    Correlations, criticality, and coherence in quantum systemsEvora, Portugal

    October 9, 2014

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 1 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 2 / 34

  • Quenches in one-dimensional superlatticesQuantum dynamics in a

    1D superlatticeTrotzky et al. (Bloch’s group),Nature Phys. 8, 325 (2012).

    Initial state |01010 . . . 1010〉

    Unitary dynamics under the“Bose-Hubbard” Hamiltonian

    Experimental results (◦) vsexact t-DMRG calculations

    (lines) without free parameters

    local observables (top)vs

    nonlocal observables (bottom)

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 3 / 34

  • Relaxation dynamics after turning off a superlattice

    0

    0.06

    0.12

    0.18

    0.24

    −20 −10 0 10 20

    n

    x/a

    Density profile

    τ=0

    0

    0.5

    1

    1.5

    2

    2.5

    π/2−π/2 π −π 0n

    k

    ka

    Momentum profile

    τ=0

    MR, A. Muramatsu, and M. Olshanii, PRA 74, 053616 (2006).MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 4 / 34

    /home/mrigol/3_Presentation/Talks/VIDEOS/Superlattice.gif

  • Unitary dynamics after a sudden quenchIf the initial state is not an eigenstate of Ĥ

    |ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

    then a few-body observable O will evolve following

    O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

    What is it that we call thermalization?

    O(τ) = O(E0) = O(T ) = O(T, µ).

    One can rewrite

    O(τ) =∑α′,α

    C?α′Cαei(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

    ∑α

    Cα|α〉.

    Taking the infinite time average (diagonal ensemble ρ̂DE ≡∑α |Cα|2|α〉〈α|)

    O(τ) = limτ→∞

    1

    τ

    ∫ τ0

    dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =∑α

    |Cα|2Oαα ≡ 〈Ô〉DE,

    which depends on the initial conditions through Cα = 〈α|ψ0〉.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 5 / 34

  • Unitary dynamics after a sudden quenchIf the initial state is not an eigenstate of Ĥ

    |ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

    then a few-body observable O will evolve following

    O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

    What is it that we call thermalization?

    O(τ) = O(E0) = O(T ) = O(T, µ).

    One can rewrite

    O(τ) =∑α′,α

    C?α′Cαei(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

    ∑α

    Cα|α〉.

    Taking the infinite time average (diagonal ensemble ρ̂DE ≡∑α |Cα|2|α〉〈α|)

    O(τ) = limτ→∞

    1

    τ

    ∫ τ0

    dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =∑α

    |Cα|2Oαα ≡ 〈Ô〉DE,

    which depends on the initial conditions through Cα = 〈α|ψ0〉.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 5 / 34

  • Unitary dynamics after a sudden quenchIf the initial state is not an eigenstate of Ĥ

    |ψ0〉 6= |α〉 where Ĥ|α〉 = Eα|α〉 and E0 = 〈ψ0|Ĥ|ψ0〉,

    then a few-body observable O will evolve following

    O(τ) ≡ 〈ψ(τ)|Ô|ψ(τ)〉 where |ψ(τ)〉 = e−iĤτ/~|ψ0〉.

    What is it that we call thermalization?

    O(τ) = O(E0) = O(T ) = O(T, µ).

    One can rewrite

    O(τ) =∑α′,α

    C?α′Cαei(Eα′−Eα )τ/~Oα′α where |ψ0〉 =

    ∑α

    Cα|α〉.

    Taking the infinite time average (diagonal ensemble ρ̂DE ≡∑α |Cα|2|α〉〈α|)

    O(τ) = limτ→∞

    1

    τ

    ∫ τ0

    dτ ′〈Ψ(τ ′)|Ô|Ψ(τ ′)〉 =∑α

    |Cα|2Oαα ≡ 〈Ô〉DE,

    which depends on the initial conditions through Cα = 〈α|ψ0〉.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 5 / 34

  • Description after relaxation (lattice models)

    Hard-core boson (spinless fermion) Hamiltonian

    Ĥ =

    L∑i=1

    −t(b̂†i b̂i+1 + H.c.

    )+ V n̂in̂i+1 − t′

    (b̂†i b̂i+2 + H.c.

    )+ V ′n̂in̂i+2

    Dynamics vs statistical ensembles

    Nonintegrable: t′ = V ′ 6= 0

    -π -π/2 0 π/2 π

    ka

    0.2

    0.3

    0.4

    0.5

    0.6

    n(k

    )

    initial state

    time average

    thermal

    MR, PRL 103, 100403 (2009),PRA 80, 053607 (2009), . . .

