Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing...

37
Quantum Measurements and Back Action (Spooky and Otherwise) SM Girvin Yale University Thanks to Michel, Rob, Michael, Vijay, Aash, Simon, Dong, Claudia for discussions and comments on Les Houches notes.

Transcript of Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing...

Page 1: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

1

Quantum Measurements and Back Action

(Spooky and Otherwise)

SM Girvin Yale University

Thanks to Michel, Rob, Michael, Vijay, Aash, Simon, Dong, Claudia for discussions and comments on Les Houches notes.

Page 2: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Quantum Back Action is a Weird Thing

2

CNOT gate

target qubit

0 0 0 00 1 0 11 0 1 11 1 1 0

c c t t

control qubit

truth table Target is affected but control is not

Are you sure???

Page 3: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

3

CNOT gate

target qubit

control qubit

Quantum Back Action is a Weird Thing

0 1−

0 1− 0 1−

0 1+

The control qubit is flipped from to →← !!

1 12 2

1 1CNOT 2 2Z ZX I+ −

= +

Page 4: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

4

Stern Gerlach Experiment

Silver atom has magnetic moment due to the electron ‘spin’

Magnetic moment (spin) can point in any direction and can be measured by passing the atom through a magnetic field gradient.

Silver atom is a qubit.

It’s all about the measurement:

V BF V

µ==−∇

rrgr r

Page 5: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

5

Stern Gerlach Experiment: Quantum Measurement

http://hyperphysics.phy-astr.gsu.edu

Silver atom has magnetic moment which can point in any direction, and yet….

(Measured)

Page 6: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

DISPERSIVE READOUT

Readout  phase  (deg)  

f

90  

-­‐90  fr

0

width  κ  

θ 1

Readout  amplitude  

f fr

01

dispersive  shi8  χ

Qubit  +  resonator  

qubit  +  readout  pulses  

AMP  

(MHD)

Page 7: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

10

Cou

nts

2000

0  

2  

-­‐2  

MEASUREMENT HISTOGRAM (data from Devoret lab)

(unlike Stern-Gerlach, the qubit is in nearly a pure state)

Page 8: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

8

Stern & Gerlach did not measure spin!

They entangled spin with position and measured position.

http://hyperphysics.phy-astr.gsu.edu

(Measured)

Page 9: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

9

More precisely, they used a spin-dependent force to entangle spin with momentum and

waited for momentum to turn into position.

http://hyperphysics.phy-astr.gsu.edu

(Measured)

Page 10: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

10

Cou

nts

2000

0  

2  

-­‐2  

This is a measurement of EM modes that were entangled with the qubit ‘spin’

Page 11: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

2

0

0

( , , ) ( )2

( , ) ( )

[ , ] 0 QND

z

z

z

pH p x t k x tm

F x t k t

H

σ δ

σ δ

σ

= −

= +

= ⇒

h

h

1D toy model with spin-dependent impulsive force

X zB

Page 12: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

12

‘Quantum Non-Demolition’ (QND) Measurements are Repeatable

Z

Z

measurement

Z

measurement

Z

measurement

Z

First result is random, rest are repeats.

Page 13: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

2

0

0

( , , ) ( )2

( , ) ( )

z

z

pH p x t k x tm

F x t k t

σ δ

σ δ

= −

= +

h

h

1D toy model with spin-dependent impulsive force

X zB

We will measure momentum just after impulse rather than waiting for it to turn into position.

Page 14: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

14

( )

( )

( )

0 0

0 0

( , 0 ) ( )

( , 0 ) ( ) ( )

[ , 0 ] [ ] [ ]

ik x ik x

x t a b x

x t ae x be x

k t a k k b k k

ψ

ψ

ψ

−+

+

= = ↑ + ↓ Φ

= = Φ ↑ + Φ ↓

= = Φ − ↑ + Φ + ↓

Input product state

Output entangled entangled state

Output state in momentum basis

2

0( , , ) ( )2

zpH p x t k x tm

σ δ= − h

Page 15: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

15

-4 -2 2 4

0.2

0.4

0.6

0.8

( | )P k ↑( | )P k ↓

-4 -2 2 4

0.2

0.4

0.6

0.8

Strong measurement

Weak measurement

k

k

(gaussian input packet)

( | )P k ↓ ( | )P k ↑

Page 16: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

16

-4 -2 2 4

0.2

0.4

0.6

0.8

( | )P k ↑( | )P k ↓

k

( | ) is easy to understandbut what we need is:

