Quantum Mechanics-Dr.gagan Anand

download Quantum Mechanics-Dr.gagan Anand

of 112

Transcript of Quantum Mechanics-Dr.gagan Anand

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    1/112

    X-ray Interaction withX-ray Interaction with

    MatterMatter Electromagnetic Radiation interactsElectromagnetic Radiation interacts

    with structures with similar size towith structures with similar size to

    the wavelength of the radiation.the wavelength of the radiation. Interactions have wavelike andInteractions have wavelike and

    particle like properties.particle like properties.

    X-rays have a very small wavelengthX-rays have a very small wavelengthno larger than !"no larger than !"-#-# to !"to !"-$-$..

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    2/112

    X-ray Interaction withX-ray Interaction with

    MatterMatter%he higher the energy of the &-ray the%he higher the energy of the &-ray the

    shorter the wavelength.shorter the wavelength.

    'ow energy &-rays interact with whole'ow energy &-rays interact with wholeatoms.atoms.

    Moderate energy &-rays interact withModerate energy &-rays interact with

    electrons.electrons. (igh energy &-rays interact with the(igh energy &-rays interact with the

    nuclei.nuclei.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    3/112

    )ive forms of &-ray)ive forms of &-ray

    InteractionsInteractions *lassical or *oherent +cattering*lassical or *oherent +cattering *ompton E,ect*ompton E,ect

    hotoelectric E,ecthotoelectric E,ect air productionair production

    hotodisintegrationhotodisintegration

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    4/112

    %wo )orms of X-ray%wo )orms of X-ray

    InteractionsInteractions

    Important toImportant toiagnostic X-rayiagnostic X-rayPhotoelectric EfectPhotoelectric Efect

    Compton EfectCompton Efect

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    5/112

    %he hoto Electric E,ect%he hoto Electric E,ect

    iscovery implications andiscovery implications and

    current technologycurrent technology

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    6/112

    Discovery:Discovery:Heinrich Hertz and PhillipHeinrich Hertz and Phillip

    LenardLenard

    (ertz clari/ed Ma&well(ertz clari/ed Ma&wells electromagnetic theory ofs electromagnetic theory oflight0light0

    1 roved that electricity can 2e transmitted inroved that electricity can 2e transmitted inelectromagnetic waves.electromagnetic waves.

    1 Esta2lished that light was a form of electromagneticEsta2lished that light was a form of electromagneticradiation.radiation.

    1 )irst person to 2roadcast and receive these waves.)irst person to 2roadcast and receive these waves.

    Back in 1887

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    7/112

    'enard 3oes )urther4'enard 3oes )urther4

    (is assistant hillip 'enard e&plored the(is assistant hillip 'enard e&plored thee,ect further. (e 2uilt his own apparatuse,ect further. (e 2uilt his own apparatuscalled acalled a phototu2ephototu2eto determine theto determine the

    nature of the e,ect0nature of the e,ect0

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    8/112

    'enard5s hotoelectric 6pparatus0

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    9/112

    %he E&periment0%he E&periment07y varying the voltage on a7y varying the voltage on a negatively charged gridnegatively charged grid

    2etween the e8ecting surface and the collector plate2etween the e8ecting surface and the collector plate

    'enard was a2le to0'enard was a2le to0

    1 etermine that the particles had a negativeetermine that the particles had a negativecharge.charge.

    1 etermine the kinetic energy of the e8ectedetermine the kinetic energy of the e8ectedparticles.particles.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    10/112

    'enard5s )indings0

    %hus he theorized that this voltage must 2e e9ual to thema&imum kinetic energy of the e8ected particles or0

    KEKEmaxmax= eV= eVstoppingstopping

    erple&ing :2servations0

    %he intensityof light had no e,ect on energy

    %here was a threshold requencyfore8ection

    Classical physics ailed to explain this,Classical physics ailed to explain this,

    Lenard won the Nobel Prie in Physics in !"#$%Lenard won the Nobel Prie in Physics in !"#$%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    11/112

    hotoelectric E,ect

    %he electron removed from thetarget atoms is called aphotoelectron%

    %he photoelectronescapes with&inetic energy equal to thediference between the energy o

    the incident x'ray and thebinding energy o the electron%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    12/112

    hotoelectric E,ect

    'ow anatomic num2er target atomssuch as soft tissue have low 2indingenergies.

    %herefore the photoelectric electronis released with kinetic energy nearlye9ual to the incident &-ray.

    (igher atomic num2er target atomswill have higher 2inding energies.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    13/112

    hotoelectric E,ect

    %herefore the kinetic energy of thephotoelectron will 2e proportionallylower%

    *haracteristic &-rays are producedfollowing a photoelectric interaction tothose produced in the &-ray tu2e.