    Integrable: t′ = V ′ = 0

    -π -π/2 0 π/2 π

    ka

    0

    0.25

    0.5

    n(k

    ) time averagethermalGGE

    MR, Dunjko, Yurovsky, andOlshanii, PRL 98, 050405 (2007), . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 6 / 34

  • Eigenstate thermalizationEigenstate thermalization hypothesis[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994).]

    The expectation value 〈α|Ô|α〉 of a few-body observable Ô in aneigenstate of the Hamiltonian |α〉, with energy Eα, of a many-bodysystem is equal to the thermal average of Ô at the mean energy Eα:

    〈α|Ô|α〉 = 〈Ô〉ME(Eα).

    Nonintegrable

    0

    1

    2

    3

    n(k

    x=

    0)

    -10 -8 -6 -4 -2 0

    E[J]

    0

    1

    2

    ρ(E

    )[J

    -1]ρ(E) exact

    ρ(E) microcan.

    ρ(E) canonical

    Integrable (ρ̂GGE = 1ZGGE e−

    ∑m λm Îm )

    0

    0.5

    1

    1.5

    n(k

    x=

    0)

    -8 -6 -4 -2 0

    E[J]

    0

    0.5

    1

    1.5

    ρ(E

    )[J

    -1]ρ(E) exact

    ρ(E) microcan.

    ρ(E) canonical

    MR, Dunjko, and Olshanii, Nature 452, 854 (2008).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 7 / 34

  • Time fluctuations and their scaling with system size

    0.1δN

    kL=21

    L=24

    0

    0.1

    δN

    k

    0

    0.1

    δN

    k

    0 20 40 60 80 100τ

    0

    0.1

    δN

    k

    t’=V’=0

    t’=V’=0.03

    t’=V’=0.12

    t’=V’=0.24

    Relative differences (struct. factor)

    δN(τ) =

    ∑k |N(k, τ)−Ndiag(k)|∑

    kNdiag(k)

    Bounds(G) P. Reimann, PRL 101, 190403 (2008).(G) Linden et al., PRE 79, 061103 (2009).(N) Cramer et al., PRL 100, 030602 (2008).(N) Venuti&Zanardi, PRE 87, 012106 (2013).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 8 / 34

    /home/mrigol/3_Presentation/Talks/VIDEOS/Bosons1D_NKLongT3.0.gif

  • Time fluctuationsAre they small because of dephasing?

    〈Ô(t)〉 − 〈Ô(t)〉 =∑α′,αα′ 6=α

    C?α′Cαei(Eα′−Eα )tOα′α ∼

    ∑α′,αα′ 6=α

    ei(Eα′−Eα )t

    NstatesOα′α

    ∼√N2statesNstates

    Otypicalα′α ∼ Otypicalα′α

    Time average of 〈Ô〉

    〈Ô〉 =∑α

    |Cα|2Oαα

    ∼∑α

    1

    NstatesOαα ∼ Otypicalαα

    One needs: Otypicalα′α � Otypicalαα

    MR, PRA 80, 053607 (2009)

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 9 / 34

  • Time fluctuationsAre they small because of dephasing?

    〈Ô(t)〉 − 〈Ô(t)〉 =∑α′,αα′ 6=α

    C?α′Cαei(Eα′−Eα )tOα′α ∼

    ∑α′,αα′ 6=α

    ei(Eα′−Eα )t

    NstatesOα′α

    ∼√N2statesNstates

    Otypicalα′α ∼ Otypicalα′α

    Time average of 〈Ô〉

    〈Ô〉 =∑α

    |Cα|2Oαα

    ∼∑α

    1

    NstatesOαα ∼ Otypicalαα

    One needs: Otypicalα′α � Otypicalαα

    MR, PRA 80, 053607 (2009)

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 9 / 34

  • Time fluctuationsAre they small because of dephasing?