( | )

P k

P k

Page 17: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Practice on two continuous variables

17

2( , ) ( , )P x y x yψ=

x

y

Y

2

2

( , ) ( , )( | )( )( , )

x Y P x YP x YP Ydx x Y

ψ

ψ= =

ʹ′ ʹ′∫

( , ) ( | ) ( )P x y P x y P y=

Page 18: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Density Matrix Equivalent

18

Tr ( )k

k k k kk k P kρ ρ

ρρ

= =

Reduced density matrix for spin conditioned on measurement of momentum

k

k kρ

ρ

Full density matrix projected onto observed momentum state

Reduced density matrix for spin given observed value of momentum

Page 19: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Density Matrix Equivalent

19

Full state a

a bb

ψ ↑

↑ ↓

⎛ ⎞Φ= ↑ Φ + ↓ Φ = ⎜ ⎟

⎜ ⎟Φ⎝ ⎠

* *

* *

aa ab

a b bbρ ψ ψ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓

⎛ ⎞Φ Φ Φ Φ= = ⎜ ⎟

⎜ ⎟Φ Φ Φ Φ⎝ ⎠

Full density matrix

Page 20: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

20

Tr ( )k

k k k kk k P kρ ρ

ρρ

= =

Reduced density matrix for spin conditioned on measurement of momentum

* *

* *

aa ab

a b bbρ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓

⎛ ⎞Φ Φ Φ Φ= ⎜ ⎟⎜ ⎟Φ Φ Φ Φ⎝ ⎠

* *1( ) * *k

aa k k ab k kP k a b k k bb k k

ρ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓

⎛ ⎞Φ Φ Φ Φ= ⎜ ⎟

⎜ ⎟Φ Φ Φ Φ⎝ ⎠

Full density matrix

Reduced density matrix for spin conditioned on measurement of momentum

Page 21: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

21

* *1( ) * *k

aa k k ab k kP k a b k k bb k k

ρ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓

⎛ ⎞Φ Φ Φ Φ= ⎜ ⎟

⎜ ⎟Φ Φ Φ Φ⎝ ⎠

Reduced density matrix for spin conditioned on measurement of momentum

Det 0 Tr 1

1 0 exists a basis s.t.

0 0

k

k

k

ρ

ρ

ρ

=

=

⎛ ⎞⇒ ∃ = ⎜ ⎟

⎝ ⎠

Easy to verify conditional state is pure:

If we fully measure the state of the ‘bath’ then the conditional state remains pure!

Page 22: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

22

* *1( ) * *k

aa k k ab k kP k a b k k bb k k

ρ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓

⎛ ⎞Φ Φ Φ Φ= ⎜ ⎟

⎜ ⎟Φ Φ Φ Φ⎝ ⎠

Reduced density matrix for spin conditioned on measurement of momentum

Sanity check:

* *( )

* *k

aa abdkP k

a b bbρ ρ ↓ ↑

↑ ↓

⎛ ⎞Φ Φ= = ⎜ ⎟

⎜ ⎟Φ Φ⎝ ⎠∫

Averaging over measurement results yields measurement-induced dephasing

Det 0kρ =Easy to verify conditional state is pure:

Page 23: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

If the state is pure, there is a corresponding wave function for the spin alone

23

{ }1( )k a k b kP k

ψ↑ ↓

= ↑ Φ + ↓ Φ

1( | ) * *( )

P k aa k k aaP k ↑ ↑

↑ = Φ Φ ≠

‘Spooky’ back action: and yet: [ , ] 0zH σ =

1( | ) * *( )

P k bb k k bbP k ↓ ↓

↓ = Φ Φ ≠

Page 24: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Gaussian packet

24

2 20 0

1/42( )0

02[ ] k kk k e σσπ

− ±⎛ ⎞Φ ± = ⎜ ⎟

⎝ ⎠-4 -2 2 4

0.2

0.4

0.6

0.8

( | )P k ↑( | )P k ↓

k

02

02

2( )

2( )

| |( | )

| |( | )

k kk

k kk

aP k eZbP k eZ

−Δ

↑ =

↓ =

220

1( )4

Δ =

0 02 22 2( ) ( )| | | |

k k k kk kZ a e b e

+ −Δ Δ≡ +

2

20

1/44

20

1( )2

x

x e σ

πσ

−⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠

Page 25: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

25

-4 -2 2 4

0.2

0.4

0.6

0.8

( | )P k ↑( | )P k ↓

k

02

02

2( )

2( )

| |( | )

| |( | )

k kk

k kk

aP k eZbP k eZ

−Δ

↑ =

↓ =

Average Shannon entropy reduction

(information gain) for a weak measurement

20

22( )kIk

( ) Tr logS ρ ρ= −

(log base e)

Page 26: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Summary so far:

26

•  Spin-dependent force entangles spin with momentum •  Measurement of momentum improves knowledge of spin •  changes even though •  ‘Spooky’ back action drives qubit up and down in latitude

zσ [ , ] 0zH σ =

What happens if we measure x instead of k?