    %hese characteristic &-rays are alsosecondary radiation and acts likescatter.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    14/112

    hotoelectric E,ect

    (he probability o a photoelectricinteraction is a unction o thephoton energy and the atomic

    number o the target atom%

    ) photoelectric interaction cannot occur unless the incident x'

    ray has energy equal to orgreater than the electron bindingenergy%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    15/112

    hotoelectric E,ect

    %he pro2a2ility of photoelectricinteraction is inversely proportional tothe third power of thephoton

    energy%

    %he pro2a2ility of photoelectricinteraction is directly proportional to

    the third power of theatomicnumber o the absorbing material

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    16/112

    *ompton E,ect

    Moderate energy &-ray photon through outthe diagnostic &-ray range can interact withouter shell electron.

    %his interaction not only changes thedirection 2ut reduced its energy and ionizesthe atom as well.

    %he outer shell electron is e8ected. %his is

    called Compton Efect or Compton*cattering%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    17/112

    Incident hoton

    E; hD> ; m>c?@p>c>

    p>c>; AE>@ >mc>AE

    7ut AE ; h< - hc>; Ch1 >ChChc>; Ch1 >Ch; Ch1 >ChCh< - hmc>Ch< - hChc>

    we have0

    mc <

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    24/112

    mc ! ! <

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    25/112

    *ompton E,ect

    hotons scattered 2ack towards theincident &-ray 2eam are called7ackscatter Radiation.

    Bhile important in radiation therapy2ackscatter in diagnostic &-ray issometimes responsi2le for the hinges

    on the 2ack of the the cassette to 2eseen on the &-ray /lm

    i l i. i

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    26/112

    Experimental -eri.cation

    MonochromaticX-ray Source

    photon

    Graphitetarget

    Braggs X-ray

    Spectrometer

    1. One peak is foun at sameposition. !his is unmoifie raiation

    ". Other peak is foun at higher

    #a$e%ength. !his is moifie signa% of%o# energy.

    &. increases #ith increase in .

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    27/112

    )eatures of *ompton+cattering

    Most likely to occur

    6s &-ray energy increases

    6s atomic num2er of the

    a2sor2er increases

    6s mass density of

    a2sor2er increases

    Bith outer-shell electrons

    Bith loosely 2oundelectrons.

    Increased penetrationthrough tissue w=ointeraction.

    Increased *ompton relativeto photoelectric scatter.

    Reduced total *omptonscattering.

    Fo e,ect on *ompton+catter

    roportional increase in*ompton +catter.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    28/112

    air roduction

    If the incident &-rayhas suHcientenergy it may

    escape the electroncloud and comeclose enough to thenucleus to come

    under the inuenceof the strongelectrostatic /eld ofthe nucleus.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    29/112

    air roduction

    %he interactionwith the nucleusstrong electrostatic

    /eld causes thephoton todisappear and inits place appear

    two electrons.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    30/112

    air roduction

    :ne is positivelycharged and calleda positron while

    the other remainsnegativelycharged. %his iscalled Pair

    Production%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    31/112

    !he rest mass energy of an e%ectron or positron is '.(1Me) *accoring to + , mc".

    !he minimum energy reuire for pair prouction is 1.'"

    Me).

    /ny aitiona% photon energy 0ecomes the kinetic energyof the e%ectron an positron.

    !he corresponing maimum photon #a$e%ength is 1." pm.+%ectromagnetic #a$es #ith such #a$e%engths are ca%%egamma rays .)(

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    32/112

    air roduction

    It take a photonwith !."> MeJ toundergo air

    roduction. %herefore it is not

    important todiagnostic &-ray.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    33/112

    Pair Annihilation

    2hen an e%ectron an positron interact #ith each other ue

    to their opposite charge3 0oth the partic%e can annihi%atecon$erting their mass into e%ectromagnetic energy in theform of t#o - rays photon.

    ++ + ee

    4harge3 energy an momentum are again con$erse. !#o- photons are prouce *each of energy '.(1

    Me) p%us ha%f the 5.+. of the partic%es to conser$e the

    momentum.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    34/112

    6ouis e Brog%ie *in 17"&

    If light can behave

    both as a wave and a

    particle I wonder if aparticle can also

    behave as a wave!

    !he eistence of e Brog%ie#a$es #as eperimenta%%yemonstrate 0y 17"83 an !heua%ity princip%e they representpro$ie the starting point for

    Schroingers successfu%

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    35/112

    6ouis e Brog%ie

    Ill tr" #essing aro$nd with

    so#e of %insteins for#$lae and

    see what I can co#e $p with&

    De Broglie

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    36/112

    'e have seen that light co#es in discrete $nits (photons) withparticle properties (energ" and #o#ent$#) that are related to the

    wavelike properties of fre$enc" and wavelength&

    M/!!+9 2/)+S

    h

    p=

    In 1*+, -rince .o$is de Broglie post$lated that ordinar" #atter can have

    wavelike properties with the wavelengthrelated to #o#ent$#pin the sa#e wa" as for light

    de Broglie wavelength

    de Broglie relation

    ,/0&0, 1 2sh =

    -lancks constant

    Prediction:'e sho$ld see diffraction and interference of #atter waves

    De Broglie

    3B wavelength depends on #o#ent$# not on the ph"sical si4e of the particle

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    37/112

    Davisson G.P. Thomson

    5avisson 6& 2&

    re %lectrons

    'aves! 9ranklin

    Instit$te 2o$rnal

    205 :*7 (1*+8)