    〈Ô(t)〉 − 〈Ô(t)〉 =∑α′,αα′ 6=α

    C?α′Cαei(Eα′−Eα )tOα′α ∼

    ∑α′,αα′ 6=α

    ei(Eα′−Eα )t

    NstatesOα′α

    ∼√N2statesNstates

    Otypicalα′α ∼ Otypicalα′α

    Time average of 〈Ô〉

    〈Ô〉 =∑α

    |Cα|2Oαα

    ∼∑α

    1

    NstatesOαα ∼ Otypicalαα

    One needs: Otypicalα′α � Otypicalαα

    MR, PRA 80, 053607 (2009)

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 9 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 10 / 34

  • Finite temperature properties of lattice models

    Computational techniques for arbitrary dimensionsQuantum Monte Carlo simulationsPolynomial time⇒ Large systems⇒ Finite size scalingSign problem⇒ Limited classes of models

    Exact diagonalizationExponential problem⇒ Small systems⇒ Finite size effectsNo systematic extrapolation to larger system sizesCan be used for any model!

    High temperature expansionsExponential problem⇒ High temperaturesThermodynamic limit⇒ Extrapolations to low TCan be used for any model!Can fail (at low T ) even when correlations are short ranged!

    DMFT, DCA, DMRG, . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 11 / 34

  • Finite temperature properties of lattice models

    Computational techniques for arbitrary dimensionsQuantum Monte Carlo simulationsPolynomial time⇒ Large systems⇒ Finite size scalingSign problem⇒ Limited classes of models

    Exact diagonalizationExponential problem⇒ Small systems⇒ Finite size effectsNo systematic extrapolation to larger system sizesCan be used for any model!

    High temperature expansionsExponential problem⇒ High temperaturesThermodynamic limit⇒ Extrapolations to low TCan be used for any model!Can fail (at low T ) even when correlations are short ranged!

    DMFT, DCA, DMRG, . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 11 / 34

  • Finite temperature properties of lattice models

    Computational techniques for arbitrary dimensionsQuantum Monte Carlo simulationsPolynomial time⇒ Large systems⇒ Finite size scalingSign problem⇒ Limited classes of models

    Exact diagonalizationExponential problem⇒ Small systems⇒ Finite size effectsNo systematic extrapolation to larger system sizesCan be used for any model!

    High temperature expansionsExponential problem⇒ High temperaturesThermodynamic limit⇒ Extrapolations to low TCan be used for any model!Can fail (at low T ) even when correlations are short ranged!

    DMFT, DCA, DMRG, . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 11 / 34

  • Finite temperature properties of lattice models

    Computational techniques for arbitrary dimensionsQuantum Monte Carlo simulationsPolynomial time⇒ Large systems⇒ Finite size scalingSign problem⇒ Limited classes of models

    Exact diagonalizationExponential problem⇒ Small systems⇒ Finite size effectsNo systematic extrapolation to larger system sizesCan be used for any model!

    High temperature expansionsExponential problem⇒ High temperaturesThermodynamic limit⇒ Extrapolations to low TCan be used for any model!Can fail (at low T ) even when correlations are short ranged!

    DMFT, DCA, DMRG, . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 11 / 34

  • Linked-Cluster Expansions

    Extensive observables Ô per lattice site (O) in the thermodynamic limit

    O =∑c

    L(c)×WO(c)

    where L(c) is the number of embeddings of cluster c

    and WO(c) is the weightof observable O in cluster c

    WO(c) = O(c)−∑s⊂c

    WO(s).

    O(c) is the result for O in cluster c

    O(c) = Tr{Ô ρ̂GCc

    },

    ρ̂GCc =1

    ZGCcexp−(Ĥc−µN̂c)/kBT

    ZGCc = Tr{

    exp−(Ĥc−µN̂c)/kBT}

    and the s sum runs over all subclusters of c.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 12 / 34

  • Linked-Cluster Expansions

    Extensive observables Ô per lattice site (O) in the thermodynamic limit

    O =∑c

    L(c)×WO(c)

    where L(c) is the number of embeddings of cluster c and WO(c) is the weightof observable O in cluster c

    WO(c) = O(c)−∑s⊂c

    WO(s).

    O(c) is the result for O in cluster c

    O(c) = Tr{Ô ρ̂GCc

    },

    ρ̂GCc =1

    ZGCcexp−(Ĥc−µN̂c)/kBT

    ZGCc = Tr{

    exp−(Ĥc−µN̂c)/kBT}

    and the s sum runs over all subclusters of c.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 12 / 34

  • Linked-Cluster Expansions

    In HTEs O(c) is expanded in powers of β and only a finitenumber of terms is retained.