The back action changes!

Qubit moved in longitude instead.

Page 27: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

2

0

0

( , , ) ( )2

( , ) ( )

z

z

pH p x t k x tm

F x t k t

σ δ

σ δ

= −

= +

h

h

1D toy model with spin-dependent impulsive force

X zB

If we measure position just after the impulse, we gain NO information about the momentum change. We DO however learn the value of the magnetic field that acted on the qubit.

Page 28: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

28

( )0 0( , 0 ) ( ) ( )ik x ik xx t ae x be xψ −+= = Φ ↑ + Φ ↓

2* * * *1 | ( ) |( ) * * * *

i i

x i iX

aa e ab aa e abx

P x e a b bb e a b bb

ϕ ϕ

ϕ ϕρ

− −

+ +

⎛ ⎞ ⎛ ⎞= Φ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Measuring position gives no information about momentum or spin but produces rotation of qubit:

02k xϕ ≡2

0( , , ) ( )2

zpH p x t k x tm

σ δ= −h

Non-spooky back action! Qubit in pure state.

Page 29: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

29

2* * * *1 | ( ) |( ) * * * *

i i

x i iX

aa e ab aa e abx

P x e a b bb e a b bb

ϕ ϕ

ϕ ϕρ

− −

+ +

⎛ ⎞ ⎛ ⎞= Φ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Measuring position gives no information about momentum or spin but produces rotation of qubit at constant latitude:

Non-spooky back action! Qubit in pure state.

Same dephasing as before if average over x measurements.

Page 30: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

DISPERSIVE READOUT is Exactly Analogous

Readout  phase  (deg)  

f

90  

-­‐90  fr

0

width  κ  

θ 1

Readout  amplitude  

f fr

01

dispersive  shi8  χ

Qubit  +  resonator  

qubit  +  readout  pulses  

AMP  

Page 31: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

( real)

z zV a a aXa a a aX a a

χ σ χ σ

δ

δ δ

= ≈

≡ +

≡ +

X

Y

Homodyne measurement of Y is analogous to Stern-Gerlach measurement of momentum. Spooky back action. Homodyne measurement of X is analogous to Stern-Gerlach measurement of position. Non-spooky back action due to photon shot noise.

Page 32: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

z zV a a aXX a a

χ σ χ σ

δ δ

= ≈

≡ +X

Y

{ }in

outi i

a b

a e b eθ θ

ψ α

ψ α α+ −

= ↑ + ↓

= ↑ + ↓

{ }outin inn ae be nθ θψ α+ −= ↑ + ↓

Each photon passing through the cavity rotates the qubit by (but only if we measure n or X!!) 2θ

Page 33: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Pseudo-heterodyne measurement

Qubit  +  resonator  

qubit  +  readout  pulses  

vacuum port

X

Y

Qubit is now entangled with two independent oscillators (field modes). But still in a PURE state if we measure one quadrature of each.

Back action has both spooky and non-spooky components.

Page 34: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Pseudo-heterodyne measurement

Qubit  +  resonator  

qubit  +  readout  pulses  

vacuum port

X

Y

Measurement efficiency is 50% but ‘added noise’ does not dephase if both modes are fully measured.

Back action has both spooky and non-spooky components.

Page 35: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

Thanks

Many further details ‘soon’ in my

Les Houches notes.

Page 36: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table

36

Gerlach’s Postcard to Bohr

8 February 1922 ‘Attached [is] the experimental proof of directional quantization. We congratulate [you] on the confirmation of your theory.’

(Historical note: they did not realize this was the discovery of electron spin.) AIP Emilio Segrè Visual Archives.

Page 37: Quantum Measurements and Back Action (Spooky and Otherwise) · Quantum Back Action is a Weird Thing 2 CNOT gate target qubit 0000 01 01 1011 111 0 c t c t control qubit truth table