    ;he 5avissonscattering a bea# of electrons fro#

    a 3i cr"stal& 5avisson got the 1*,7

    3obel pri4e&

    t fi=ed accelerating voltage (fi=ed

    electron energ") find a pattern of sharpreflected bea#s fro# the cr"stal

    t fi=ed angle find sharp peaks in

    intensit" as a f$nction of electron energ"

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    38/112

    ;a$isson-Germer +periment

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    39/112

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    40/112

    Davisson and Germer Experiment

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    41/112

    Davisson and Germer Experiment

    If electrons are just particles, we expect a smooth

    monotonic dependence of scattered intensity onangle and voltage because only elastic collisions areinvolved

    Diffraction pattern similar to X-rays would beobserved if electrons behave as waves

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    42/112

    42

    (.&> +%ectron Scattering

    ;a$isson an Germer eperimenta%%y o0ser$e that e%ectrons #ere iffractemuch %ike rays in nicke% crysta%s.

    George ?. !homson *1@7"A178(3 son of . .!homson3 reporte seeing the effects of e%ectron

    iffraction in transmission eperiments. !he firsttarget #as ce%%u%oi3 an soon after that go%3a%uminum3 an p%atinum #ere use. !he ranom%yoriente po%ycrysta%%ine samp%e of SnO"prouces

    rings as sho#n in the figure at right.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    43/112

    =

    4urrent $s acce%erating $o%tage has a maimum *a 0ump orkink notice in the graph3 i.e. the highest num0er of e%ectronsis scattere in a specific irection.

    The bump becomes most prominent for 54 V at ~ 50

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    44/112

    /ccoring to e Brog%ie3 the #a$e%ength associate #ith ane%ectron acce%erate through ) $o%ts is

    o

    AV

    +8&1+

    =

    Cence the #a$e%ength for (D ) e%ectron

    o

    A07&1:/

    +8&1+

    ==

    =rom X-ray ana%ysis #e kno# that the nicke% crysta% acts as ap%ane iffraction grating #ith grating space , '.71 E

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    45/112

    Cere the iffraction ang%e3 F ('

    !he ang%e of incience re%ati$e to the fami%y of Braggs p%ane

    =rom the Braggs euation

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    46/112

    =rom the Bragg s euation

    #hich is eui$a%ent to the H ca%cu%ate 0y e-Brog%ieshypothesis.

    sin+d=o

    oo

    AA 0:&10:sin)*1&(+ ==

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    47/112

    Electron !icroscope" #nstrumental Application of !atter $aves

    @esolving power of an" optical

    instr$#ent is proportional to the

    wavelength of whatever (radiation or

    particle) is $sed to ill$#inate the

    sa#ple& n optical #icroscope $ses

    visible light and gives :A

    #agnification+ n# resol$tion&

    9ast electron in electron #icroscope

    however have #$ch shorter

    wavelength than those of visible

    light and hence a resol$tion of C&1

    n##agnification 1A can

    be achieved in an %lectron

    Dicroscope&

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    48/112

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    49/112

    9o%e of an O0ser$er

    !he o0ser$er is o0Iecti$e an passi$e

    ?hysica% e$ents happen inepenent%y of#hether there is an o0ser$er or not

    !his is kno#n as o0Iecti$e rea%ity

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    50/112

    ;ou0%e-S%it +periment>act of o0ser$ation affects 0eha$iour of e%ectron

    9 % f O0 i

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    51/112

    9o%e of an O0ser$er inJuantum Mechanics

    !he o0ser$er is noto0Iecti$e an passi$e

    !he act of o0ser$ation changes thephysica% system irre$oca0%y

    !his is kno#n as su0Iecti$e rea%ity

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    52/112

    sind

    Eriginall" perfor#ed b" Fo$ng (181) to de#onstrate the wavenat$re of light&

    Gas now been done with electrons ne$trons Ge ato#s a#ong others&

    D

    ?d

    5etecting

    screen

    Inco#ing coherent

    bea# of particles

    (or light)

    y

    lternative

    #ethod of

    detection> scan a

    detector across

    the plane and

    record n$#ber of

    arrivals at each

    point

    !C+ ;OKB6+-S6

    For particles we expect two peaks, for waves an interference pattern

    T%o slit #nterference Experiment

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    53/112

    T%o&slit #nterference Experiment

    6aser

    Source

    S%it

    S%it ;etector

    9ate of photon arri$a% , " 1'Lsec

    9ate of photon etection , 1'(sec !ime %ag , '.( 1'-Lsec

    Spatia% separation 0et#een photons , '.( 1'-Lc , 1(' m

    1 meter

    ! % i t *17'@ 0% %it i t ith i

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    54/112

    A !ay%ors eperiment *17'@> ou0%e s%it eperiment #ith $ery im%ight> interference pattern emerge after #aiting for fe# #eeks

    A interference cannot 0e ue to interaction 0et#een photons3 i.e.