    In numerical linked cluster expansions (NLCEs) an exactdiagonalization of the cluster is used to calculate O(c) at anytemperature.(Spins models in the square, triangular, and kagome lattices)MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).(t-J model in the square lattice)MR, T. Bryant, and R. R. P. Singh, PRE 75, 061119 (2007).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 13 / 34

  • Linked-Cluster Expansions

    In HTEs O(c) is expanded in powers of β and only a finitenumber of terms is retained.

    In numerical linked cluster expansions (NLCEs) an exactdiagonalization of the cluster is used to calculate O(c) at anytemperature.(Spins models in the square, triangular, and kagome lattices)MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).(t-J model in the square lattice)MR, T. Bryant, and R. R. P. Singh, PRE 75, 061119 (2007).

    PRL 98, 207204 (2007), PRB 76, 184403 (2007), PRB 83, 134431 (2011), PRA 84, 053611 (2011), PRB 84, 224411 (2011),PRB 85, 064401 (2012), PRA 86, 023633 (2012), PRL 109, 205301 (2012), CPC 184, 557 (2013), PRB 88, 125127 (2013), . . .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 13 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 14 / 34

  • Numerical Linked Cluster Expansions

    i) Find all clusters that can beembedded on the lattice

    ii) Group the ones with thesame Hamiltonian (Topo-logical cluster)

    iii) Find all subclusters of agiven topological cluster

    iv) Diagonalize the topologicalclusters and compute theobservables

    v) Compute the weight of eachcluster and compute the di-rect sum of the weights

    Bond clusters

    c

    2

    L(c)

    2

    3 2

    4 4

    5 4

    6 2

    7 4

    11

    8 4

    9 8

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 15 / 34

  • Numerical Linked Cluster Expansions

    i) Find all clusters that can beembedded on the lattice

    ii) Group the ones with thesame Hamiltonian (Topo-logical cluster)

    iii) Find all subclusters of agiven topological cluster

    iv) Diagonalize the topologicalclusters and compute theobservables

    v) Compute the weight of eachcluster and compute the di-rect sum of the weights

    No. of bonds topological clusters0 11 12 13 24 45 66 147 288 689 156

    10 39911 101212 273213 738514 20665

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 15 / 34

  • Numerical Linked Cluster Expansions

    i) Find all clusters that can beembedded on the lattice

    ii) Group the ones with thesame Hamiltonian (Topo-logical cluster)

    iii) Find all subclusters of agiven topological cluster

    iv) Diagonalize the topologicalclusters and compute theobservables

    v) Compute the weight of eachcluster and compute the di-rect sum of the weights

    No. of bonds topological clusters0 11 12 13 24 45 66 147 288 689 156

    10 39911 101212 273213 738514 20665

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 15 / 34

  • Numerical Linked Cluster Expansions

    i) Find all clusters that can beembedded on the lattice

    ii) Group the ones with thesame Hamiltonian (Topo-logical cluster)

    iii) Find all subclusters of agiven topological cluster

    iv) Diagonalize the topologicalclusters and compute theobservables

    v) Compute the weight of eachcluster and compute the di-rect sum of the weights

    No. of bonds topological clusters0 11 12 13 24 45 66 147 288 689 156

    10 39911 101212 273213 738514 20665

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 15 / 34

  • Numerical Linked Cluster Expansions

    i) Find all clusters that can beembedded on the lattice

    ii) Group the ones with thesame Hamiltonian (Topo-logical cluster)

    iii) Find all subclusters of agiven topological cluster

    iv) Diagonalize the topologicalclusters and compute theobservables

    v) Compute the weight of eachcluster and compute the di-rect sum of the weights

    Heisenberg Model

    0.1 1 10

    T

    -0.8

    -0.6

    -0.4

    -0.2

    0

    E

    QMC 100×100

    12 bonds13 bonds

    MR et al., PRE 75, 061118 (2007).B. Tang et al., CPC 184, 557 (2013).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 15 / 34

  • Numerical Linked-Cluster Expansions

    Square clustersc

    2

    L(c)

    11

    3

    4

    5

    1/2

    1

    2

    1

    No. of squares topological clusters0 11 12 13 24 55 11

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 16 / 34

  • Numerical Linked-Cluster Expansions

    Square clustersc

    2

    L(c)

    11

    3

    4

    5

    1/2

    1

    2

    1

    Heisenberg Model

    0.1 1 10

    T

    -0.8

    -0.6

    -0.4

    -0.2

    0

    E

    QMC 100×100

    12 bonds13 bonds

    0.1 1 10

    T

    -0.8

    -0.6

    -0.4

    -0.2

    0

    E4 squares

    5 squares

    0.1 1 10

    T

    -0.8

    -0.6

    -0.4

    -0.2

    0

    E

    14 sites15 sites

    MR et al., PRE 75, 061118 (2007).B. Tang et al., CPC 184, 557 (2013).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 16 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 17 / 34

  • Resummation algorithms

    We can define partial sums

    On =n∑i=1

    Si, with Si =∑ci

    L(ci)×WO(ci)

    where all clusters ci share a given characteristic (no. of bonds, sites, etc).Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

    Wynn’s algorithm:

    ε(−1)n = 0, ε(0)n = On, ε(k)n = ε

    (k−2)n+1 +

    1

    ∆ε(k−1)n

    where ∆ε(k−1)n = ε(k−1)n+1 − ε

    (k−1)n .

    Brezinski’s algorithm [θ(−1)n = 0, θ(0)n = On]:

    θ(2k+1)n = θ(2k−1)n +

    1

    ∆θ(2k)n

    , θ(2k+2)n = θ(2k)n+1 +

    ∆θ(2k)n+1∆θ

    (2k+1)n+1

    ∆2θ(2k+1)n

    where ∆2θ(k)n = θ(k)n+2 − 2θ

    (k)n+1 + θ

    (k)n .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 18 / 34

  • Resummation algorithms

    We can define partial sums

    On =n∑i=1

    Si, with Si =∑ci

    L(ci)×WO(ci)

    where all clusters ci share a given characteristic (no. of bonds, sites, etc).Goal: Estimate O = limn→∞On from a sequence {On}, with n = 1, . . . , N .

    Wynn’s algorithm:

    ε(−1)n = 0, ε(0)n = On, ε(k)n = ε

    (k−2)n+1 +

    1

    ∆ε(k−1)n

    where ∆ε(k−1)n = ε(k−1)n+1 − ε

    (k−1)n .

    Brezinski’s algorithm [θ(−1)n = 0, θ(0)n = On]:

    θ(2k+1)n = θ(2k−1)n +

    1

    ∆θ(2k)n

    , θ(2k+2)n = θ(2k)n+1 +

    ∆θ(2k)n+1∆θ

    (2k+1)n+1

    ∆2θ(2k+1)n

    where ∆2θ(k)n = θ(k)n+2 − 2θ

    (k)n+1 + θ

    (k)n .

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 18 / 34

  • Resummation results (Heisenberg model)

    Energy (square lattice)

    0.1 1 10

    T

    -0.8

    -0.6

    -0.4

    -0.2

    0

    E

    QMC 100×100

    Wynn6

    EulerED 16

    Cv (square lattice)

    0.1 1 10

    T

    0

    0.2

    0.4

    0.6

    Cv

    QMC

    Wynn6

    EulerED 16ED 9

    MR, T. Bryant, and R. R. P. Singh, PRE 75, 061118 (2007).B. Tang, E. Khatami, and MR, Comput. Phys. Commun. 184, 557 (2013).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 19 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 20 / 34

  • Diagonal ensemble and NLCEsThe initial state is in thermal equilibrium in contact with a reservoir

    ρ̂Ic =

    ∑a e−(Eca−µIN

    ca)/TI |ac〉〈ac|

    ZIc, where ZIc =

    ∑a

    e−(Eca−µ

    INca)/TI ,

    |ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤIc in c.

    At the time of the quench ĤIc → Ĥc , the system is detached from thereservoir. Writing the eigenstates of ĤIc in terms of the eigenstates of Ĥc

    ρ̂DEc ≡ limτ ′→∞1

    τ ′

    ∫ τ ′0

    dτ ρ̂(τ) =∑α

    W cα |αc〉〈αc|

    whereW cα =

    ∑a e−(Eca−µIN

    ca)/TI |〈αc|ac〉|2

    ZIc,

    |αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

    Using ρ̂DEc in the calculation of O(c), NLCEs allow one to computeobservables in the DE in the thermodynamic limit.

    MR, PRL 112, 170601 (2014).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 21 / 34

  • Diagonal ensemble and NLCEsThe initial state is in thermal equilibrium in contact with a reservoir

    ρ̂Ic =

    ∑a e−(Eca−µIN

    ca)/TI |ac〉〈ac|

    ZIc, where ZIc =

    ∑a

    e−(Eca−µ

    INca)/TI ,

    |ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤIc in c.