    cannot 0e outcome of estructi$e or constructi$e com0ination ofphotons

    interference pattern is ue to some inherent property of eachphoton - it Ninterferes #ith itse%f #hi%e passing from source toscreen

    A photons ont Nsp%it A%ight etectors a%#ays sho# signa%s of same intensity

    A s%its open a%ternating%y> get t#o o$er%apping sing%e-s%it iffractionpatterns A no t#o-s%it interference

    A a etector to etermine through #hich s%it photon goes>no interference

    A interference pattern on%y appears #hen eperiment pro$iesno means of etermining through #hich s%it photon passes

    ;ou0%e s%it eperiment JM interpretation

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    55/112

    ;ou0%e s%it eperiment A JM interpretation

    A patterns on screen are resu%t of istri0ution of photons

    A no #ay of anticipating #here particu%ar photon #i%% strikeA impossi0%e to te%% #hich path photon took A cannot assign

    specific traIectory to photon

    A cannot suppose that ha%f #ent through one s%it an ha%f throughother

    A can on%y preict ho# photons #i%% 0e istri0ute on screen *oro$er etector*s

    A interference an iffraction are statistica% phenomena associate#ith pro0a0i%ity that3 in a gi$en eperimenta% setup3 a photon #i%%

    strike a certain pointA high pro0a0i%ity 0right fringesA %o# pro0a0i%ity ark fringes

    Double slit expt %ave vs (uantum

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    56/112

    Double slit expt' && %ave vs (uantum

    pattern of fringes>

    A

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    57/112

    3e$trons Heilinger

    et al. 1*88Reviews of

    Modern Physics 6010717,

    Ge ato#s> E 6arnal and 2 Dl"nek

    1**1Physical Review Letters 66

    +08*+0*+

    60#olec$les> D

    rndt et al. 1***

    Nature 0! 08

    08+'ith

    #$ltipleslit

    grating

    'itho$t grating

    +X?+9

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    58/112

    Double-slit Experiment for Electrons

    Jee also this 2ava si#$lation> http>www&$ant$#ph"sics&pol"techni$e&frinde=&ht#l

    3o of electrons 1 1

    3o of electrons 1 1

    5EMB.%J.I; %A-%@ID%3;

    http://www.quantum-physics.polytechnique.fr/index.htmlhttp://www.hqrd.hitachi.co.jp/em/doubleslit-f2.cfmhttp://www.hqrd.hitachi.co.jp/em/doubleslit-f2.cfmhttp://www.quantum-physics.polytechnique.fr/index.html
  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    59/112

    Jo#e ke" papers in the develop#ent of the do$bleslit e=peri#ent d$ring the +th cent$r">

    K-erfor#ed with a light so$rce so faint that onl" one photon e=ists in the apparat$s at an" one ti#e

    < I ;a"lor 1**Proceedings of the Ca!ridge Philosophical "ociety!5 11/11:K-erfor#ed with electrons

    6 2Lnsson 1*01#eitschrift f$r Physi% !6! /://7/

    (translated 1*7/Aerican &ournal ofPhysics 2 /11)K-erfor#ed with single electrons

    ;ono#$ra et al.1*8*Aerican &ournal of Physics 5" 1171+K-erfor#ed with ne$trons

    Heilinger et al. 1*88Reviews of Modern Physics 60 10717,K-erfor#ed with Ge ato#s

    E 6arnal and 2 Dl"nek 1**1Physical Review Letters 66 +08*+0*+K-erfor#ed with 60 #olec$les

    D rndt et al. 1***Nature 0! 0808+K-erfor#ed with 67 #olec$les showing red$ction in fringe visibilit" as te#perat$re rises

    and the #olec$les give awa" their position b" e#itting photons

    .& Gacker#ller et al +/Nature 2" 71171/K-erfor#ed with 3a Bose%instein 6ondensates

    D @ ndrews et al.1**7 "cience2"50,70/1

    n e=cellent s$##ar" is available inPhysics 'orld(Jepte#ber ++ iss$e page 1:)

    and at http())physicswe!.org)(readers voted the do$bleslit e=peri#ent the #ost bea$tif$l in ph"sics)&

    5EMB.% J.I; %A-%@ID%3;

    BIB.IE

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    60/112

    Ceisen0erg rea%ise that ...

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    61/112

    easur ng t e pos t on anmomentum

    of an e%ectron Shine %ight on e%ectron an etect ref%ecte%ight using a microscope

    Minimum uncertainty in position

    is gi$en 0y the #a$e%ength of the%ight

    So to etermine the position

    accurate%y3 it is necessary to use%ight #ith a short #a$e%ength

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    62/112

    Measuring the position an momentumof an e%ectron *cont

    By ?%ancks %a# E, hc3 a photon #ith ashort #a$e%ength has a %arge energy

    !hus3 it #ou% impart a %arge Pkick to the

    e%ectron But to etermine its momentum

    accurate%y3

    e%ectron must on%y 0e gi$en a sma%% kick !his means using %ight of %ong #a$e%engthQ