    At the time of the quench ĤIc → Ĥc , the system is detached from thereservoir. Writing the eigenstates of ĤIc in terms of the eigenstates of Ĥc

    ρ̂DEc ≡ limτ ′→∞1

    τ ′

    ∫ τ ′0

    dτ ρ̂(τ) =∑α

    W cα |αc〉〈αc|

    whereW cα =

    ∑a e−(Eca−µIN

    ca)/TI |〈αc|ac〉|2

    ZIc,

    |αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

    Using ρ̂DEc in the calculation of O(c), NLCEs allow one to computeobservables in the DE in the thermodynamic limit.

    MR, PRL 112, 170601 (2014).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 21 / 34

  • Diagonal ensemble and NLCEsThe initial state is in thermal equilibrium in contact with a reservoir

    ρ̂Ic =

    ∑a e−(Eca−µIN

    ca)/TI |ac〉〈ac|

    ZIc, where ZIc =

    ∑a

    e−(Eca−µ

    INca)/TI ,

    |ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤIc in c.

    At the time of the quench ĤIc → Ĥc , the system is detached from thereservoir. Writing the eigenstates of ĤIc in terms of the eigenstates of Ĥc

    ρ̂DEc ≡ limτ ′→∞1

    τ ′

    ∫ τ ′0

    dτ ρ̂(τ) =∑α

    W cα |αc〉〈αc|

    whereW cα =

    ∑a e−(Eca−µIN

    ca)/TI |〈αc|ac〉|2

    ZIc,

    |αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

    Using ρ̂DEc in the calculation of O(c), NLCEs allow one to computeobservables in the DE in the thermodynamic limit.MR, PRL 112, 170601 (2014).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 21 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 22 / 34

  • Models and quenches

    Hard-core bosons in 1D lattices at half filling (µI = 0)

    Ĥ =

    L∑i=1

    −t(b̂†i b̂i+1 + H.c.

    )+ V n̂in̂i+1 − t′

    (b̂†i b̂i+2 + H.c.

    )+ V ′n̂in̂i+2

    Quench: TI , tI = 0.5, VI = 1.5, t′I = V′I = 0→ t = V = 1.0, t′ = V ′

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 23 / 34

  • Models and quenches

    Hard-core bosons in 1D lattices at half filling (µI = 0)

    Ĥ =

    L∑i=1

    −t(b̂†i b̂i+1 + H.c.

    )+ V n̂in̂i+1 − t′

    (b̂†i b̂i+2 + H.c.

    )+ V ′n̂in̂i+2

    Quench: TI , tI = 0.5, VI = 1.5, t′I = V′I = 0→ t = V = 1.0, t′ = V ′

    NLCE with maximallyconnected clusters

    (l = 18 sites)

    Energy: EDE = Tr[Ĥρ̂DE]

    Convergence:

    ∆(Oens)l =|Oensl −Oens18 ||Oens18 |

    Convergence of EDE with l

    0.1 1 10 100T

    I

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1

    ∆(E

    DE) 1

    7

    t’=V’=0

    t’=V’=0.1

    t’=V’=0.25

    t’=V’=0.5

    2 7 12 17l

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    ∆(E

    DE) l

    2 7 12 17l

    TI=1 T

    I=5

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 23 / 34

  • Few-body experimental observables in the DE

    Momentum distribution

    m̂k =1

    L

    ∑jj′

    eik(j−j′)ρ̂jj′

    0 π/4 π/2 3π/4 π

    k

    0.4

    0.5

    0.6

    0.7

    (mk) 1

    8

    Initial

    t’=V’=0, DE

    t’=V’=0, GE

    t’=V’=0.5, DE

    t’=V’=0.5, GE

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 24 / 34

  • Few-body experimental observables in the DE

    Momentum distribution

    m̂k =1

    L

    ∑jj′

    eik(j−j′)ρ̂jj′

    0 π/4 π/2 3π/4 π

    k

    0.4

    0.5

    0.6

    0.7

    (mk) 1

    8

    Initial

    t’=V’=0, DE

    t’=V’=0, GE

    t’=V’=0.5, DE

    t’=V’=0.5, GE

    10-5

    10-3

    10-1

    ∆(m

    ) 17

    DE

    GE

    0.1 1 10 100

    TI

    10-13

    10-11

    Differences between DE and GE

    δ(m)l =

    ∑k |(mk)DEl − (mk)GE18 |∑

    k(mk)GE18

    10-3

    10-2

    δ(m

    ) l

    t’=V’=0

    t’=V’=0.025

    10 11 12 13 14 15 16 17 18 19

    l

    10-4

    10-3

    t’=V’=0.1

    t’=V’=0.5

    TI=2

    TI=10

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 24 / 34

  • Outline

    1 IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    2 Numerical Linked Cluster ExpansionsDirect sumsResummations

    3 Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V -t′-V ′ chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    4 Conclusions