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    63/112

    =unamenta% !rae Off R

    Kse %ight #ith short #a$e%ength>

    A accurate measurement of position 0ut not

    momentum

    Kse %ight #ith %ong #a$e%ength>

    A accurate measurement of momentum 0ut not

    position

    Ceisen0ergs Kncertainty

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    64/112

    Ceisen0erg s Kncertainty?rincip%e

    The more accurately you know the position (ie!the smaller xis)! the less accurately you know themomentum (ie! the larger pis)" an# $ice $ersa

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    65/112

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    66/112

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    67/112

    +amp%e of Base0a%% *cont

    !he uncertainty in position is then

    :o #oner one oes not o0ser$e the

    effects of the uncertainty princip%e ine$eryay %ifeQ

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    68/112

    +amp%e of +%ectron

    Same situation3 0ut 0ase0a%% rep%ace 0yan e%ectron #hich has mass 7.11 1'-&1kg

    So momentum , &.L 1'-"7kg msan its uncertainty , &.L 1'-&1kg ms

    !he uncertainty in position is then

    not er onseuence o

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    69/112

    not er onseuence oCeisen0ergs Kncertainty

    ?rincip%e / uantum partic%e can ne$er 0e in a stateof rest3as this #ou% mean #e kno# 0oth its

    position an momentum precise%y

    !hus3 the carriage #i%%

    0e Iigg%ing aroun the0ottom of the $a%%eyfore$er

    C+

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    70/112

    ?hotons transfer momentum to the partic%e #hen they scatter.

    Magnitue of p is the same 0efore an after the co%%ision. 2hy

    ?+

    p

    p

    *

    y

    hp

    Bp h =

    yp y h

    G%IJ%3B%@< M36%@;I3;F -@I36I-.%&

    y

    Kncertainty in photony-momentum, Kncertainty in particley-momentum

    ( ) ( )sin B + sin B +yp p p

    ( )+ sin B +yp p p =

    e Brog%ie re%ation gi$es

    Sma%% ang%e approimation

    an so

    =rom 0efore hence

    C+

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    71/112

    2e #i%% sho# forma%%y *section D

    B +

    B +

    B +

    *

    y

    +

    * py p

    + p

    h

    h

    h

    2e cannot ha$e simu%taneous kno#%egeof PconIugate $aria0%es such as position an momenta.

    G%IJ%3B%@< M36%@;I3;F -@I36I-.%&

    y* p :ote3 ho#e$er3

    /r0itary precision is possi0%e in princip%e for

    position in one irection an momentum in another

    etc

    e sen erg s ncerta nty

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    72/112

    e sen erg s ncerta nty?rincip%e in$o%$ing energy an

    time

    !he more accurate%y #e kno# the energy of a 0oy3the %ess accurate%y #e kno# ho# %ong it possessethat energy

    !he energy can 0e kno#n #ith perfect precision *E, '3on%y if the measurement is mae o$er an infinite perio oftime *t, U

    C+

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    73/112

    !here is a%so an energy-time uncertainty re%ation

    !ransitions 0et#een energy %e$e%s of atoms are not perfect%ysharp in freuency.

    B +, t

    h

    n , &

    n , "

    n , 1

    ,+, h=

    ,+

    6essons from

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    74/112

    Summary> 6essons fromCeisen0erg

    !he iea of a perfect%y preicta0%euni$erse cannot 0e true

    !here is no such thing as an iea%3o0Iecti$e o0ser$er

    4O:46KS

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    75/112

    4O:46KS

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    76/112

    Jelocity

    (ow fast is the wavetravelingK

    Jelocity is a referencedistance

    divided 2y a reference time.

    ;he phase velocit" is the wavelength period> v O

    JincefO 1 >

    In ter#s of k %O + andthe ang$lar fre$enc" O + this is>

    v O f

    v O %

    %he 3roup

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    77/112

    pJelocity

    ;his is the velocit" at which the overall shape of the waves a#plit$des or the

    wave Penvelope propagates& (Osignal velocity)

    Gere phase velocit" O gro$p velocit" (the #edi$# is non-dispersive)

    ispersion0 phase=group velocity depends on

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    78/112

    fre9uency

    Black dot #oves at phase velocit"& @ed dot #oves at gro$p velocit"&

    ;his is noral dispersion(refractive inde= decreases with increasing )

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    79/112

    'aves> -hase and gro$p velocities of a wave packet

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    80/112

    ;he speed at which a given phase propagates does not coincide with the

    speed of the envelope&

    3ote that the phase velocit" is

    greater than the gro$p velocit"&

    'aves> -hase and gro$p velocities of a wave packet

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    81/112

    ;he gro$p velocit"is the velocit" with which the envelope of thewave

    packet propagates thro$gh space&

    ;hephase velocit"is the velocit" at which the phase of an" one

    fre$enc" co#ponent of the wave will propagate& Fo$ co$ld pick one

    partic$lar phase of the wave (for e=a#ple the crest) and it wo$ld appearto travel at the phase velocit"&

    Q$estion> Is the -wave speed a phase or a gro$p velocit"!

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    82/112

    E&pectation values

    **P**i

    ii )(=

    === d*t**d***P**+

    )()(

    ;h$s if we know (* t) (a sol$tion of ;5J%) then knowledgeof Rd*allows the averageposition to be calc$lated>

    In the li#it that * then the s$##ation beco#es>

    == d*t**d**P**++++ )()(Ji#ilarl"

    ;he average is also know as the e*pectation valueand are ver"

    i#portant in $ant$# #echanics as the" provide $s with theaverage val$es of ph"sical properties beca$se in #an" cases

    precise val$es cannot even in principle be deter#ined S see later&

    li i

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    83/112

    Formalisation

    == 1)()(+d*t*d**P

    ;otal probabilit" of finding a particle an"where #$st be 1>

    ;his re$ire#ent is known as theNoralisation condition& (;his

    condition arises beca$se the J% is linear in and therefore if isa sol$tion of ;5J% then so is cwhere cis a constant&)Gence if original $nnor#alised wavef$nction is (*t) then thenor#alisation integral is>

    = d*t*N++ )(

    nd the (rescaled) nor#alised wavef$nction norO (1N) &

    #xample !> 'hat val$e ofNnor#alises the f$nctionN * (* L)of *L!

    7 d di i f

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    84/112

    7oundary conditions for

    In order for to be a sol$tion of the JchrLdinger e$ation torepresent a ph"sicall" observable s"ste# #$st satisf" certainconstraints>

    1& D$st be a singleval$ed f$nction of*and tT

    +& D$st be nor#alisableT ;his i#plies that the as*T

    ,&(*) #$st be a contin$o$s f$nction of*T/& ;heslopeof #$st be contin$o$s specificall" d(*)d*

    #$st be contin$o$s (e=cept at points where potential is

    infinite)&(*)

    *

    (*)

    *

    (*)

    *

    (*)

    *

    /ave unction

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    85/112

    RUU + =

    %he 9uantity with which Luantum Mechanics is concernedis the wave function of a 2ody.

    VWV" is proportiona% to the pro0a0i%ity of fining a partic%e at aparticu%ar point at a particu%ar time.

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    86/112

    *chrodinger0s time independent waveequation

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    87/112

    equation

    *A +sin=

    :ne dimensional wave e9uation for the waves associatedwith a moving particle is

    )rom CiD

    *A

    *

    +sin

    /+

    +

    +

    +

    =

    is the #a$e amp%itue for a gi$en . where

    6 is the ma&imum amplitude.

    H is the #a$e%ength

    CiD

    +

    +

    +

    + /=

    *

    CiiD

    h=

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    88/112

    vo=

    +

    ++

    +

    1

    h

    vo= +

    +

    +

    1

    +

    h

    v oo

    =

    ++

    +1

    h

    /o

    = where A is the A.E. for the non-relativistic

    case

    CiiiD

    +uppose E is the total energy of the particle

    and J is the potential energy of the particle

    )(+1

    ++V,

    h

    o =

    E9uation CiiD now 2ecomes

    ++

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    89/112

    %his is the time independent Csteady stateD +chrodinger5s

    wave e9uation for a particle of mass mo total energy Epotential energy J moving along the &-a&is.

    If the particle is moving in -dimensional spacethen

    )(+/

    +

    +

    +

    +

    V,h*

    o =

    )(+

    ++

    +

    =+

    V,

    *

    o

    )(+++

    +

    +

    +

    +

    +

    =++

    +

    V,

    +y*

    o

    +

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    90/112

    )or a free particle J ; " so the +chrodinger e9uationfor a free particle

    ++

    + =+ ,o

    )(+

    +

    + =+ V,o

    %his is the time independent Csteady stateD +chrodinger5swave e9uation for a particle in -dimensional space.

    *chrodinger0s time dependent waveequation

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    91/112

    equation

    )( p*,ti

    Ae

    =

    Bave e9uation for a free particle moving in @& direction is

    CiiiD

    +

    +

    +

    +

    p

    *=

    where E is the total energy an p is the momentum of theparticle i,erentiating CiD twice w.r.t. &

    CiD

    +

    +++

    *p

    = CiiD

    i,erentiating CiD w.r.t. t

    i,t

    =

    t

    i,

    =

    )or non-relativistic case

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    92/112

    Nsing CiiD and CiiiD in CivD

    CivD

    V*t

    i +

    =

    +

    ++

    +

    E ; A.E. @ otentialEnergy

    t*Vp,

    +

    + +=

    V

    p, +=

    +

    +

    %his is the time dependent +chrodinger5s wave e9uationfor a particle in one dimension.

    Linearity and *uperposition

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    93/112

    ++11 aa +=

    If O1an "are t#o so%utions of any Schroinger euation of a

    system3 then %inear com0ination of 1an " #i%% a%so 0e a so%ution

    of the euation..