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 25 / 34

  • Failure of the GGE based on local quantitiesXXZ (integrable) Hamiltonian

    Ĥ = J

    (∑i

    σxi σxi+1 + σ

    yi σ

    yi+1 + ∆σ

    zi σ

    zi+1

    )

    Quench starting from the Neel state to different values of ∆ ≥ 1Quench action solution differs from GGE based on local quantities:B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, MR, and J.-S. Caux,PRL 113, 117202 (2014).B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács,PRL 113, 117203 (2014).

    Can we use NLCEs for ground states (pure states)?Using the parity symmetry of the clusters:

    |aec〉 =1√2

    (| . . . ↑↓↑↓ . . .〉+ | . . . ↓↑↓↑ . . .〉)

    |aoc〉 =1√2

    (| . . . ↑↓↑↓ . . .〉 − | . . . ↓↑↓↑ . . .〉)

    W c,e/oα = |〈αe/oc |ae/oc 〉|2

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 26 / 34

  • Failure of the GGE based on local quantitiesXXZ (integrable) Hamiltonian

    Ĥ = J

    (∑i

    σxi σxi+1 + σ

    yi σ

    yi+1 + ∆σ

    zi σ

    zi+1

    )

    Quench starting from the Neel state to different values of ∆ ≥ 1Quench action solution differs from GGE based on local quantities:B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, MR, and J.-S. Caux,PRL 113, 117202 (2014).B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, and G. Takács,PRL 113, 117203 (2014).

    Can we use NLCEs for ground states (pure states)?Using the parity symmetry of the clusters:

    |aec〉 =1√2

    (| . . . ↑↓↑↓ . . .〉+ | . . . ↓↑↓↑ . . .〉)

    |aoc〉 =1√2

    (| . . . ↑↓↑↓ . . .〉 − | . . . ↓↑↓↑ . . .〉)

    W c,e/oα = |〈αe/oc |ae/oc 〉|2

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 26 / 34

  • Results for spin-spin correlations

    0.05

    0.1

    0.15

    0.2

    1

    3

    z>

    0.73

    0.77

    0.81

    1

    3>

    0.9

    0.92

    0.94

    1

    3

    z>

    10 11 12 13 14 15 16 17 18

    l

    0.95

    0.96

    0.97<

    σ1

    3

    z>

    -0.45

    -0.35

    -0.25

    1

    2

    z>

    DEGE

    -0.9

    -0.88

    -0.86

    1

    2

    z>

    QA

    Resum

    -0.962

    -0.96

    -0.958

    -0.956

    1

    2

    z>

    10 11 12 13 14 15 16 17 18

    l

    -0.981

    -0.98

    -0.979

    1

    2

    z>

    ∆=7

    ∆=4

    (a)∆=1

    (b)

    (c)

    (d)

    (e)

    (f)

    (g)

    (h)∆=10

    MR, PRE 90, 031301(R) (2014)

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 27 / 34

  • Quench action, GGE, and NLCE

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 3 5 7 9

    〈σz1σz3〉

    (a)

    -0.09

    00.02

    1 2

    δ〈σz1σz3〉

    0.11

    0.12

    0.13

    1 1.01 1.02 1.03

    〈σz1σz3〉

    (b) 〈σz1σz3〉sp〈σz1σz3〉GGE〈σz1σz3〉NLCE

    δ〈σz1σz3〉 = 〈σz1σz3〉GGE/〈σz1σz3〉QA − 1

    B. Wouters et al., PRL 113, 117202 (2014).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 28 / 34

  • Conclusions

    NLCEs provide a general framework to study the diagonal en-semble in lattice systems after a quantum quench in the thermo-dynamic limit.

    NLCE results suggest that few-body observables thermalize innonintegrable systems while they do not thermalize in integrablesystems.