    (ere are constants

    62ove e9uation suggests0

    +1V aa

    is also asolution

    CiD %he linear property of +chrodinger e9uation

    CiiD 1an " follow the superposition principle

    If 1is the pro0a0i%ity ensity corresponing to 1an ?"is the

    pro0a0i%ity ensity corresponing to

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    94/112

    +1 +%hen %otal pro2a2ility will 2e

    +

    +1

    + UUUU +==P

    due to superposition

    principle

    )()( +1R

    +1 ++=

    ))(( +1R+R1 ++=1

    R

    ++

    R

    1+

    R

    +1

    R

    1 +++=

    1

    R

    ++

    R

    1+1 +++= PPP

    +1 PPP + ro2a2ility density can5t 2e added linearly

    pro0a0i%ity ensity corresponing to "

    Expectation values

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    95/112

    d**f

    = +UU)(

    E&pectation value of any 9uantity which is a function ofP&5 say fC&D is given 2y

    for normalized O

    %hus e&pectation value for positionP&5 is

    >< )(*f

    d**

    = +UU>< *

    E&pectation value is the value of P&5 we would o2tain if wemeasured the positions of a large num2er of particles

    descri2ed 2y the same function at some instant Pt5 andthen averaged the results.

    L. )ind the e&pectation value of position of a particlehaving wave function O ; a& 2etween & ; " Q ! O ; "

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    96/112

    d**=1

    +UU

    +olution

    >< *

    1

    /+

    /

    =

    *

    a

    having wave function O ; a& 2etween & ; " Q ! O ; "elsewhere.

    d**a =1

    ,+

    >< */

    +a=

    1perators

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    97/112

    pi*

    =

    C6nother way of /nding the e&pectation valueD

    )or a free particle

    6n operator is a rule 2y means of which from a given

    function we can /nd another function.

    )( p*,ti

    Ae

    = %hen

    (ere

    *ip

    =

    W

    is called the momentum operator

    CiD

    ,

    i+imilarly

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    98/112

    ,t

    =

    (ere

    ti,

    =

    W

    is called the %otal Energy operator

    CiiD

    E9uation CiD and CiiD are general results and theirvalidity is the same as that of the +chrodinger e9uation.

    If a particle is not free then

    W

    W+W

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    99/112

    0*it

    i +

    = +

    +

    1

    %his is the time dependent +chrodinger e9uation

    WWW

    && 0,/, +=W+W

    +0

    p,

    o

    +=

    00= W

    0*t

    i += +++

    +

    0

    *t

    i +

    =

    +

    ++

    +

    If :perator is (amiltonian

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    100/112

    %hen time dependent +chrodinger e9uation can 2ewritten as

    0

    *

    1 +

    =

    +

    ++W

    +

    ,1 =W

    %his is time dependent +chrodinger e9uation in(amiltonian form.

    Eigen values and Eigen unction

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    101/112

    +chrodinger e9uation can 2e solved for some speci/cvalues of energy i.e. Energy Luantization.

    a=W

    +uppose a wave function COD is operated 2y an operator P5

    such that the result is the product of a constant say Pa5 andthe wave function itself i.e.

    %he energy values for which +chrodinger e9uation can 2esolved are called PEigen values5 and the correspondingwave function are called PEigen function5.

    then

    O is the eigen function of

    ais the eigen value of

    W

    W

    L. +uppose is eigen function of operator*e+=

    +

    +

    d

    d

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    102/112

    then /nd the eigen value.

    %he eigen value is ?.

    +olution.

    +d*

    +

    +W

    d*d2=

    +

    +W

    d*

    d2

    = )( +

    +

    +*e

    d*

    d=

    *e2 +W

    /=

    /W

    =2

    Particle in a 2ox

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    103/112

    *onsider a particle of rest mass mo enclosed in a one-

    dimensional 2o& Cin/nite potential wellD.

    %hus for a particle inside the 2o& +chrodinger e9uation is

    7oundary conditions forotential

    JC&

    D;

    " for " S & S'

    Tfor " U & U ' 7oundary conditions for O

    V ;

    " for & ; "

    T" for & ; '

    +

    ++

    +

    =+

    ,

    *

    o

    & ; " & ; '

    =V =V

    particle

    =V

    =V inside CiD

    h= += Ck is the propagation

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    104/112

    E9uation CiD 2ecomes

    p=

    %=

    p%=

    ,o+=

    +

    + +

    ,% o=

    Ck is the propagationconstantD

    CiiD

    ++

    +

    =+

    %*

    CiiiD

    3eneral solution of e9uation CiiiD is

    %*.%*A* cossin)( += CivD

    7oundary condition says O ; " when & ; "

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    105/112

    E9uation CivD reduces to

    CvD

    &cos&sin)( %.%A +=

    1& .+= = .

    %*A* sin)( =

    7oundary condition says O ; " when & ; '

    L%AL &sin)( =

    L%A &sin =A &sin = L%

    nL% sin&sin =

    n%L=

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    106/112

    ut this in E9uation CvD

    CviD

    L

    n%

    =

    L

    *nA*

    sin)( =

    Bhen n W " i.e. n ; ! > 4. this gives O ; "everywhere. ut value of k from CviD in

    CiiD

    +

    + +

    ,% o=

    +

    ++

    ,

    L

    n o=

    %,

    ++

    ++hn

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    107/112

    Bhere n ; ! > 4.

    E9uation CviiD concludes

    o,

    +=

    +8 Lo=

    Cvi

    iD

    !. Energy of the particle inside the 2o& can5t 2e e9ualto zero.

    %he minimum energy of the particle is o2tained forn ; !

    +

    +

    18 L

    h,

    o

    = 34ero PointEnergy5

    If momentum i.e.1, p * 7ut since the particle is con/ned in the 2o& of

    dimension '.

    L* = #a=

    %hus zero value of zero point energy violates the(eisen2erg5s uncertainty principle and hence zero

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    108/112

    (eisen2erg s uncertainty principle and hence zerovalue is not accepta2le.

    >. 6ll the energy values are not possi2le for a particlein

    potential well.

    Energy is 6uantied . En are the eigen values and Pn5 is the 9uantum

    num2er. ?. Energy levels CEnD are not e9ually spaced.

    n ;!

    n ;

    n ;>

    ,,

    1,

    +,

    L

    *nA*n

    sin)( =

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    109/112

    Nsing Formalization

    condition

    L

    1sin

    ++ =

    d*

    L

    *nA

    L

    1U)(U + =

    d**n

    1+

    + =

    L

    AL

    A +

    =

    %he normalized eigen function of the particle are

    L

    n*

    L*n

    sin

    +)( =

    ro2a2ility density /gure suggest that0

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    110/112

    !. %here are some positions CnodesD in the 2o& that willnever 2e occupied 2y the particle.

    >. )or di,erent energy levels the points of ma&imumpro2a2ility are found at di,erent positions in the 2o&.

    O!>is ma&imum at '=> Cmiddle of the 2o&D

    V"V"is Yero 6".

    Particle in a (hree 7imensional 2ox

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    111/112

    Eigen

    function +y*

    =

    L

    +n

    L

    yn

    L

    *nAAA +

    y*+y*

    sinsinsin=

    L

    +n

    L

    yn

    L

    *n

    L

    +y* sinsinsin+

    ,

    =

    +

    ++++

    8)(L

    hnnn, +y* ++=

    +y* ,,,, ++= Eigen energy

    References0 ti < ff 2 +: Ph ,l i ,ff @ t i d 1 +, : d Phili L d i h @ t i d 1 +, :

  • 8/9/2019 Quantum Mechanics-Dr.gagan Anand

    112/112

    $stin www&ee$als#cs$ared&a$ckland&ac&n4sitese#c+tlpeeovervi

    ew&cf#

    %instein lbert& (1*:)& En a Ge$ristic Xiewpoint 6oncerning the

    -rod$ction and ;ransfor#ation of .ight&Annalen der Physi% Xol 17

    1,+&

    %lert h"perte=tbook&co#ph"sics#odernphotoelectric

    Ga#akawa Foshihiro& (+/)& ;hin9il# Jolar 6ells> 3e=t generation

    photovoltaics and its application& 3ew Fork> Jpringer&

    .enardic 5enis&A 'al% 3hrough 3ie& @etrieved 111+:&

    http>www&pvreso$rces&co#enhistor"&php

    M&J& 5E% -hotovoltaics -rogra#& (+:)&Photovoltaics 3ieline&

    @etrieved 1+7:& http:$$inventors%a&out%com$li&rary$inventors$&lsolar2%html

    n&a& n&d&Philipp Lenard 4 iography.@etrieved 1+,:&

    http>nobelpri4e&orgph"sicsla$reates1*:lenardbio&ht#l

    n&a& n&d& 3he Photo ,lectric ,ffect& @etrieved 10:&

    http>www&lancs&ac&$k$gNackso#+

    n&a& n&d& 3he ,lectric 5ield 6n Action& @etrieved 111+:&

    http>www&sandia&govpvdocs-X9%ff%lectricY9ield&ht#

    n&a& n&d& 3ieline of "olar Cells& @etrieved 1+7:&

    http>www&nation#aster&co#enc"clopedia;i#elineofsolarcel

    ls

    @obertson % 9& E6onner 2 2&A history of 7uantu Mechanics.

    @etrieved 1+::&

    http>wwwgro$ps&dcs&st

    and&ac&$kChistor"Gist;opics;heYQ$ant$#YageYbegins&ht#l

    J#ith 'illo$ghb"& (187,)& %ffect of .ight on Jeleni$# d$ring

    the passage of an %lectric 6$rrent&Nature Xol ! ,,&

    vailable M@.>http:$$histv2%free%fr$selenium$smith%htm

    http://www.pvresources.com/en/history.phphttp://www.sandia.gov/pv/docs/PVFEffElectric_Field.htmhttp://www.nationmaster.com/encyclopedia/Timeline-of-solar-cellshttp://www.nationmaster.com/encyclopedia/Timeline-of-solar-cellshttp://www.nationmaster.com/encyclopedia/Timeline-of-solar-cellshttp://www.nationmaster.com/encyclopedia/Timeline-of-solar-cellshttp://www.sandia.gov/pv/docs/PVFEffElectric_Field.htmhttp://www.pvresources.com/en/history.php