    As one approaches the integrable point DE-NLCEs behave asNLCEs for equilibrium systems approaching a phase transition.This suggests that a transition to thermalization may occur assoon as one breaks integrability.

    The GGE based on known local conserved quantities does notdescribe observables after relaxation, while the QA does, as sug-gested by the NLCE results. New things to be learned about in-tegrable systems!

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 29 / 34

  • Collaborators

    Michael Brockmann (ITP Amsterdam)

    Jean-Sébastien Caux (ITP Amsterdam)

    Jacopo De Nardis (ITP Amsterdam)

    Davide Fioretto (ITP Amsterdam)

    Bram Wouters (ITP Amsterdam)

    PRL 113, 117202 (2014).

    Supported by:

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 30 / 34

  • Finite temperature properties of lattice models

    Computational techniques for arbitrary dimensionsQuantum Monte Carlo simulationsPolynomial time⇒ Large systems⇒ Finite size scalingSign problem⇒ Limited classes of models

    DQMC of a 2D system with: U = 6t, V = 0.04t, T = 0.31t and 560 fermions

    -15 -10 -5 0 5 10 15

    Density

    0.0

    0.3

    0.6

    0.9

    1.2

    -15 -10 -5 0 5 10 15

    Density fluctuations×10

    -1

    0.0

    0.9

    1.8

    2.7

    -15 -10 -5 0 5 10 15

    Spin correlations

    ×10-1

    0.0

    0.8

    1.6

    2.4

    3.2

    -15 -10 -5 0 5 10 15

    Pairing correlations

    ×10-1

    0.0

    0.8

    1.6

    2.4

    S. Chiesa, C. N. Varney, MR, and R. T. Scalettar, PRL 106, 035301 (2011).

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 31 / 34

  • Dispersion of the energy in the DE

    Dispersion of the energy

    ∆E2 =1

    L(〈Ĥ2〉 − 〈Ĥ〉2)

    Deviations from the GE

    δ(O)l =|ODEl −OGE18 ||OGE18 |

    1 10 100

    T

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    ∆E

    2

    0.6

    0.8

    1

    18

    t’=V’=0

    t’=V’=0.5

    t’=V’=0.5, diff. init. state

    2 6 10 14 18l

    0

    0.05

    0.1

    δ(∆

    E 2

    ) l

    1 10 100

    T

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    ∆E

    2

    0.6

    0.8

    1

    18

    DEGE

    TI=1

    The dispersion of the energy (and of the particle number) in the DE dependson the initial state independently of whether the system is integrable or not.

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 32 / 34

  • Few-body experimental observables in the DE

    nn kinetic energy

    K = −t∑i

    〈b̂†i b̂i+1〉

    Differences between DE and GE

    δ(K)l =|KDEl −KGE18 |

    KGE18

    1 10 100

    T

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    δ(K

    ) 18

    t’=V’=0

    t’=V’=0.025

    t’=V’=0.1

    t’=V’=0.5

    10-4

    10-3

    10-2

    t’=V’=0

    t’=V’=0.025

    10 11 12 13 14 15 16 17 18 19

    l

    10-3

    10-1

    δ(K

    ) l

    t’=V’=0.1

    t’=V’=0.5

    TI=2

    TI=10

    Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 33 / 34

  • NLCEs vs exact diagonalization (equilibrium, t′ = 0)

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1

    102

    ∆(E

    GE) l

    V’=0

    V’=1

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1

    102

    ∆(∆

    E 2

    GE) l

    T=1

    T=5

    1 5 9 13 17l

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1

    102

    ∆(K

    GE) l

    1 5 9 13 17l

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1

    102

    ∆(m

    GE) l

    18 20 22L

    0.03

    0.1

    0.3

    δ(E

    ED

    ) L

    18 20 22L

    0.02

    0.01

    0.005

    δ(m

    ED

    ) L

    18 20 22L

    0.02

    0.04

    0.07

    δ(K

    ED

    ) L

    ED from L. Santos and MR, PRE 82, 031130 (2010).Marcos Rigol (Penn State) NLCEs for the diagonal ensemble October 9, 2014 34 / 34

    IntroductionQuantum quenchesMany-body quantum systems in thermal equilibrium

    Numerical Linked Cluster ExpansionsDirect sumsResummations

    Quantum quenches in the thermodynamic limitDiagonal ensemble and NLCEsQuenches in the t-V-t'-V' chain (thermalization)Quenches in XXZ chain from a Neel state (QA vs GGE)

    Conclusions